Skip to main content
Log in

Corrosion behavior of low alloy steels in a wet–dry acid humid environment

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Soares, Y. Garbatov, A. Zayed, and G. Wang, Corrosion wastage model for ship crude oil tanks, Corros. Sci., 50(2008), No. 11, p. 3095.

    Article  Google Scholar 

  2. K. Kashima, Y. Tanino, S. Kubo, A. Inami, and H. Miyuki, Development of corrosion resistant steel for cargo oil tanks, [in] Proceeding of International Symposium on Shipbuilding Technology: Fabrication and Coatings, Osaka, 2007, p. 5.

    Google Scholar 

  3. D.P. Li, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and M.L. Liu, Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 388.

    Article  Google Scholar 

  4. H. Shiomi, M. Kaneko, K. Kashima, H. Imamura, and T. Komori, Development of anti-corrosion steel for cargo oil tanks, [in] Proceeding of TSCF 2007 Shipbuilders Meeting, Busan, 2007, p. 1.

    Google Scholar 

  5. Y. Yamaguchi and S. Terashima, Development of Guidelines on Corrosion Resistant Steels for Cargo Oil Tanks, [in] Proceeding of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, 2011, p. 333.

    Google Scholar 

  6. I. Yasuto, S. Kazuhiko, K. Tsutomu, and N. Kimihiro, Corrosion Resistant Steel for Crude Oil Tank, Manufacturing Method Therefor, and Crude Oil Tank, European patent, EP 2395120 B1, 2015.

    Google Scholar 

  7. A. Usami, K. Katoh, T. Hasegawa, and A. Shishibori, Crude Oil Tank Comprising a Corrosion Resistant Steel Alloy, United States Patent, US 7875130B2, 2011.

    Google Scholar 

  8. S. Kazuhiko, I. Yasuto and K. Tsutomu, Corroson-resistant Steel Material for Crude Oil Storage Tank, and Crude Oil Storage Tank, Chinese patent, CN101415852 A, 2009.

    Google Scholar 

  9. A. Usami, K. Katoh, T. Hasegawa, and A. Shishibori, Crude Oil Tank and Method for Producing a Steel for a Crude Oil Tank, European patent, EP 1516938B2, 2013.

    Google Scholar 

  10. J.M. Liang, D. Tang, H.B. Wu, and L.D. Wang, Environment corrosion behavior of cargo oil tank deck made of Cr-contained low-alloy steel, J. Southeast Univ. Nat. Sci. Ed., 43(2013), No. 1, p. 152.

    Google Scholar 

  11. W. Liu, X.H. Fan, S.F. Li, and M.X. Lu, Corrosion behavior of low alloy steels in a CO2–O2–H2S–SO2 wet gas environment of crude oil tanks, J. Univ. Sci. Technol. Beijing, 33(2011), No. 1, p. 33.

    Google Scholar 

  12. Q.H. Zhao, W. Liu, J. Zhao, D. Zhang, P.C. Liu, and M.X. Lu, Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 829.

    Article  Google Scholar 

  13. International Maritime Organization, Performance standard for alternative means of corrosion protection for cargo oil tanks of crude oil tankers, [in] Proceeding of the Marine Safety Committee on its Eighty-seventh Session Annex 3 MSC 289(87), London, 2010, p. 1.

    Google Scholar 

  14. J. Guo, S.W. Yang, C.J. Shang, Y. Wang, and X.L. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl–containing environment, Corros. Sci., 51(2009), No. 2, p. 242.

    Article  Google Scholar 

  15. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere, Corros. Sci., 59(2012), p. 270.

    Article  Google Scholar 

  16. S. Hoerlé, F. Mazaudier, Ph. Dillmann, and G. Santarini, Advances in understanding atmospheric corrosion of iron: -. Mechanistic modelling of wet–dry cycles, Corros. Sci., 46(2004), No. 6, p. 1431.

    Article  Google Scholar 

  17. H. Tamura, The role of rusts in corrosion and corrosion protection of iron and steel, Corros. Sci., 50(2008), No. 7, p. 1872.

    Article  Google Scholar 

  18. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion, Corros. Sci., 54(2012), p. 244.

    Article  Google Scholar 

  19. W.J. Chen, L. Hao, J.H. Dong, and W. Ke, Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere, Corros. Sci., 83(2014), p. 155.

    Article  Google Scholar 

  20. P. Yi, K. Xiao, K.K. Ding, X. Wang, L.D. Yan, C.L. Mao, C.F. Dong, and X.G. Li, Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1183.

    Article  Google Scholar 

  21. Ph. Dillmann, F. Mazaudier, and S. Hoerlé, Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corros. Sci., 46(2004), No. 6, p. 1401.

    Article  Google Scholar 

  22. K. Aasmi and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal indutrial atmosphere for 17 years, Corros. Sci., 45(2003), No. 11, p. 2671.

    Article  Google Scholar 

  23. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci., 36(1994), No. 2, p. 283.

    Article  Google Scholar 

  24. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. de la Fuente, Weathering steels: from empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6.

    Article  Google Scholar 

  25. T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, and S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci., 49(2007), No. 3, p. 1468.

    Article  Google Scholar 

  26. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, and M.S. Li, Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels, Corros. Sci., 74(2013), p. 424.

    Article  Google Scholar 

  27. H. Townsend, Effects of alloying elements on the corrosion of steel in industrial atmospheres, Corrosion, 57(2001), No. 6, p. 497.

    Article  Google Scholar 

  28. M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, and T. Senuma, Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance, Corros. Sci., 47(2005), No. 10, p. 2499.

    Article  Google Scholar 

  29. M. Kimura, T. Suzuki, G. Shigesato, H. Kihira, and K. Tanabe, Fe(O,OH)6 network structure of rust formed on weathering steel surfaces and its relationship with corrosion resistance, Nippon Steel Tech. Rep., 2003, No. 87, p. 17.

    Google Scholar 

  30. H. Antony, L. Legrand, L. Maréchal, S. Perrin, Ph. Dillmann, and A. Chaussé, Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25°C, Electrochim. Acta, 51(2005), No. 4, p. 745.

    Article  Google Scholar 

  31. J.Y. Zhong, M. Sun, D.B. Liu, X.G. Li, and T.Q. Liu, Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Qh., Liu, W., Yang, Jw. et al. Corrosion behavior of low alloy steels in a wet–dry acid humid environment. Int J Miner Metall Mater 23, 1076–1086 (2016). https://doi.org/10.1007/s12613-016-1325-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1325-x

Keywords

Navigation