Skip to main content

Advertisement

Log in

Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet–visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Q. Jiao, M.B. Yue, Y.M. Wang, and M.Y. He, Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates, Microporous Mesoporous Mater., 147(2012), No. 1, p. 167.

    Article  Google Scholar 

  2. C.B. Reid, J.S. Forrester, H.J. Goodshaw, E.H. Kisi, and G.J. Suaning, A study in the mechanical milling of alumina powder, Ceram. Int., 34(2008), No. 6, p. 1551.

    Article  Google Scholar 

  3. F. Mirjalili, M. Hasmaliza, and L.C. Abdullah, Size-controlled synthesis of nano a-alumina particles through the solgel method, Ceram. Int., 36(2010), No. 4, p. 1253.

    Article  Google Scholar 

  4. R. Kavitha and V. Jayaram, Deposition and characterization of alumina films produced by combustion flame pyrolysis, Surf. Coat. Technol., 201(2006), No. 6, p. 2491.

    Article  Google Scholar 

  5. D.H. Trinh, M. Ottosson, M. Collin, I. Reineck, L. Hultman, and H. Högberg, Nanocomposite Al2O3-ZrO2 thin films grown by reactive dual radio-frequency magnetron sputtering, Thin Solid Films, 516(2008), No. 15, p. 4977.

    Article  Google Scholar 

  6. L.H. Qu, C.Q. He, Y. Yang, Y.L. He, and Z.M. Liu, Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant, Mater. Lett., 59(2005), No. 29-30, p. 4034.

    Article  Google Scholar 

  7. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, Synthesis of ultrafine Al2O3 powders by pulsed laser ablation, J. Nanopart. Res., 2(2000), No. 1, p. 75.

    Article  Google Scholar 

  8. X.S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang, and G.S. Wu, Photoluminescence and infrared properties of a-Al2O3 nanowires and nanobelts, J. Phys. Chem. B, 106(2002), No. 43, p. 11163.

    Article  Google Scholar 

  9. A. Rai, D. Lee, K. Park, and M.R. Zachariah, Importance of phase change of aluminum in oxidation of aluminum nanoparticles, J. Phys. Chem. B, 108(2004), No. 39, p. 14793.

    Article  Google Scholar 

  10. W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, and Z.D. Zhang, Synthesis and characterization of Al2O3 nanorods, Phys. Status Solidi A, 203(2006), No. 2, p. 294.

    Article  Google Scholar 

  11. J.S. Banait, B. Singh, and H. Kaur, Electrochemical synthesis of zinc(II) phenoxides and their coordination compounds, Portugaliae Electrochim. Acta, 25(2007), No. 4, p. 435.

    Article  Google Scholar 

  12. D. Suteu, C. Zaharia, D. Bilba, R. Muresan, A. Popescu, and A. Muresan, Decolorization wastewaters from the textile industry: physical methods, chemical methods, Ind. Textila, 60(2009), No. 5, p. 254.

    Google Scholar 

  13. C. Zaharia, D. Suteu, A. Muresan, R. Muresan, and A. Popescu, Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide, Environ. Eng. Manage. J., 8(2009), No. 6, p. 1359.

    Google Scholar 

  14. R.A. Schnick, The impetus to register new therapeutants for aquaculture, Prog. Fish Cult., 50(1988), No. 4, p. 190.

    Article  Google Scholar 

  15. S. Srivastava, R. Sinha, and D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66(2004), No. 3, p. 319.

    Article  Google Scholar 

  16. S.J. Culp and F.A. Beland, Malachite green: a toxicological review, Int. J. Toxicol., 15(1996), No. 3, p. 219.

    Article  Google Scholar 

  17. D.J. Alderman, Malachite green: a review. J. Fish Dis., 8(1985), p. 298.

  18. E. Oguz and B. Keskinler, Comparison among O3, PAC adsorption, O3/HCO3, O3/H2O2 and O3/PAC processes for the removal of Bomaplex Red CR-L dye from aqueous solution, Dyes Pigm., 74(2007), No. 2, p. 329.

