Skip to main content

Advertisement

Log in

Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The recovery of valuable metals from complex sulfide concentrates was investigated via chlorination roasting followed by water leaching. A reaction process is proposed on the basis of previous studies and the results of our preliminary experiments. During the process, various process parameters were studied, including the roasting temperature, the addition of NH4Cl, the roasting time, the leaching time, and the liquid-to-solid ratio. The roasted products and leach residues were characterized by X-ray diffraction and vibrational spectroscopy. Under the optimum condition, 95% of Ni, 98% of Cu, and 88% of Co were recovered. In addition, the removal of iron was studied in the water leaching stage. The results demonstrate that this process provides an effective approach for extracting multiple metals from complex concentrates or ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Mudd, Nickel sulfide versus laterite: the hard sustainability challenge remains, [in] The 48th Annual Conference of Metallurgists, Sudbury, 2009, p. 214.

    Google Scholar 

  2. H.R. Watling, The bioleaching of nickel−copper sulfides, Hydrometallurgy, 91(2008), No. 1-4, p. 70.

    Article  Google Scholar 

  3. O.G. Olvera, M. Rebolledo, and E. Asselin, Atmospheric ferric sulfate leaching of chalcopyrite: Thermodynamics, kinetics and electrochemistry, Hydrometallurgy, 165(2016), p. 148.

    Article  Google Scholar 

  4. P.A. Olubami, J.O. Borode, and S. Ndlovu, Sulphuric acid leaching of zinc and copper from Nigerian complex sulphide ore in the presence of hydrogen peroxide, J. S. Afr. Inst. Min. Metall., 106(2006), No. 11, p. 765.

    Google Scholar 

  5. T.C. Veloso, J.J.M. Peixoto, M.S. Pereira, and V.A. Leao, Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in the presence of NaCl, Int. J. Miner. Process., 148(2016), p. 147.

    Article  Google Scholar 

  6. J. Petersen, Heap leaching as a key technology for recovery of values from low-grade ores: a brief overview, Hydrometallurgy, 165(2016), p. 206.

    Article  Google Scholar 

  7. D.J. Lane, N.J. Cook, S.R. Grano, and K. Ehrig, Selective leaching of penalty elements from copper concentrates: a review, Miner. Eng., 98(2016), p. 110.

    Article  Google Scholar 

  8. Y.L. Zhang, X.J. Yu, and X.B. Li, Zinc recovery from franklinite by sulphation roasting, Hydrometallurgy, 109(2011), No. 3-4, p. 211.

    Article  Google Scholar 

  9. X.Y. Guo, D. Li, K.H. Park, Q.H. Tian, and Z. Wu, Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process, Hydrometallurgy, 99(2009), No. 3-4, p. 144.

    Article  Google Scholar 

  10. X.W. Liu, Y.L. Feng, H.R. Li, Z.C. Yang, and Z.L. Cai, Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process, Int. J. Miner. Metall. Mater., 19(2012), No. 5, p. 377.

    Article  Google Scholar 

  11. N. Kanari, I. Gaballah, E. Allain, and N. Menad, Chlorination of chalcopyrite concentrates, Metall. Mater. Trans. B, 30(1999), No. 4, p. 567.

    Article  Google Scholar 

  12. X.Y. Guo, D. Li, Z. Wu, and Q.H. Tian, Application of response surface methodology in optimizing the sulfation-roasting-leaching process of nickel laterite, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 199.

    Article  Google Scholar 

  13. Y.L. Liao, J. Zhou, F.R. Huang, and Y.Y. Wang, Leaching kinetics of calcification roasting calcinate from multimetallic sulfide copper concentrate containing high content of lead and iron, Sep. Purif. Technol., 149(2015), p. 190.

    Article  Google Scholar 

  14. Z.K. Chen, The research progress and prospect of chlorination method used to realizing separation and enrichment in metallurgical industry, Hunan Nonferrous Met., 30(2014), No. 6, p. 29.

    Google Scholar 

  15. T.K. Mukherjee and C.K. Gupta, Base metal resource processing by chlorination, Miner. Process. Extr. Metall. Rev., 1(1983), No. 1-2, p. 111.

    Article  Google Scholar 

  16. P.K. Jena and E.A. Brocchi, Metal extraction through chlorine metallurgy, Miner. Process. Extr. Metall. Rev., 16(2008), No. 4, p. 211.

    Article  Google Scholar 

  17. O. Terakado, T. Saeki, R. Irizato, and M. Hirasawa, Pyrometallurgical recovery of indium from dental metal recycling sludge by chlorination treatment with ammonium chloride, Mater. Trans., 51(2010), No. 6, p. 1136.

    Article  Google Scholar 

  18. T.K. Mukherjee, P.R. Menon, P.P. Shukla, and C.K. Gupta, Chloridizing roasting process for a complex sulfide concentrate, JOM, 37(1985), No. 6, p. 29.

    Article  Google Scholar 

  19. V.A. Imideev, P.V. Aleksandrov, A.S. Medvedev, O.V. Bazhenova, and A.R. Khanapieva, Nickel sulfide concentrate processing using low-temperature roasting with sodium chloride, Metallurgist, 58(2014), No. 5-6, p. 353.

