Skip to main content

Advertisement

Log in

Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlCrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAlN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young’s modulus (561.97 GPa), and superior scratch resistance (L CN = 46 N) compared to conventional coatings such as TiAlN, AlCrN, and TiN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Soković, Quality management in development of hard coatings on cutting tools, J. Achiev. Mater. Manuf. Eng., 24(2007), No. 1, p. 421.

    Google Scholar 

  2. L.A. Dobrzański, K. Lukaszkowicz, and K. Labisz, Structure, texture and chemical composition of coatings deposited by PVD techniques, Arch. Mater. Sci. Eng., 37(2009), No. 1, p. 45.

    Google Scholar 

  3. C. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, and P. Termsuksawad, Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN film, J. Met., Mater. Miner., 21(2011), No. 1, p. 115.

    Google Scholar 

  4. LA. Dobrzański, M. Staszuk, K. Golombek, and M. Pancielejko, Properties of Ti(B,N) coatings deposited onto cemented carbides and sialon tool ceramics, J. Achiev. Mater. Manuf. Eng., 41(2010), No. 1–2, p. 66.

    Google Scholar 

  5. A. Knutsson, M.P. Johansson, L. Karlsson, and M. Odén, Thermally enhanced mechanical properties of arc evaporated Ti0.34Al0.66N/TiN multilayer coatings, J. Appl. Phys., 108(2010), art. No. 044312.

  6. A.D. Korotaev, D.P. Borisov, V.Yu. Moshkov, S.V. Ovchinnikov, K.V. Oskomov, Yu.P. Pinzhin, V.M. Savostikov, and A.N. Tymentsev, Nanocomposite and nanostructured superhard Ti-Si-B-N coatings, Russ. Phys. J., 50(2007), No. 10, p. 969.

    Article  Google Scholar 

  7. V. Chawla, A. Chawla, Y. Mehta, D. Puri, S. Prakash, and B.S. Sidhu, Investigation of properties and corrosion behavior of hard TiAlN and AlCrN PVD thin coatings in the 3 wt% NaCl solution, J. Aust. Ceram. Soc., 47(2011), No. 1, p. 48.

    Google Scholar 

  8. S. Veprek, S. Mukherjee, H.D. Männling, and J.L. He, On the reliability of the measurements of mechanical properties of superhard coatings, Mater. Sci. Eng. A, 340(2003), p. 292.

    Article  Google Scholar 

  9. G. Cabrera, F. Torres, J.C. Caicedo, W. Aperador, C. Amaya, and P. Prieto, Improvement of electrochemical surface properties in steel substrates using a nanostructured CrN/AlN multilayer coating, J. Mater. Eng. Perform., 21(2012), p. 128.

    Article  Google Scholar 

  10. Y.Y. Chang, D.Y. Wang, and C.Y. Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process, Surf. Coat. Technol., 200(2005), p. 1702.

    Article  Google Scholar 

  11. S. Zhang, D. Sun, Y.Q. Fu, and H.J. Du, Recent advances of superhard nanocomposite coatings: a review, Surf. Coat. Technol., 167(2003), p. 113.

    Article  Google Scholar 

  12. G.S. Fox-Rabinovich, K. Yamamoto, M.H. Aguirre, D.G. Cahill, S.C. Veldhuis, A. Biksa, G. Dosbaeva, and L.S. Shuster, Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy, Surf. Coat. Technol., 204(2010), p. 2465.

    Article  Google Scholar 

  13. M. Polok-Rubiniec, L.A. Dobrzański, K. Lukaszhowicz, and M. Adamiak, Comparison of the structure, properties and wear resistance of the TiN PVD coatings, J. Achiev. Mater. Manuf. Eng., 27(2008), No. 1, p. 87.

    Google Scholar 

  14. M. Polok-Rubiniec, K. Lukaszhowicz, L.A. Dobrzański, and M. Adamiak, Comparison of the PVD coatings deposited onto hot work tool steel and brass substrates, J. Achiev. Mater. Manuf. Eng., 24(2007), No. 2, p. 195.

    Google Scholar 

  15. R. Rebolé, A. Martínez, R. Rodriguez, G.G. Fuentes, E. Spain, N. Watson, J.C. Avelar-Batista, J. Housden, F. Montalá, L.J. Carreras, and T.J. Tate, Microstructural and tribological investigations of CrN coated, wet-stripped and recoated functional substrates used for cutting and forming tools, Thin Solid Films, 469–470(2004), p. 466.

