Skip to main content

Advertisement

Log in

Effects of the flow rate of hydrogen on the growth of graphene

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Graphene samples with different morphologies were fabricated on the inside of copper enclosures by low pressure chemical vapor deposition and tuning the flow rate of hydrogen. It is found that the flow rate of hydrogen greatly influences the growth of graphene. Thermodynamic analysis indicates that a higher flow rate of hydrogen is favorable to the formation of good quality graphene with regular morphology. However, the mass-transfer process of methane dominates the growth driving force. At very low pressure, mass-transfer proceeds by Knudsen diffusion, and the mass-transfer flux of methane decreases as the flow rate of hydrogen increases, leading to a decrease in the growth driving force. At a higher pressure, mass-transfer proceeds by Fick’s diffusion, and the mass-transfer flux of methane is dominated by the gas velocity, whose variation determines the growth driving force variation of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666.

    Article  Google Scholar 

  2. W.F. Chen, L.F. Yan, and P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, 48(2010), No. 4, p. 1146.

    Article  Google Scholar 

  3. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81(2009), No. 1, p. 109.

    Article  Google Scholar 

  4. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphene sheets, Science, 315(2007), No. 5811, p. 490.

    Article  Google Scholar 

  5. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, and A.I. Lichtenstein, Molecular doping of graphene, Nano. Lett., 8(2008), No. 1, p. 173.

    Article  Google Scholar 

  6. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, and Ph. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327(2010), No. 5966, p. 662.

    Article  Google Scholar 

  7. X. Wang, L.J. Zhi, N. Tsao, Ž. Tomović, J.L. Li, and K. Müllen, Transparent carbon films as electrodes in organic solar cells, Angew. Chem. Int. Ed., 47(2008), No. 16, p. 2990.

    Article  Google Scholar 

  8. R.T. Lv, T.X. Cui, M.S. Jun, Q. Zhang, A.Y. Cao, D.S. Su, Z.J. Zhang, S.H. Yoon, J. Miyawaki, I. Mochida, and F.Y. Kang, Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support, Adv. Funct. Mater., 21(2011), No. 5, p. 999.

    Article  Google Scholar 

  9. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Lijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 5(2010), No. 8, p. 574.

    Article  Google Scholar 

  10. C. Soldano, A. Mahmood, and E. Dujardin, Production, properties and potential of graphene, Carbon, 48(2010), No. 8, p. 2127.

    Article  Google Scholar 

  11. X.S. Li, W.W. Cai, J. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324(2009), No. 5932, p. 1312.

    Article  Google Scholar 

  12. Y. Zhang, L.Y. Zhang, P. Kim, M.Y. Ge, Z. Li, and C.W. Zhou, Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties, Nano. Lett., 12(2012), No. 6, p. 2810.

    Article  Google Scholar 

  13. X.S. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, and R.S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, J. Am. Chem. Soc., 133(2011), No. 9, p. 2816.

    Article  Google Scholar 

  14. S.S. Chen, H.X. Ji, H. Chou, Q.Y. Li, H.Y. Li, J.W. Suk, R. Piner, L. Liao, W.W. Cai, and R.S. Ruoff, Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition, Adv. Mater., 25(2013), No. 14, p. 2062.

    Article  Google Scholar 

  15. L.P. Ma, W.C. Ren, Z.L. Dong, L.Q. Liu, and H.M. Cheng, Progress of graphene growth on copper by chemical vapor deposition: growth behavior and controlled synthesis, Chin. Sci. Bull, 57(2012), No. 23, p. 2995.

    Article  Google Scholar 

  16. Q.K. Yu, L.A. Jauregui, W. Wu, R. Colby, J.F. Tian, Z.H. Su, H.L. Cao, Z.H. Liu, D. Pandey, D.G. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J.M. Bao, S.S. Pei, and Y.P. Chen, Trol and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater., 10(2011), p. 443.

    Article  Google Scholar 

  17. Z. Yan, J. Lin, Z.W. Peng, Z.Z. Sun, Y. Zhu, L. Li, C.S. Xiang, E.L. Samuel, C. Kittrell, and J. M. Tour, Toward the synthesis of wafer-scale single-crystal graphene on copper foils, ACS Nano, 6(2012), No. 10, p. 9110.

    Article  Google Scholar 

  18. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(2007), No. 1–2, p. 47.

    Article  Google Scholar 

  19. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97(2006), No. 18, art. No. 187401.

    Google Scholar 

  20. A. Jorio and L.G. Cançado, Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal, Phys. Chem. Chem. Phys., 14(2012), No. 44, p. 15246.

    Article  Google Scholar 

  21. I. Sunagawa, Morphology of Crystals, Terra Science Publishers, Tokyo, 1987, p.27.

    Google Scholar 

  22. T. Irisawa, Crystal Growth Technology, William Andrew Inc, New York, 2003, p. 25.

    Book  Google Scholar 

  23. M. Ohring, The Materials Science of Thin Films, Academic Press, New York, 1991, p. 68.

    Google Scholar 

  24. I.N. Levine, Physical Chemistry, McGraw-Hill Book, New York, 1988, p. 187.

    Google Scholar 

  25. L.V. Gurvich, I.V. Veyts, and C.B. Alcock, Thermodynamic Properties of Individual Substances, CRC Press, New York, 1990, p. 452.

    Google Scholar 

  26. H.J. Park, J. Meyer, S. Roth, and V. Skakalova, Growth and properties of few-layer graphene prepared by chemical vapor deposition, Carbon, 48(2010), No. 4, p. 1088.

    Article  Google Scholar 

  27. E.S. Oran and J.P. Boris, Numerical Simulation of Reactive Flow, Cambridge University Press, Cambridge, 2001, p. 45.

    Google Scholar 

  28. P. Atkins and JD. Paula, Physical Chemistry, W. H. Freeman and Company, New York, 2006, p. 212.

    Google Scholar 

  29. E. Kaldis and M. Piechotka, Handbook of Crystal Growth, Elsevier Science, Amsterdam, 1994, p. 615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gui Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Yg., Hao, Y., Wang, D. et al. Effects of the flow rate of hydrogen on the growth of graphene. Int J Miner Metall Mater 22, 102–110 (2015). https://doi.org/10.1007/s12613-015-1049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1049-3

Keywords

Navigation