Skip to main content
Log in

A novel method for improving cerussite sulfidization

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.C. Feng, S.M. Wen, Y.J. Wang, W.J. Zhao, and J.S. Deng, Investigation of leaching kinetics of cerussite in sodium hydroxide solutions, Physicochem. Probl. Miner. Process., 51(2015), No. 2, p. 491.

    Google Scholar 

  2. Q.C. Feng, S.M. Wen, Y.J. Wang, W.J. Zhao, and J. Liu, Dissolution kinetics of cerussite in acidic sodium chloride solutions, Bull. Korean Chem. Soc., 36(2015), No. 4, p. 1100.

    Google Scholar 

  3. K.Q. Fa, J.D. Miller, T. Jiang, and G.H. Li, Sulphidization flotation for recovery of lead and zinc from oxide–sulfide ores, Trans. Nonferrous Met. Soc. China, 15(2005), No. 5, p. 1138.

    Google Scholar 

  4. G. Önal, G. Bulut, A. Gül, O. Kangal, K.T. Perek, and F. Arslan, Flotation of Aladag oxide lead–zinc ores, Miner. Eng., 18(2005), No. 2, p. 279.

    Article  Google Scholar 

  5. S. Moradi and A.J. Monhemius, Mixed sulphide–oxide lead and zinc ores: problems and solutions, Miner. Eng., 24(2011), No. 10, p. 1062.

    Article  Google Scholar 

  6. M.C. Fuerstenau, S.A. Olivas, R. Herrera-Urbina, and K.N. Han, The surface characteristics and flotation behavior of ananglesite and cerussite, Int. J. Miner. Process., 20(1987), No. 1-2, p. 73.

    Article  Google Scholar 

  7. R. Herrera-Urbina, F.J. Sotillo, and D.W. Fuerstenau, Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena, Int. J. Miner. Process., 55(1999), No. 3, p. 157.

    Article  Google Scholar 

  8. S.R. Popov and D.R. Vucinic, Adsorption characteristics and floatability of cerussite with ethylxanthate in the presence of dissolved lead ion, Int. J. Miner. Process., 34(1992), No. 4, p. 307.

    Article  Google Scholar 

  9. S.R. Popov and D.R. Vucinic, The effect of prolonged agitation in lead ion solution on ethylxanthate adsorption and surface characteristics of cerussite, Int. J. Miner. Process., 35(1992), No. 1-2, p. 85.

    Article  Google Scholar 

  10. S.R. Popov and D.R. Vucinic, Kinetics of ethylxanthate adsorption on cerussite in alkaline media in presence or absence of dissolved lead ions, Int. J. Miner. Process., 41(1994), No. 1-2, p. 115.

    Article  Google Scholar 

  11. C. Cozza, V.D. Castro, G. Polzonetti, and A.M. Marabini, An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite, Int. J. Miner. Process., 34(1992), No. 1-2, p. 23.

    Article  Google Scholar 

  12. Y.K. Zhu, C.Y. Sun, and W.G. Wu, A new synthetic chelating collector for the flotation of oxidized-lead mineral, J. Univ. Sci. Technol. Beijing, 14(2007), No. 1, p. 9.

    Article  Google Scholar 

  13. R. Herrera-Urbina, F.J. Sotillo, and D.W. Fuerstenau, Amyl xanthate uptake by natural and sulfide-treated cerussite and galena, Int. J. Miner. Process., 55(1998), No. 2, p. 113.

    Article  Google Scholar 

  14. A.N. Buckley and R. Woods, Xanthate chemisorption on lead sulfide, Colloids Surf. A., 89(1994), No. 1, p. 71.

    Article  Google Scholar 

  15. J. Ralston, The chemistry of galena flotation: principles and practice, Miner. Eng., 7(1994), No. 5-6, p. 715.

    Article  Google Scholar 

  16. D. Lascelles and J.A. Finch, A technique for quantification of adsorbed collectors: xanthate, Miner. Eng., 18(2005), No. 2, p. 257.

    Article  Google Scholar 

  17. P. Huang, L. Wang, and Q. Liu, Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena, Int. J. Miner. Process., 128(2014), p. 6.

    Article  Google Scholar 

  18. B. Wang and Y.J. Peng, The behaviour of mineral matter in fine coal flotation using saline water, Fuel, 109(2013), p. 309.

