Skip to main content
Log in

Fabrication of Fe–TiC–Al2O3 composites on the surface of steel using a TiO2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Zhu, K. Dong, H. Wang, J.W. Huang, J.L. Li, and Z.H. Xie, Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe–Ti–C element system, Powder Technol., 246(2013), p. 456.

    Article  Google Scholar 

  2. X.H. Wang, M. Zhang, Z.D. Zou, S.L. Song, F. Han, and S.Y. Qu, In situ production of Fe–TiC surface composite coatings by tungsten-inert gas heat source, Surf. Coat. Technol., 200(2006), No. 20-21, p. 6117.

    Article  Google Scholar 

  3. M. Razavi, A.H. Rajabi-Zamani, M.R. Rahimipour, R. Kaboli, M. Ostad Shabani, and R. Yazdani-Rad, Synthesis of Fe–TiC–Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation, Ceram. Int., 37(2011), No. 2, p. 443.

    Article  Google Scholar 

  4. W.Q. Yan, L. Dai, and C.B. Gui, In situ synthesis and hardness of TiC/Ti5Si3 composites on Ti–5Al–2.5Sn substrates by gas tungsten arc welding, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 284.

    Article  Google Scholar 

  5. J. Li, X.J. Zhang, H.P. Wang, and M.P. Li, Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB2+TiC by laser cladding, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 57.

    Article  Google Scholar 

  6. S.Q. Jiang, G. Wang, Q.W. Ren, C.D. Yang, Z.H. Wang, and Z.H. Zhou, In situ synthesis of Fe-based alloy clad coatings containing TiB2–TiN–(h-BN), Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 613.

    Article  Google Scholar 

  7. M. Masanta, S.M. Shariff, and A. Roy Choudhury, Tribological behavior of TiB2–TiC–Al2O3 composite coating synthesized by combined SHS and laser technology, Surf. Coat. Technol., 204(2010), No. 16-17, p. 2527.

    Article  Google Scholar 

  8. M. Masanta, S.M. Shariff, and A. Roy Choudhury, A comparative study of the tribological performances of laser clad TiB2–TiC–Al2O3 composite coatings on AISI 1020 and AISI 304 substrates, Wear, 271(2011), No. 7-8, p. 1124.

    Article  Google Scholar 

  9. M. Masanta, S.M. Shariff, and A. Roy Choudhury, Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2–TiC–Al2O3 composite coating developed by SHS and laser cladding, Mater. Sci. Eng. A, 528(2011), No. 16-17, p. 5327.

    Article  Google Scholar 

  10. X.H. Wang, M. Zhang, and B.S. Du, Fabrication in situ TiB2–TiC–Al2O3 multiple ceramic particles reinforced Fe-based composite coatings by gas tungsten arc welding, Tribol. Lett., 41(2011), No. 1, p. 171.

    Article  Google Scholar 

  11. S. Chatterjee, S.M. Shariff, J. Datta Majumdar, and A. Roy Choudhury, Development of nano-structured Al2O3–TiB2–TiN coatings by combined SHS and laser surface alloying, Int. J. Adv. Manuf. Technol., 38(2008), No. 9, p. 938.

    Article  Google Scholar 

  12. A. Paesano Jr, C.K. Matsuda, J.B.M. da Cunha, M.A.Z. Vasconcellos, B. Hallouche, and S.L. Silva, Synthesis and characterization of Fe–Al2O3 composites, J. Magn. Magn. Mater., 264(2003), No. 2-3, p. 264.

    Article  Google Scholar 

  13. K. Konopka and A. Ozieblo, Microstructure and the fracture toughness of the Al2O3–Fe composites, Mater. Charact., 46(2001), No. 2-3, p. 125.

    Article  Google Scholar 

  14. B.L. Zou, J.Y. Xu, Y. Wang, S.M. Zhao, X.Z. Fan, Y. Hui, X. Zhou, W.Z. Huang, X.L. Cai, S.Y. Tao, H.M. Ma, and X.Q. Cao, Self-propagating high-temperature synthesis of TiC–TiB2-based Co cermets from a Co–Ti–B4C system and fabrication of coatings using the cermet powders, Chem. Eng. J., 233(2013), p. 138.