    Article  Google Scholar 

  16. M. Polok-Rubiniec, L.A. Dobrzański, and M. Adamiak, Comparison of the PVD coatings, Arch. Mater. Sci. Eng., 38(2009), No. 2, p. 118.

    Google Scholar 

  17. L.A. Dobrzański and L.W. Żukowska, Properties of the multicomponent and gradient PVD coatings, Arch. Mater. Sci. Eng., 28(2007), No. 10, p. 621.

    Google Scholar 

  18. H.C. Barshilia, B. Deepthi, N. Selvakumar, A. Jain, and K.S. Rajam, Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering, Appl. Surf. Sci., 253(2007), p. 5076.

    Article  Google Scholar 

  19. J. Soldán, J. Neidhardt, B. Sartory, R. Kaindl, R. Čerstvý, P.H. Mayrhofer, R. Tessadri, P. Polcik, M. Lechthaler, and C. Mitterer, Structure-property relations of arc-evaporated Al-Cr-Si-N coatings, Surf. Coat. Technol., 202(2008), p. 3555.

    Article  Google Scholar 

  20. A.C. Fischer-Cripps, Critical review of analysis and interpretation of nanoindentation test data, Surf. Coat. Technol., 200(2006), p. 4153.

    Article  Google Scholar 

  21. J. Musil, F. Kunc, H. Zeman, and H. Poláková, Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings, Surf. Coat. Technol., 154(2002), p. 304.

    Article  Google Scholar 

  22. A. Sivitski, A. Gregor, M. Saarna, P. Kulu, and F. Sergejev, Application of the indentation method for cracking resistance evaluation of hard coatings on tool steels, Est. J. Eng., 15(2009), No. 4, p. 309.

    Article  Google Scholar 

  23. S.E. Oraby and A.M. Alaskari, Atomic force microscopy (AFM) topographical surface characterization of multilayer-coated and uncoated carbide inserts, World Acad. Sci. Eng. Technol., 4(2010), p. 396.

    Google Scholar 

  24. M.A. Alaskari, S.E. Oraby, and A.I. Almazrouee, SEM and AFM investigations of surface defects and tool wear of multilayers coated carbide inserts, World Acad. Sci. Eng. Technol., 5(2011), p. 530.

    Google Scholar 

  25. H.C. Barshilia, B. Deepthi, K.S. Rajam, K.P. Bhatti, and S. Chaudhary, Growth and characterization of TiAlN/CrAlN superlattices prepared by reactive direct current magnetron sputtering, J. Vac. Sci. Technol. A, 27(2009), p. 29.

    Article  Google Scholar 

  26. P.V. Zinin, V.L. Solozhenko, A.J. Malkin, and L.C. Ming, Atomic force microscopy studies of cubic BC2N, a new superhard phase, J. Mater. Sci., 40(2005), p. 3009.

    Article  Google Scholar 

  27. B. Warcholinski and A. Gilewicz, Tribological properties of CrNx coatings, J. Achiev. Mater. Manuf. Eng., 37(2009), No. 2, p. 498.

    Google Scholar 

  28. M. Hagarová, I. Štěpánek, and D. Jakubéczyová, Evaluation of thin PVD coatings by adhesive-cohesive test, Acta Metall. Slovaca, 16(2010), No. 3, p. 157.

    Google Scholar 

  29. W. Pawlak and B. Wendler, Multilayer, hybrid PVD coatings on Ti6Al4V titanium alloy, J. Achiev. Mater. Manuf. Eng., 37(2009), No.2, p. 660.

    Google Scholar 

  30. X.L. Pang, K.W. Gao, F. Luo, Y. Emirov, A.A. Levin, and A.A. Volinsky, Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings, Thin Solid Films, 517(2009), p. 1922.

    Article  Google Scholar 

  31. LA. Dobrzański, S. Skrzypek, D. Pakula, J. Mikula, and A. Křiž, Influence of the PVD and CVD technologies on the residual macro stresses and functional properties of the coated tool ceramics, J. Achiev. Mater. Manuf. Eng., 35(2009), No. 2, p. 162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sampath Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath Kumar, T., Balasivanandha Prabu, S., Manivasagam, G. et al. Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications. Int J Miner Metall Mater 21, 796–805 (2014). https://doi.org/10.1007/s12613-014-0973-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0973-y

Keywords

Navigation