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Abstract
Purpose of Review Automated breast ultrasound (ABUS) is a three-dimensional imaging technique, used as a supplemental
screening tool in women with dense breasts. This review considers the technical aspects, pitfalls, and the use of ABUS in
screening and clinical practice, together with new developments and future perspectives.
Recent Findings ABUS has been approved in the USA and Europe as a screening tool for asymptomatic women with dense
breasts in addition to mammography. Supplemental US screening has high sensitivity for cancer detection, especially early-stage
invasive cancers, and reduces the frequency of interval cancers. ABUS has similar diagnostic performance to handheld ultra-
sound (HHUS) and is designed to overcome the drawbacks of operator dependence and poor reproducibility. Concerns with
ABUS, like HHUS, include relatively high recall rates and lengthy reading time when compared to mammography. ABUS is a
new technique with unique features; therefore, adequate training is required to improve detection and reduce false positives.
Computer-aided detectionmay reduce reading times and improve cancer detection. Other potential applications of ABUS include
local staging, treatment response evaluation, breast density assessment, and integration of radiomics.
Summary ABUS provides an efficient, reproducible, and comprehensive supplemental imaging technique in breast screening.
Developments with computer-aided detection may improve the sensitivity and specificity as well as radiologist confidence and
reduce reading times, making this modality acceptable in large volume screening centers.
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Introduction

Mammography is the primary modality used for breast cancer
screening, with an estimated reduction in mortality of 20%
[1]. Mammographic sensitivity drops to 61% in women with

extremely dense breasts when compared to 86% in fatty
breasts, leading to 6 times more interval cancers [2]. This is
partially due to the “masking effect” caused by the overlap-
ping fibroglandular tissue, resulting in delayed diagnosis, and
larger cancers with often poorer prognosis [3]. Breast density
also contributes to increased risk of breast cancer with a 4.6-
fold increased risk for the densest group compared to the low-
est density, fatty breasts[4].

Breast density can be measured using numerous methods
and from images obtained on different modalities [5, 6].
Commonly, breast density is measured on digital mammogra-
phy. Given its clinical importance, reader assigned (BI-
RADS) and automated breast density measures (area and vol-
ume) have been included in the latest risk prediction models.
The best measure of density to determine risk, when used
alone or in combination with other risk models (Tyrer-
Cuzick, BOADICEA, and Gail models), is yet to be deter-
mined [7–9]. Assessing density is important to target supple-
mental screening approaches for women with dense breasts.

This article is part of the Topical Collection on Breast Cancer Imaging
and Screening

* Iris Allajbeu
ia359@cam.ac.uk

1 Department of Radiology, University of Cambridge School of
Clinical Medicine, Box 218, Level 5, Cambridge Biomedical
Campus, Cambridge CB2 0QQ, UK

2 Department of Radiology, Addenbrookes Hospital, Cambridge
University Hospitals NHS Foundation Trust, Cambridge, UK

3 Breast screening Unit, Seacroft Hospital, York Road,
Leeds LS146UH, UK

https://doi.org/10.1007/s12609-021-00423-1

/ Published online: 23 June 2021

Current Breast Cancer Reports (2021) 13:141–150

http://crossmark.crossref.org/dialog/?doi=10.1007/s12609-021-00423-1&domain=pdf
http://orcid.org/0000-0002-6419-2422
mailto:ia359@cam.ac.uk


Various approaches and thresholds have been considered to
guide the implementation of supplemental imaging, with stud-
ies evaluating which modality is best for this purpose [10, 11].
The BRAID multicenter UK trial is comparing automated
breast ultrasound (ABUS), abbreviated magnetic resonance
imaging (ABB MRI), and contrast-enhanced spectral mam-
mography (CESM) as a supplemental screening tool [12].

Many studies support the use of the whole breast ultra-
sound as an appropriate supplemental screening tool in dense
breasts, due to its accessibility, lack of intravenous (IV) con-
trast and ionizing radiation, and better patient tolerance
[13–18]. Handheld ultrasound (HHUS) increases the cancer
detection rate by 1.8–4.6 cancers per 1000 women screened,
compared with mammography alone [14, 16, 19, 20].
However, the use of HHUS as a screening tool has its own
disadvantages, i.e., radiologist time required to perform the
examination, significant operator dependence, higher recall
rates, and relatively low positive predictive value. Unlike
handheld ultrasound (HHUS), automated breast ultrasound
(ABUS) is a three-dimensional volume imaging technique,
offering proper orientation and documentation, leading to bet-
ter reproducibility and making it easier to compare with sub-
sequent follow-up studies. It can be performed independently
and in a more standardized way with trained radiographers,
saving radiologist time and improving efficiency [21].

Technical Aspects

The use of ABUS for breast cancer screening was introduced
in 1980 [13], to deal with the shortcomings of mammography
[22] in detecting cancer in women with dense breasts.

ABUS systems are available in two categories: supine [23,
24] and prone [25, 26]. The latest supine 3D ABUS devices

consist of an articulated arm with a long transducer, a
touchscreen monitor, and a dedicated workstation for image
interpretation. The transducers are automatically adjusted over
their frequency range (~5–15 MHz), according to the chosen
depth, producing 3D datasets with hundreds of images per
acquisition at slice intervals of ~2 mm without overlap.
Technical advances of 3D ABUS systems consist in special
software that enables optimized quality images with high res-
olution and uniformity throughout the image due to advanced
reconstruction algorithms and automated adjustment of set-
tings such as frequency, time gain compensation, harmonics,
nipple shadow, and speckle reduction imaging [22].

