Skip to main content
Log in

Enhanced thermoelectric properties of Co1−xy Ni x+y Sb3−x Sn x materials

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Co1−xy Nix+y Sb3−x Sn x polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite Co1−x Ni x Sb3−x Sn x was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb2.88Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Co0.88Ni0.12Sb2.88Sn0.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.19Sb2.88Sn0.12 reaches 3.0 mW·m−1·K−2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.Y. He, S.J. Hu, X.G Tang, Y.C. Lan, J. Yang, X.W. Wang, Z.F. Ren, Q. Hao, and G. Chen, The great improvement effect of pores on ZT in Co1−x NixSb3 system, Appl. Phys. Lett., 93(2008), art. No.042108.

    Google Scholar 

  2. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, and L.D. Zhao, Enhanced thermoelectric properties in CoSb3−x Tex alloys prepared by mechanical alloying and spark plasma sintering, J. Appl. Phys., 102(2007), art. No.103717.

    Google Scholar 

  3. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, H. Wang, L. Chen, and W. Zhang, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites, Appl. Phys. Lett., 92(2008), art. No. 182101.

    Google Scholar 

  4. X.F. Tang, Q.J. Zhang, L.D. Chen, T. Goto, and T. Hirai, Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−x Sb12 (R:Ce,Ba,Y;M:Fe,Ni), J. Appl. Phys., 97(2005), art. No.093712.

    Google Scholar 

  5. J.L. Mi, T.J. Zhu, X.B. Zhao, and J. Ma, Thermoelectric properties of skutterudites FexNiyCo1−xy Sb3 (x = y), J. Alloys Compd., 452(2008), p.225.

    Article  Google Scholar 

  6. P.N. Alboni, X. Ji, J. He, N. Gothard, and T.M. Tritt, Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites, J. Appl. Phys., 103(2008), art. No.113707.

    Google Scholar 

  7. G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater., 7(2008), p.105.

    Article  Google Scholar 

  8. J.L. Mi, T.J. Zhu, X.B. Zhao, and J. Ma, Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3, J. Appl. Phys., 101(2007), art. No.054314.

    Google Scholar 

  9. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Electron crystals and phonon glasses filled skutterudite antimonides, Phys. Rev. B, 56(1997), p.15081.

    Article  Google Scholar 

  10. T. He, J.Z. Chen, H.D. Rosenfeld, and M.A. Subramanian, Thermoelectric properties of indium-filled skutterudites, Chem. Mater., 18(2006), p.759.

    Article  Google Scholar 

  11. W.S. Liu, B.P. Zhang, J.F. Li, and L.D. Zhao, Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound, J. Phys. D, 40(2007), p.6784.

    Article  Google Scholar 

  12. D.J. Singh and W.E. Pickett, Skutterudite antimonides: Quasilinear bands and unusual transport, Phys. Rev. B, 50(1994), p.11235.

    Article  Google Scholar 

  13. D. Mandrus, A. Migliori, T.W. Darling, M.F. Hundley, E.J. Peterson, and J.D. Thompson, Electronic transport in lightly doped CoSb3, Phys. Rev. B, 52(1995), p.4926.

    Article  Google Scholar 

  14. E. Arushanov, M. Respaud, H. Rakoto, J.M. Broto, and T. Caillat, Shubnikov-de Haas oscillations in CoSb3 single crystals, Phys. Rev. B, 61(2000), p.4672.

    Article  Google Scholar 

  15. C.S. Lue, Y.T. Lin, and C.N. Kuo, NMR investigation of the skutterudite compound CoSb3, Phys. Rev. B, 75(2007), art. No.075113.

    Google Scholar 

  16. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro, Effects of doping on the transport properties of CoSb3, J. Appl. Phys., 86(1999), p.3780.

    Article  Google Scholar 

  17. M. Puyet, A. Dauscher, B. Lenoir, C. Bellouard, C. Stiewe, E. Muller, J. Hejtmanek, and J. Tobola, Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites CayCo4−x NixSb12, Phys. Rev. B, 75(2007), art. No.245110.

    Google Scholar 

  18. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Synthesis and thermoelectric properties of KyCo4Sb12, Appl. Phys. Lett., 89(2006), art. No. 221107.

    Google Scholar 

  19. T. Caillat, A. Borshchevsky, and J.P. Fleurial, Properties of single crystalline semiconducting CoSb3, J. Appl. Phys., 80(1996), p.4442.

    Article  Google Scholar 

  20. H. Kitagawa, M. Wakatsukia, H. Nagaoka, H. Noguchi, Y. Isoda, and K. Hasezaki, Temperature dependence of thermoelectric properties of Ni-doped CoSb3, J. Phys. Chem. Solids, 66(2005), p.1635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-quan Liu.

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 50801054 and 51072104) and the Research Award Fund for Outstanding Young Scientists in Shandong Province, China (No. BS2011CL031)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Hq., Zhang, Sn., Zhu, Tj. et al. Enhanced thermoelectric properties of Co1−xy Ni x+y Sb3−x Sn x materials. Int J Miner Metall Mater 19, 240–244 (2012). https://doi.org/10.1007/s12613-012-0545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0545-y

Keywords

Navigation