Skip to main content
Log in

Compressive deformation behavior of an indirect-extruded Mg-8Sn-1Al-1Zn alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-1Al-1Zn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001–10 s−1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) behavior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.H. Kang, S.S. Park, and N.J Kim, Development of creep resistant die cast Mg-Sn-Al-Si alloy, Mater. Sci. Eng. A, 413–414(2005), No. 1, p. 555.

    Google Scholar 

  2. C.L. Mendis, C.J. Bettles, M.A. Gibson, and C.R. Hutchinson, An enhanced age hardening response in Mg-Sn based alloys containing Zn, Mater. Sci. Eng. A, 435–436(2006), No. 1–2, p. 163.

    Google Scholar 

  3. H.M. Liu, Y.G. Chen, Y.B. Tang, S.H. Wei, and G. Niu, The microstructure, tensile properties, and creep behavior of as-cast Mg-(1–10)%Sn alloys, J. Alloys Compd., 440(2007), No. 1–2, p. 122.

    Article  CAS  Google Scholar 

  4. S.H. Wei, Y.G. Chen, Y.B. Tang, H.M. Liu, S.F. Xiao, G. Niu, X.P. Zhang, and Y.H. Zhao, Compressive creep behavior of as-cast and aging-treated Mg-5wt% Sn alloys, Mater. Sci. Eng. A, 492(2008), No. 1–2, p. 20.

    Google Scholar 

  5. M.A. Gibson, X. Fang, C.J. Bettles, and C.R. Hutchinson, The effect of precipitate state on the creep resistance of Mg-Sn alloys, Scripta Mater., 63(2010), No. 8, p. 899.

    Article  CAS  Google Scholar 

  6. S.S. Park, W.N. Tang, and B.S. You, Microstructure and mechanical properties of an indirect-extruded Mg-8Sn-1Al-1Zn alloy, Mater. Lett., 64(2010), No. 1, p. 31.

    Article  CAS  Google Scholar 

  7. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature, Scripta Mater., 59(2008), No. 10, p. 1111.

    Article  CAS  Google Scholar 

  8. W.L. Cheng, S.S. Park, B.S. You, and B.H. Koo, Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion, Mater. Sci. Eng. A, 527(2010), No. 18–19, p. 4650.

    Google Scholar 

  9. K. Yu, W.X. Li, J. Zhao, Z.Q. Ma, and R. Wang, Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy, Scripta Mater., 48(2003), No. 9, p. 1319.

    Article  CAS  Google Scholar 

  10. S.R. Wang, M. Wang, R. Ma, Y. Wang, and Y.J. Wang, Microstructure and hot compression behavior of twin-roll-casting magnesium alloy AZ41M, Rare Met., 29(2010), No. 4, p. 396.

    Article  CAS  Google Scholar 

  11. Y. Zhang, X.Q. Zeng, C. Lu, and W.J. Ding, Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy, Mater. Sci. Eng. A, 428(2006), No. 1–2, p. 91.

    Google Scholar 

  12. D.J. Li, Q.D. Wang, J.J. Blandin, M. Suery, J. Dong, and X.Q. Zeng, High temperature compressive deformation behavior of an extruded Mg-8Gd-3Y-0.5Zr (wt%) alloy, Mater. Sci. Eng. A, 526(2009), No. 1–2, p. 150.

    Google Scholar 

  13. K.P. Rao, Y.V.R.K. Prasad, N. Hort, and K.U. Kainer, Hot workability characteristics of cast and homogenized Mg-3Sn-1Ca alloy, J. Mater. Process. Technol., 201(2008), No. 1–3, p. 359.

    Article  CAS  Google Scholar 

  14. Y.V.R.K. Prasad, K.P. Rao, N. Hort, and K.U. Kainer, Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg-3Sn-1Ca alloy, Mater. Sci. Eng. A, 502(2009), No. 1–2, p. 25.

    Google Scholar 

  15. S.S. Park, Y.J. Kim, W.L. Cheng, Y.M. Kim, and B.S. You, Tensile properties of extruded Mg-8Sn-1Zn alloys subjected to different heat treatments, Philos. Mag. Lett., 91(2011), No. 1, p. 35.

    Article  CAS  Google Scholar 

  16. H. Beladi and M.R. Barnett, Influence of aging pre-treatment on the compressive deformation of WE54 alloy, Mater. Sci. Eng. A, 452–453(2007), No. 1–2, p. 306.

    Google Scholar 

  17. C.M. Liu, Z.J. Liu, X.R. Zhu, and H.T. Zhou, Research and development of dynamic recrystallization in pure magnesium and its alloys, Chin. J. Nonferrous Met., 16(2006), No. 1, p. 1.

    Article  Google Scholar 

  18. Y. Lou, L.X. Li, J. Zhou, and L. Na, Deformation behavior of Mg-8Al magnesium alloy compressed at medium and high temperatures, Mater. Charact., 62(2011), No. 3, p. 346.

    Article  CAS  Google Scholar 

  19. S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Metall., 30(1982), No. 10, p. 1909.

    Article  CAS  Google Scholar 

  20. H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1–2, p. 43.

    Google Scholar 

  21. A. Mwembela, E.B. Konopleva, and H.J. Mcqueen, Microstructural development in Mg alloy AZ31 during hot working, Scripta Mater., 37(1997), No. 11, p. 1789.

    Article  CAS  Google Scholar 

  22. H. Zhang, L.X. Li, D. Yuan, and D.S. Peng, Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures, Mater. Charact., 58(2007), No. 2, p. 168.

    Article  Google Scholar 

  23. S. Spigarelli, M. El. Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, and V. Gartnerova, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy, Mater. Sci. Eng. A, 462(2007), No. 1–2, p. 197.

    Google Scholar 

  24. J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation, Acta Mater., 57(2009), No. 9, p. 2739.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-ping Que or Sung Soo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Wl., Que, Zp., Zhang, Js. et al. Compressive deformation behavior of an indirect-extruded Mg-8Sn-1Al-1Zn alloy. Int J Miner Metall Mater 20, 49–56 (2013). https://doi.org/10.1007/s12613-013-0692-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0692-9

Keywords

Navigation