Skip to main content
Log in

Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung, Effect of SiO2 on the crystallization behaviors and in-mold performance of CaF2–CaO–Al2O3 slags for drawing-ingot-type electroslag remelting, Metall. Mater. Trans. B, 46(2015), No. 5, p. 2110.

    Article  Google Scholar 

  2. X.C. Lu, Effect of titanium on surface formability of ESR super alloy ingot, Foundry, 51(2002), No. 6, p. 378.

    Google Scholar 

  3. A. Choudhury, State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR, ISIJ Int., 32(1992), No. 5, p. 563.

    Article  Google Scholar 

  4. W. Li, W. Wang, Y. Hu, and Y. Chen, The estimation and control of the electroslag remelting melt rate by mechanism-based modeling, Metall. Mater. Trans. B, 43(2012), No. 2, p. 276.

    Article  Google Scholar 

  5. Y.B. Li, J.X. Zhao, W.D. Tang, Y.M. Dang, S.T. Qiu, and Y.R. Cui, Composition and structure of slag shell during electroslag remelting process with CaF2-Al2O3-CaO slag series, Spec. Steel, 35(2014), No. 4, p. 28.

    Google Scholar 

  6. Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii, Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization, ISIJ Int., 38(1998), No. 4, p. 348.

    Article  Google Scholar 

  7. L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li, In situ observation and investigation of mold flux crystallization by using double hot thermocouple technology, Metall. Mater. Trans. B, 43(2012), No. 4, p. 925.

    Article  Google Scholar 

  8. J. Yang, Y. Cui, L. Wang, Y. Sasaki, J. Zhang, O. Ostrovski, and Y. Kashiwaya, In-situ study of crystallization behavior of a mold flux using single and double hot thermocouple technique, Steel Res. Int., 86(2015), No. 6, p. 636.

    Article  Google Scholar 

  9. J. Gao, G. Wen, Q. Sun, P. Tang, and Q. Liu, The influence of Na2O on the solidification and crystallization behavior of CaO–SiO2–Al2O3-based mold flux, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1850.

    Article  Google Scholar 

  10. Y. Sugiyama, R. Chiba, S. Fujimori, and N. Funakoshi, Crystallization process of In–Te alloy films for optical recording, J. Non Cryst. Solids, 122(1990), No. 1, p. 83.

    Article  Google Scholar 

  11. E. Kinsbron, M. Sternheim, and R. Knoell, Crystallization of amorphous silicon films during low pressure chemical vapor deposition, Appl. Phys. Lett., 42(1983), No. 9, p. 835.

    Article  Google Scholar 

  12. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, Laser induced crystallization of amorphous Ge2Sb2Te5 films, J. Appl. Phys., 89(2001), No. 6, p. 3168.

    Article  Google Scholar 

  13. V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Woodhead Publishing Limited, Cambridge, 1995, p. 191.

    Google Scholar 

  14. M. Shinmei and T. Machida, Vaporization of AlF3 from the slag CaF2–Al2O3, Metall. Trans., 4(1973), No. 8, p. 1996.

    Article  Google Scholar 

  15. M. Persson, S. Seetharaman, and S. Seetharaman, Kinetic studies of fluoride evaporation from slags, ISIJ Int., 47(2007), No. 12, p. 1711.

    Article  Google Scholar 

  16. Z. Zhang, G. Wen, P. Tang, and S. Sridhar, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes, ISIJ Int., 48(2008), No. 6, p. 739.

    Article  Google Scholar 

  17. F. Shahbazian, D. Sichen, and S. Seetharaman, Viscosities of some fayalitic slags containing CaF2, ISIJ Int., 39(1999), No. 7, p. 687.

    Article  Google Scholar 

  18. F. Shahbazian, D. Sichen, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO–FeO–SiO2–CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155.