    Article  Google Scholar 

  19. R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem., 31(2015), p. 173.

    Article  Google Scholar 

  20. T. Kim, C. Park, J. Yang, and S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112(2004), No. 1-2, p. 95.

    Article  Google Scholar 

  21. D. Mohan, K.P. Singh, G. Singh, and K. Kumar, Removal of dyes from wastewater using flyash, a low-cost adsorbent, Ind. Eng. Chem. Res., 41(2002), No. 15, p. 3688.

    Article  Google Scholar 

  22. S. Wang, Y. Booyjoo, A. Choueib, and Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39(2005), No. 1, p. 129.

    Article  Google Scholar 

  23. V.K. Gupta, S. Agarwal, D. Pathania, N.C. Kothiyal, and G. Sharma, Use of pectin–thorium(IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue, Carbohydr. Polym., 96(2013), No. 1, p. 277.

    Article  Google Scholar 

  24. P. Xu, G.M. Zeng, D.L. Huang, C. Lai, M.H. Zhao, Z. Wei, N.J. Li, C. Huang, and G.X. Xie, Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis, Chem. Eng. J., 203(2012), p. 423.

    Article  Google Scholar 

  25. M.N.V.R. Kumar, T.R. Sridhari, K.D. Bhavani, and P.K. Dutta, Trends in color removal from textile mill effluents, Colourage, 45(1998), No. 8, p. 25.

    Google Scholar 

  26. D. Beydoun, R. Amal, G. Low, and S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1(1999), No. 4, p. 439.

    Article  Google Scholar 

  27. N. Serpone, D. Lawless, and E. Pelizzetti, Subnanosecond characteristics and photophysics of nanosized TiO2 particulates from Rpart = 10 A to 134 A: Meaning for heterogeneous Photocatalysis, Fine Particles Sci. Technol., 12(1996), p. 657.

    Article  Google Scholar 

  28. T. Shiragami, S. Fukami, Y. Wada, and S. Yanagida, Semiconductor photocatalysis: effect of light intensity on nanoscale CdS-catalyzed photolysis of organic substrates, J. Phys. Chem., 97(1993), No. 49, p. 12882.

    Article  Google Scholar 

  29. T. Murakata, R. Yamamoto, Y. Yoshida, M. Hinohara, T. Ogata, and S. Sato, Preparation of ultra fine TiO2 particles dispersible in organic solvents and their photocatalytic properties, J. Chem. Eng. Jpn., 31(1998), No. 1, p. 21.

    Article  Google Scholar 

  30. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, Environmental photochemistry: is iron oxide (hematite) an active photocatalyst? A comparative study: a-Fe2O3, ZnO, TiO2, J. Photochem. Photobiol. A, 48(1989), No. 1, p. 161.

    Article  Google Scholar 

  31. V.K. Gupta, D. Pathania, N.C. Kothiyal, and G. Sharma, Polyaniline zirconium(IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, J. Mol. Liq., 190(2014), p. 139.

    Article  Google Scholar 

  32. S.A. Abo-Farha, Photocatalytic degradation of monoazo and diazo dyes in wastewater on nanometer-sized TiO2, J. Am. Sci., 6(2010), No. 11, p. 130.

    Google Scholar 

  33. V.K. Gupta, D. Pathania, M. Asif, and G. Sharma, Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity, J. Mol. Liq., 196(2014), p. 107.

    Article  Google Scholar 

  34. V.K. Gupta, T.A. Saleh, D. Pathania, B.S. Rathore, and G.A. Sharma, A cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light, Ionics, 21(2015), No. 6, p. 1787.

    Article  Google Scholar 

  35. C.J. Huang, P.H. Chiu, Y.H. Wang, K.L. Chen, J.J. Linn, and C.F. Yang, Electrochemically controlling the size of gold nanoparticles, J. Electrochem. Soc., 153(2006), No. 12, p. D193.