    Article  Google Scholar 

  15. C.R. Bowen and B. Derby, The formation of TiC/Al2O3 microstructures by a self-propagating high-temperature synthesis reaction, J. Mater. Sci., 31(1996), No. 14, p. 3791.

    Article  Google Scholar 

  16. Y. Choi and S.W. Rhee, Reaction of TiO2–Al–C in the combustion synthesis of TiC–Al2O3 composite, J. Am. Ceram. Soc., 78(1995), No. 4, p. 986.

    Article  Google Scholar 

  17. H.X. Wang, M. Zhang, and B.S. Du, Fabrication of multiple ceramic particle reinforced iron matrix coating by laser cladding, Mater. Manuf. Processes, 28(2013), No. 4-6, p. 509.

    Article  Google Scholar 

  18. Y.C. Lin, H.M. Chen, and Y.C. Chen, Analysis of microstructure and wear performance of SiC clad layer on SKD61 die steel after gas tungsten arc welding, Mater. Des., 47(2013), p. 828.

    Article  Google Scholar 

  19. S. Buytoz, M. Ulutan, and M. Mustafa Yildirim, Dry sliding wear behavior of TIG welding clad WC composite coatings, Appl. Surf. Sci., 252(2005), No. 5, p. 1313.

    Article  Google Scholar 

  20. Y.C. Lin and K.Y. Chang, Elucidating the microstructure and wear behavior of tungsten carbide multi-pass cladding on AISI 1050 steel, J. Mater. Process. Technol., 210(2010), No. 2, p. 219.

    Article  Google Scholar 

  21. X.H. Wang, S.L. Song, Z.D. Zou, and S.Y. Qu, Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process, Mater. Sci. Eng. A., 441(2006), No. 1-2, p. 60.

    Article  Google Scholar 

  22. X.H. Wang, S.L. Song, S.Y. Qu, and Z.D. Zou, Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process, Surf. Coat. Technol., 201(2007), No. 12, p. 5899.

    Article  Google Scholar 

  23. S.M.H. Hojjatzadeh, A. Halvaee, and M. Heydarzadeh Sohi, Surface alloying of AISI 1045 steel in a nitrogen environment using a gas tungsten arc process, J. Mater. Process. Technol., 212(2012), No. 11, p. 2496.

    Article  Google Scholar 

  24. M. Sharifitabar, J. Vahdati khaki, and M. Haddad Sabzevar, Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2–Al–C system, Int. J. Refract. Met. Hard Mater., 47(2014), p. 93.

    Article  Google Scholar 

  25. W. Sen, B.Q. Xu, B. Yang, H.Y. Sun, J.X. Song, H.L. Wan, and Y.N. Dai, Preparation of TiC powders by carbothermal reduction method in vacuum, Trans. Nonferrous Met. Soc. China, 21(2011), No. 1, p. 185.

    Article  Google Scholar 

  26. M. Dal, P.L. Masson, and M. Carin, A model comparison to predict heat transfer during spot GTA welding, Int. J. Therm. Sci., 75(2014), p. 54.

    Article  Google Scholar 

  27. S.H. Avner, Introduction to Physical Metallurgy, 2nd Ed., McGraw Hill, New York, 1974, p. 234.

    Google Scholar 

  28. C.R. Brooks, Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels, ASM International, 1996, p. 353.

    Google Scholar 

  29. Y. Chen and H.M. Wang, Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating, Mater. Lett., 57(2003), No. 5-6, p. 1233.

    Article  Google Scholar 

  30. T.D. Xia, Z.A. Munir, Y.L. Tang, W.J. Zhao, and T.M. Wang, Structure formation in the combustion synthesis of Al2O3–TiC composites, J. Am. Ceram. Soc., 83(2000), No. 3, p. 507.

    Article  Google Scholar 

  31. A. Emamian, In-situ TiC-Fe Deposition on Mild Steel using a Laser Cladding Process [Dissertation], University of Waterloo, Ontario, 2011, p. 88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Vahdati Khaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifitabar, M., Khaki, J.V. & Sabzevar, M.H. Fabrication of Fe–TiC–Al2O3 composites on the surface of steel using a TiO2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding. Int J Miner Metall Mater 23, 193–204 (2016). https://doi.org/10.1007/s12613-016-1227-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1227-y

Keywords

Navigation