Skip to main content
Log in

Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nm remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthening phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Taneike, F. Abe, and K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions, Nature, 424(2003), No. 6946, p. 294.

    Article  Google Scholar 

  2. R. Mendoza, J. Huante, M. Alanis, C. Gonzalez-Rivera, and J.A. Juarez-Islas, Processing of ultra low carbon steels with mechanical properties adequate for automotive applications in the as-annealed condition, Mater. Sci. Eng. A, 276(2000), No. 1-2, p. 203.

    Article  Google Scholar 

  3. X.P. Mao, X.D. Huo, X.J. Sun, and Y.Z. Chai, Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production, J. Mater. Process. Technol., 210(2010), No. 12, p. 1660.

    Article  Google Scholar 

  4. J. Shi and X. Wang, Comparison of precipitate behaviors in ultra-low carbon, titanium-stabilized interstitial free steel sheets under different annealing processes, J. Mater. Eng. Perform., 8(1999), No. 6, p. 641.

    Article  Google Scholar 

  5. N. Mizui, T. Takayama, and K. Sekine, Effect of Mn on solubility of Ti-sulfide and Ti-carbosulfide in ultra-low C steels, ISIJ Int., 48(2008), No. 6, p. 845.

    Article  Google Scholar 

  6. M. Hua, C.I. Garcia, K. Eloot, and A.J. Deardo, Identification of Ti–S–C-containing multi-phase precipitates ultra-low carbon steels by analytical electron microscopy, ISIJ Int., 37(1997), No. 11, p. 1129.

    Article  Google Scholar 

  7. H. Takechi, Metallurgical aspects on interstitial free sheet steel from industrial view point, ISIJ Int., 34(1994), No. 1, p. 1.

    Article  Google Scholar 

  8. M. Hua, C.I. Garcia, and A.J. DeArdo, Precipitation behavior in ultra-low-carbon steels containing titanium and niobium, Metall. Mater. Trans. A, 28(1997), No. 9, p. 1769.

    Article  Google Scholar 

  9. S. Carabajar, J. Merlin, V. Massardier, and S. Chabanet, Precipitation evolution during the annealing of an interstitial-free steel, Mater. Sci. Eng. A, 281(2000), No. 1-2, p. 132.

    Article  Google Scholar 

  10. X.H. Yang, D. Vanderschueren, J. Dilewijns, C. Standaert, and Y. Houbaert, Solubility products of titanium sulphide and carbosulphide in ultra-low carbon steels, ISIJ Int., 36(1996), No. 10, p. 1286.

    Article  Google Scholar 

  11. L.E. Iorio and W.M. Garrison, Solubility of titanium carbosulfide in austenite, ISIJ Int., 42(2002), No. 5, p. 545.

    Article  Google Scholar 

  12. P. Skarvelis, A. Rokanopoulou, and G.D. Papadimitriou, Formation of TiS and Ti4C2S2 in steel matrix composites prepared by the plasma transferred arc (PTA) technique using TiS2 and TiC powders, Tribol. Int., 66(2013), p. 44.

    Article  Google Scholar 

  13. K.M. Wu, Z.G. Li, A.M. Guo, X.L. He, L.Q. Zhang, A.H. Fang, and L. Cheng, Microstructure evolution in a low carbon Nb-Ti microalloyed steel, ISIJ Int., 46(2006), No. 1, p. 161.

    Article  Google Scholar 

  14. F. Abe, Bainitic and martensitic creep-resistant steels, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 305.

    Article  Google Scholar 

  15. F. Abe, M. Taneike, and K. Sawada, Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides, Int. J. Pressure Vessels Piping, 84(2007), No. 1-2, p. 3.

    Article  Google Scholar 

  16. K.T. Park, S.Y. Han, D.H. Shin, Y.K. Lee, K.J. Lee, and K.S. Lee, Effect of heat treatment on microstructures and tensile properties of ultrafine grained C–Mn steel containing 0.34 mass% V, ISIJ Int., 44(2004), No. 6, p. 1057.

    Article  Google Scholar 

  17. D.H. Shin, K.T. Park, and Y.S. Kim, Formation of fine cementite precipitates in an ultra-fine grained low carbon steel, Scripta Mater., 48(2003), No. 5, p. 469.

    Article  Google Scholar 

  18. F.S. Yin, W.S. Jung, and S.H. Chung, Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/ martensitic heat-resistant steel, Scripta Mater., 57(2007), No. 6, p. 469.

    Article  Google Scholar 

  19. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee, Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater., 49(2001), No. 12, p. 2115.

    Article  Google Scholar 

  20. M. Kiviö and L. Holappa, Addition of titanium oxide inclusions into liquid steel to control nonmetallic inclusions, Metall. Materi. Trans. B, 43(2012), No. 2, p. 233.

    Article  Google Scholar 

  21. J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel, Acta Mater., 51(2003), No. 6, p. 1593.

    Article  Google Scholar 

  22. W.Y. Kim, J.O. Jo, C.O. Lee, D.S. Kim, and J.J. Pak, Thermodynamic relation between aluminum and titanium in liquid iron, ISIJ Int., 48(2008), No. 1, p. 17.

    Article  Google Scholar 

  23. S. Hossein Nedjad and A. Farzaneh, Formation of fine intragranular ferrite in cast plain carbon steel inoculated by titanium oxide nanopowder, Scripta Mater., 57(2007), No. 10, p. 937.

    Article  Google Scholar 

  24. Y.J. Kang, J.H. Jang, J.H. Park, and C.H. Lee, Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals, Met. Mater. Int., 20(2014), No. 1, p. 119.

    Article  Google Scholar 

  25. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals, Micron, 45(2013), p. 107.

    Article  Google Scholar 

  26. M. Fattahi, N. Nabhani, M.R. Vaezi, and E. Rahimi, Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating, Mater. Sci. Eng. A, 528(2011), No. 27, p. 8031.

    Article  Google Scholar 

  27. H. Matsuura, C. Wang, G.H. Wen, and S. Sridhar, The transient stages of inclusion evolution during Al and/or Ti additions to molten iron, ISIJ Int., 47(2007), No. 9, p. 1265.

    Article  Google Scholar 

  28. H. Mitsui, T. Sasaki, K. Oikawa, and K. Ishida, Phase equilibria in FeS-XS and MnS-XS (X=Ti, Nb and V) systems, ISIJ Int., 49(2009), No. 7, p. 936.

    Article  Google Scholar 

  29. S. Aminorroaya and R. Dippenaar, TEM analysis of centreline sulphide precipitates modified by titanium additions to low carbon steel, J. Microsc., 232(2008), No. 1, p. 123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-song Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Kj., Zhang, L., Yuan, Xz. et al. Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel. Int J Miner Metall Mater 22, 714–720 (2015). https://doi.org/10.1007/s12613-015-1126-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1126-7

Keywords

Navigation