    Article  Google Scholar 

  36. T. Picard, G. Cathalifaud-Feuillade, M. Mazet, and C. Vandensteendam, Cathodic dissolution in the electrocoagulation process using aluminium electrodes, J. Environ. Monit., 2(2000), No. 1, p. 77.

    Article  Google Scholar 

  37. B. Xu, J. Long, H. Tian, Y. Zhu, and X. Sun, Synthesis and characterization of mesoporous ?-alumina templated by saccharide molecules, Catal. Today, 147(2009), p. S46.

    Article  Google Scholar 

  38. H. Liu, G. Ning, Z. Gan, and Y. Lin, A simple procedure to prepare spherical a-alumina powders, Mater. Res. Bull., 44(2009), No. 4, p. 785.

  39. R. Rogojan, E. Andronescu, C. Ghitulica, and S.B. Vasile, Synthesis and characterization of alumina nano-powder obtained by sol-gel method, UPB Sci. Bull. Ser. B., 73(2011), No. 2, p. 67.

    Google Scholar 

  40. W.H. Gitzen, Alumina as a Ceramic Material, The American Ceramic Society, Columbus, 1970.

  41. J. Gangwara, K.K. Deya, K. Praveena, S.K. Tripathib, and A.K. Srivastavaa, Microstructure, phase formations and optical bands in nanostructured alumina, Adv. Mater. Lett., 2(2011), No. 6, p. 402.

    Article  Google Scholar 

  42. C.G. Zoski, Handbook of Electrochemistry, Elsevier, 2007, p. 27.

  43. D.M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.D. Han, S. Passerini, and W.A. Henderson, Electrolyte solvation and ionic association: III. Acetonitrile-lithium salt mixtures–transport properties, J. Electrochem. Soc., 160(2013), No. 8, p. A1061.

    Article  Google Scholar 

  44. A.H. Abbar, Electrolytic preparation of copper powder with particle size less than 63µm, Al-Qadisiya J. Eng. Sci., 1(2008), No. 1, p. 32.

    Google Scholar 

  45. H.S. Goh, R. Adnan, and M.A. Farrukh, ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange, Turk. J. Chem., 35(2011), No. 3, p. 375.

    Google Scholar 

  46. V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, J. Nanomater., 2012(2012), art. No. 819403.

    Article  Google Scholar 

  47. F. Li, W. Bi, T. Kong, and Q.H. Qin, Optical and photocatalytic properties of novel CuS nanoplate-based architectutes synthesised by a solvothermal route, Cryst. Res. Technol., 44(2009), No. 7, p. 729.

    Article  Google Scholar 

  48. V.S. Kortov, A.E. Ermakov, A.F. Zatsepin, and S.V. Nikiforov, Luminescence properties of nanostructured alumina ceramic, Radiat. Meas., 43(2008), No. 2-6, p. 341.

    Article  Google Scholar 

  49. V. Srivastava, C.H. Weng, V.K. Singh, and Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 56(2011), No. 4, p. 1414.

    Article  Google Scholar 

  50. A. Rabiezadeh, A.M. Hadian, and A. Ataie, Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol–gel method, Int. J. Refract. Met. Hard. Mater., 31(2012), p. 121.

    Article  Google Scholar 

  51. M.R. Karim, M.A. Rahman, M.A.J. Miah, H. Ahmad, M. Yanagisawa, and M. Ito, Synthesis of ?-alumina particles and surface characterization, Appl. Sci., 4(2011), No. 5, p. 344.

    Google Scholar 

  52. B. Sathyaseelan, I. Baskaran, and K. Sivakumar, Phase transition behavior of nanocrystalline Al2O3 powders, Soft Nanosci. Lett., 3(2013). No. 4, p. 69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pathania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, D., Katwal, R. & Kaur, H. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles. Int J Miner Metall Mater 23, 358–371 (2016). https://doi.org/10.1007/s12613-016-1245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1245-9

Keywords

Navigation