Skip to main content

Advertisement

Log in

Effect of hot rolling on the microstructure and impact absorbed energy of the strip steel by CSP

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructures and impact absorbed energies at various temperatures were investigated for steel strips hot rolled to thickness reductions of 95.5%, 96.0%, 96.5%, 97.0%, and 97.5%. Results indicate that grain refinement can be realized with an increase in hot rolling reduction. Besides, finer precipitates can be achieved with an increase in hot rolling reduction from 95.5% to 97.0%. The impact absorbed energy decreases with a decrease in testing temperature for steel strips hot rolled to 95.5%, 96.0%, and 96.5% reductions in thickness. However, in the case of steel strips hot rolled to 97.0% and 97.5% reductions in thickness, the impact absorbed energy remained almost constant with a decrease in testing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Straffelini, V. Fontanari, and A. Molinari, Impact fracture toughness of porous alloys between room temperature and −60°C, Mater. Sci. Eng., A, 272(1999), No. 2, p. 389.

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2000), No. 2, p. 103.

    Article  Google Scholar 

  3. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue, Ductility of nanostructured materials, MRS Bull., 24(1999), No. 2, p. 54.

    Google Scholar 

  4. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta Mater., 49(2003), No. 7, p. 657.

    Article  Google Scholar 

  5. E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663.

    Article  Google Scholar 

  6. E.W. Qin, L. Lu, N.R. Tao, and K. Lu, Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins, Scripta Mater., 60(2009), No. 7, p. 539.

    Article  Google Scholar 

  7. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater., 18(2006), No. 17, p. 2280.

    Article  Google Scholar 

  8. S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Mater., 55(2007), No. 17, p. 5822.

    Article  Google Scholar 

  9. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater., 52(2004), No. 15, p. 4589.

    Article  Google Scholar 

  10. D.P. Fairchild, D.G. Howden, and W.A.T. Clark, The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage, Metall. Mater. Trans. A, 31(2000), No. 3, p. 641.

    Article  Google Scholar 

  11. I. Sabirov and O. Kolednik, The effect of inclusion size on the local conditions for void nucleation near a crack tip in a mild steel, Scripta Mater., 53(2005), No. 12, p. 1373.

    Article  Google Scholar 

  12. S. Maropoulos and N. Ridley, Inclusions and fracture characteristics of HSLA steel forgings, Mater. Sci. Eng. A, 384(2004), No. 1–2, p. 64.

    Article  Google Scholar 

  13. V.V. Stolyarov, R.Z. Valiev, and Y.T. Zhu, Enhanced low-temperature impact toughness of nanostructured Ti, Appl. Phys. Lett., 88(2006), No. 4, art No. 041905.

    Google Scholar 

  14. X.P. Mao, X.D. Huo, X.J. Sun, and Y.Z. Chai, Strengthening mechanisms of a new 700 MPa hot-rolled Ti-microalloyed steel produced by compact strip production, J. Mater. Process. Technol., 210(2010), No. 12, p. 1660.

    Article  Google Scholar 

  15. K. Wallin, Upper shelf energy normalisation for sub-sized Charpy-V specimens, Int. J. Pressure Vessels Piping, 78(2001), No. 7, p. 463.

    Article  Google Scholar 

  16. Y.J. Chao, J.D. Ward Jr., and R.G. Sands, Charpy impact energy, fracture toughness and ductile-brittle transition temperature of dual-phase 590 Steel, Mater. Des., 28(2007), No. 2, p. 551.

    Article  Google Scholar 

  17. R. Kasada, H. Ono, and A. Kimura, Small specimen test technique for evaluating fracture toughness of blanket structural materials, Fusion Eng. Des., 81(2006), No. 8–14, p. 981.

    Article  Google Scholar 

  18. G.P. Cherepanov, A.S. Balankin, and V.S. Ivanova, Fractal fracture mechanics-a review, Eng. Fract. Mech., 51(1995), No. 6, p. 997.

    Article  Google Scholar 

  19. R.A. Ainsworth, D.G. Hooton, and D. Green, Failure assessment diagrams for high temperature defect assessment, Eng. Fract. Mech., 62(1999), No. 1, p. 95.

    Article  Google Scholar 

  20. S. Cicero, R. Lacalle, R. Cicero, and D. Ferreño, Assessment of local thin areas in a marine pipeline by using the FITNET FFS corrosion module, Int. J. Pressure Vessels Piping, 86(2009), No. 5, p. 329.

    Article  Google Scholar 

  21. G. Lewis and S. Mladsi, Correlation between impact strength and fracture toughness of PMMA-based bone cements, Biomaterials, 21(2000), No. 8, p. 775.

    Article  Google Scholar 

  22. B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, and J.Y. Yoo, Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2107.

    Article  Google Scholar 

  23. A.S. Kumar, B.R. Kumar, G.L. Datta, and V.R. Ranganath, Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel, Mater. Sci. Eng. A, 527(2010), No. 4–5, p. 954.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Jj., Wu, R., Liang, W. et al. Effect of hot rolling on the microstructure and impact absorbed energy of the strip steel by CSP. Int J Miner Metall Mater 21, 674–681 (2014). https://doi.org/10.1007/s12613-014-0957-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0957-y

Keywords

Navigation