    Article  Google Scholar 

  20. I. Iwasaki, Non-sulfuric acid generation type copper smelting by chlorination roasting, Resour. Process., 44(1997), No. 3, p. 159.

    Article  Google Scholar 

  21. M. Chakravortty and S. Srikanth, Kinetics of salt roasting of chalcopyrite using KCl, Thermochim. Acta, 362(2000), No. 1-2, p. 25.

    Article  Google Scholar 

  22. N.V. Ngoc, M. Shamsuddin, and P.M. Prasad, Salt roasting of an off-grade copper concentrate, Hydrometallurgy, 21(1989), No. 3, p. 359.

    Article  Google Scholar 

  23. A.A. Andreev, A.N. D’yachenko, and R.I. Kraidenko, Processing of oxidized nickel ores with ammonium chloride, Theor. Found. Chem. Eng., 45(2011), No. 4, p. 521.

    Article  Google Scholar 

  24. M.Z. Zhang, G.C. Zhu, Y.N. Zhao, and X.J. Feng, A study of recovery of copper and cobalt from copper–cobalt oxide ores by ammonium salt roasting, Hydrometallurgy, 129-130(2012), p. 140.

    Article  Google Scholar 

  25. R.K. Nadirov, L.I. Syzdykova, A.K. Zhussupova, and M.T. Usserbaev, Recovery of value metals from copper smelter slag by ammonium chloride treatment, Int. J. Miner. Process., 124(2013), p. 145.

    Article  Google Scholar 

  26. R.Ž. Vračar and K.P. Cerović, The study of chlorination kinetics of copper(I) sulfide by calcium chloride in the presence of oxygen, Metall. Mater. Trans. B, 31(2000), No. 4, p. 723.

    Article  Google Scholar 

  27. R.F. Pilgrim and T.R. Ingraham, Thermodynamics of the chlorination of iron, cobalt, nickel and copper sulphides, Can. Metall. Q., 6(1967), No. 1, p. 39.

    Article  Google Scholar 

  28. A. Dahlstedt, S. Seetharaman, and K.T. Jacob, Thermodynamics of salt roasting of sulphide ores, Scand. J. Metall., 21(1992), No. 6, p. 242.

    Google Scholar 

  29. M. Aneesuddin, P.N. Char, M.R. Hussain, and E.R. Saxena, Studies on thermal oxidation of chalcopyrite from Chitradurga, Karnataka State, India, J. Therm. Anal., 26(1983), No. 2, p. 205.

    Article  Google Scholar 

  30. V.A. Borisov, A.N. D’yachenko, and R.I. Kraidenko, Reaction of ammonium chloride with the copper(II) sulfide and oxide, and identification of the reaction products, Russ. J. Gen. Chem., 81(2011), No. 7, p. 1430.

    Article  Google Scholar 

  31. T. Nagaishi, S. Ishiyama, M. Matsumoto, and S. Yoshinaga, Reactions between ammonium sulphate and metal oxides (metal=Cr, Mn and Fe) and thermal decomposition of the products, J. Therm. Anal., 29(1984), No. 1, p. 121.

    Article  Google Scholar 

  32. G. Bayer and H.G. Wiedemann, Thermal analysis of chalcopyrite roasting reactions, Thermochim. Acta, 198(1992), No. 2, p. 303.

    Article  Google Scholar 

  33. J.Y. Chen, S.Q. Yu, and Z.C. Wu, The Separation and Utilization of Iron in Hydrometallurgy, Metallurgical Industry Press, Beijing, 1991, p. 173.

    Google Scholar 

  34. J.E. Dutrizac, Comparative rates of precipitation of ammonium jarosite and sodium jarosite in ferric sulphate-sulphuric acid media, Can. Metall. Q., 49(2013), No. 2, p. 121.

    Article  Google Scholar 

  35. Q.K. Wang, Y.J. Ma, and J.C. Tan, The studies and applications of iron precipitations as alkali jarosites, Min. Metall. Eng., 6(1986), No. 1, p. 30.

    Google Scholar 

  36. J.E. Dutrizac, The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite, Hydrometallurgy, 42(1996), No. 3, p. 293.

    Article  Google Scholar 

  37. P.J. Murphy, A.M.L. Smith, K.A. Hudson-Edwards, W.E. Dubbin, and K. Wright, Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al3+, Cr3+, Fe3+ and V3+ at the B site, Can. Mineral., 47(2009), No. 3, p. 663.

    Article  Google Scholar 

  38. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th Ed., John Wiley & Sons, Inc., New York, 1997, p. 184.

    Google Scholar 

  39. A. Adamou, G. Manos, N. Messios, L. Georgiou, C. Xydas, and C. Varotsis, Probing the whole ore chalcopyrite-bacteria interactions and jarosite biosynthesis by Raman and FTIR microspectroscopies, Bioresour. Technol., 214(2016), p. 852.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Basic Research Program of China (No. 2014CB643403) and the National Science Fund for Distinguished Young Scholars (No. 51225401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-wei Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Cheng, Hw., Li, Gs. et al. Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching. Int J Miner Metall Mater 24, 377–385 (2017). https://doi.org/10.1007/s12613-017-1417-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1417-2

Keywords

Navigation