    Article  Google Scholar 

  19. L.G. Wang, Modeling of bubble coalescence in saline water in the presence of flotation frothers, Int. J. Miner. Process., 134(2015), p. 41.

    Article  Google Scholar 

  20. M. Zhang, Y.J. Peng, and N. Xu, The effect of sea water on copper and gold flotation in the presence of bentonite, Miner. Eng., 77(2015), p. 93.

    Article  Google Scholar 

  21. M.A. Hampton and A.V. Nguyen, Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation, Miner. Eng., 22(2009), No. 9-10, p. 786.

    Article  Google Scholar 

  22. O. Ramos, S. Castro, and J.S. Laskowski, Copper–molybdenum ores flotation in sea water: Floatability and frothability, Miner. Eng., 53(2013), p. 108.

    Article  Google Scholar 

  23. B. Wang and Y.J. Peng, The effect of saline water on mineral flotation: a critical review, Miner. Eng., 66-68(2014), p. 13.

    Article  Google Scholar 

  24. J.R. Bargar, G.E. Brown, and G.A. Parks, Surface complexation of Pb(II) at oxide–water interfaces: III. XAFS determination of Pb(II) and Pb(II)–chloro adsorption complexes on goethite and alumina, Geochim. Cosmochim. Acta, 62(1998), No. 2, p. 193.

    Article  Google Scholar 

  25. Y.B. Guo, C. Li, Y.C. Liu, L.M. Yu, Z.Q. Ma, C.X. Liu, and H.J. Li, Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 604.

    Article  Google Scholar 

  26. A. Wierzbicka-Miernik, J. Guspiel, and L. Zabdyr, Corrosion behavior of lead-free SAC-type solder alloys in liquid media, Arch. Civ. Mech. Eng., 15(2015), No. 1, p. 206.

    Article  Google Scholar 

  27. J.D. Hem, Geochemical controls on lead concentrations in stream water and sediments, Geochim. Cosmochim. Acta, 40(1976), No. 6, p. 599.

    Article  Google Scholar 

  28. A.W. Mann and R.L. Deutscher, Solution geochemistry of lead and zinc in water containing carbonate, sulphate and chloride ions, Chem. Geol., 29(1980), No. 1-4, p. 293.

    Article  Google Scholar 

  29. K.J. Powell, P.L. Brown, R.H. Byrne, T. Gajda, G. Hefter, A.K. Leuz, S. Sjöberg, and H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands: Part 3. The Pb2+ + OH, Cl, CO 2-3 , SO 2-4 , and PO 3-4 systems (IUPAC technical report), Pure Appl. Chem., 81(2009), No. 12, p. 2425.

    Article  Google Scholar 

  30. Y.Y. Wang, L.Y. Chai, H. Chang, X.Y. Peng, and Y.D. Shu, Equilibrium of hydroxyl complex ions in Pb2+–H2O system, Trans. Nonferrous Met. Soc. China, 19(2009), No. 2, p. 458.

    Article  Google Scholar 

  31. M.C. Fuerstenau, C.C. Chen, K.N. Han, and B.R. Palmer, Kinetics of galena dissolution in ferric chloride solutions, Metall. Trans. B, 17(1986), No. 3, p. 415.

    Article  Google Scholar 

  32. G. Senanayake and D.M. Muir, Speciation and reduction potentials of metal ions in concentrated chloride and sulfate solutions relevant to processing base metal sulfides, Metall. Trans. B, 19(1988), No. 1, p. 37.

    Article  Google Scholar 

  33. D.W. Fuerstenau, J.M. Rosenbaum, and J. Laskowski, Effect of surface functional groups on the flotation of coal, Colloids Surf., 8(1983), No. 2, p. 153.

    Article  Google Scholar 

  34. B.J. Arnold and F.F. Aplan, The effect of clay slimes on coal flotation: Part II. The role of water quality, Int. J. Miner. Process., 17(1986), No. 3-4, p. 243.

    Article  Google Scholar 

  35. M. Hancer, M.S. Celik, and J.D. Miller, The significance of interfacial water structure in soluble salt flotation systems, J. Colloid Interface Sci., 235(2001), No. 1, p. 150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ming Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Qc., Wen, Sm., Zhao, Wj. et al. A novel method for improving cerussite sulfidization. Int J Miner Metall Mater 23, 609–617 (2016). https://doi.org/10.1007/s12613-016-1273-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1273-5

Keywords

Navigation