    Article  Google Scholar 

  19. C.B. Shi, Behaviour and Control Technique of Oxygen and Inclusions during Protective Gas Electroslag Remelting Process [Dissertation], University of Science and Technology Beijing, Beijing, 2013, p. 8.

    Google Scholar 

  20. J.W.P. Schmelzer, Nucleation Theory and Applications, Wiley-VCH, Weinheim, 2005, p. 413.

    Book  Google Scholar 

  21. J.Y. Park, J.W. Ryu, and I. Sohn, In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1186.

    Article  Google Scholar 

  22. M.D. Seo, C.B. Shi, J.W. Cho, and S.H. Kim, Crystallization behaviors of CaO–SiO2–Al2O3–Na2O–CaF2–(Li2O–B2O3) mold fluxes, Metall. Mater. Trans. B, 45(2014), No. 5, p. 1874.

    Article  Google Scholar 

  23. G.H. Zhang, K.C. Chou, Q.G. Xue, and K.C. Mills, Modeling viscosities of CaO–MgO–FeO–MnO–SiO2 molten slags, Metall. Mater. Trans. B, 43(2012), No. 1, p. 64.

    Article  Google Scholar 

  24. G.H. Zhang, K.C. Chou, and K. Mills, Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags, ISIJ Int., 52(2012), No. 3, p. 355.

    Article  Google Scholar 

  25. G.H. Zhang, K.C. Chou, and K. Mills, A structurally based viscosity model for oxide melts, Metall. Mater. Trans. B, 45(2014), No. 2, p. 698.

    Article  Google Scholar 

  26. W. Höland and G.H. Beall, Glass Ceramic Technology, 2nd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2012, p. 46.

    Book  Google Scholar 

  27. K. Matusita, T. Komatsu, and R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci., 19(1984), No. 1, p. 291.

    Article  Google Scholar 

  28. J. Farjas and P. Roura, Modification of the Kolmogorov-Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution, Acta Mater., 54(2006), No. 20, p. 5573.

    Article  Google Scholar 

  29. M.M. Kržmanc, U. Došler, and D. Suvorov, Effect of a TiO2 nucleating agent on the nucleation and crystallization behavior of MgO–B2O3–SiO2 glass, J. Am. Ceram. Soc., 95(2012), No. 6, p. 1920.

    Article  Google Scholar 

  30. G. Carl, T. Höche, and B. Voigt, Crystallisation behaviour of a MgO–Al2O3–SiO2–TiO2–ZrO2 glass, Phys. Chem. Glasses, 43C(2002), p. 256.

    Google Scholar 

  31. J.L. Li, Q.F. Shu, and K.C. Chou, Effect of TiO2 addition on viscosity and structure of CaO–Al2O3 based mould fluxes for high Al steel casting, Can. Metall. Q., 54(2015), No. 1, p. 85.

    Article  Google Scholar 

  32. M. Avrami, Kinetics of phase change: I. General theory, J. Chem. Phys., 7(1939), No. 12, p. 1103.

    Article  Google Scholar 

  33. W.A. Johnson and K.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Metall. Eng., 135(1939), p. 416.

    Google Scholar 

  34. M. Avrami, Kinetics of phase change: II. Transformation–time relations for random distribution of nuclei, J. Chem. Phys., 8(1940), p. 212.

    Article  Google Scholar 

  35. M. Avrami, Granulation, phase change, and microstructure kinetics of phase change: III, J. Chem. Phys., 9(1941), p. 177.

    Article  Google Scholar 

  36. M.D. Seo, C.B. Shi, J.Y. Baek, J.W. Cho, and S.H. Kim, Kinetics of isothermal melt crystallization in CaO–SiO2–CaF2-based mold fluxes, Metall. Mater. Trans. B, 46(2015), No. 5, p. 2374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-bin Shi or Jung-wook Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Cb., Cho, Jw., Zheng, Dl. et al. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater 23, 627–636 (2016). https://doi.org/10.1007/s12613-016-1275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1275-3

Keywords

Navigation