A standard ABUS protocol consists of scanning each breast
separately in three planes, anterior-posterior (AP), lateral (LAT),
and medial (MED) positions, resulting in six images for both
breasts. Additional views may be required in women with larger
breasts to cover the whole area with four images (two per each
breast) sufficient in smaller breasts (Fig. 1). Adequate patient
positioning, transducer placement, proper depth selection, and
compression are crucial in acquiring high-quality images with
the total examination, including patient preparation, lasting ap-
proximately 15–20 min. Regular quality assurance tests should
be performed as for ultrasound equipment. The volume data is
processed automatically in multiplanar reconstruction (coronal
and sagittal planes) and is transferred to a dedicated workstation
for interpretation as full, reconstructed image sets cannot yet be
viewed on picture archiving and communication system (PACS)
workstations as standard.

Artifacts and Pitfalls

In a retrospective analysis of 1890 ABUS studies, the most
common reasons for false-negative readings on ABUS exams

Fig 1 Overview of the ABUS scanning views with 3 standard views for each breast and 6 optional views based on patient body habitus, image used with
kind permission from GE Healthcare
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were reported as poor visibility, peripheral lesion location, and
shadowing obscuring the lesion [27].

Technical artifacts such as loss-of-contact, dropout arti-
facts due to poor scanning or skin folding are the most com-
mon cause of poor visibility. Adequate patient positioning,
uniform amount of lotion, and appropriate transducer place-
ment and compression should be ensured to avoid this type of
artifacts, while documenting skin lesions such as moles and
surgical scars is also recommended (Fig. 2a). Nipple
shadowing is another artifact, more commonly seen in
inverted nipples; however, applying an abundance of water-
based lotion in this area as well as integrated software algo-
rithms, such as tissue equalization algorithm and nipple shad-
ow compensation, helps in reducing this type of artifact [21].
Hyperventilation, tachycardia, coughing, and talking are the
common physiological conditions–related artifacts. Their re-
petitive sinusoidal wave pattern makes them easy to detect
[21, 28]; they are more prominent near the chest wall and
can distort the deeper regions of the coronal and sagittal ref-
ormations. Breast lesion–related artifacts such as skip artifact
and white wall sign are unique to ABUS and can assist in
diagnosis/differentiation of specific lesions [28]. A skip
artifact is caused when the transducer encounters a firm mass
and presents as an artifactual horizontal line on the coronal
plane (Fig. 2b); these may also occur due to prominent ribs.
White wall signs are seen as hypoechoic circumscribed areas
before a cyst in the coronal plane and are equivalent to the
posterior enhancement in HHUS (Fig. 2c); their appearance is
a typical sign of benign lesions [21].

Shadowing artifacts: This type of artifact is one of the
major challenges in ABUS interpretation. It is crucial to dis-
tinguish between shadowing originating from normal breast
parenchyma and those from true lesions due to their high
correlation with malignant masses. “Wandering shadows”
caused by the interference of ultrasound waves with curved
surfaces of Cooper ligaments, presenting as repetitive linear
shadows in the transverse plane (Fig. 2d), are common in
ABUS examinations [21]. They tend to be more prominent
in heterogeneous dense breasts, on the lateral and medial
planes, and the periphery, potentially leading to misinterpre-
tation [27]. Uniform compression and proper positioning are
essential in reducing this type of artifact [22]. In a recent study,
shadowing was classified in four categories, and a methodical
approach was suggested to minimize false positives [28]. The
persistence of an apparent lesion in more than one plane (axial
and coronal/sagittal) is a strong positive finding that needs to
be recalled. Sagittal plane might be helpful in certain cases to
rule out true lesions (Fig. 2d).

ABUS Implementations in a Screening Setting

Many studies indicate that ABUS is a good supplemental
screening tool for women with dense breasts, with a diagnos-
tic performance similar to screening HHUS [29] and an in-
crease of cancer detection rate by 1.9–7.7 cases per 1000
women compared to mammography alone [23, 30–33].
Sensitivity increased with 21.6–41.0%, but specificity varied.

Fig. 2 Artifacts from ABUS (a) Contact artifact from a mole on both the
coronal and saggital plane, shown by arrows. (b) Skip artifact from cyst on
both the coronal and axial images. (c) White wall sign ; round echogenic

area in coronal images, corresponding to the posterior enhancement of cyst
in axial plane, shown by arrows (d) Wandering Shadows ; linear repetitive
shadows in axial and sagittal planes, shown by arrows
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In the largest ABUS study (SomoInsight Study) of 15,318
women with dense breasts, the cancer detection rate was re-
ported as 1.9 cases per 1000 women [23], similar to the results
of Japan Strategic Anti-cancer Randomized Trial (J-START)
[18] but lower than the results of American College of
Radiology Imaging Network 6666 [16]; this difference was
due to the different inclusion criteria of these studies. Most of
the cancers detected were small, invasive, and predominantly
node negative (Table 1).

Recall and biopsy rates tend to increase with ABUS as well
(Table 1). These values have improved recently, due to in-
creased reader experience and software developments with
the latest ABUS systems [35, 36]. This new modality has a
learning curve, so adequate training and state-of-the-art exam-
inations along with integration of computer-aided detection
(CAD) software will potentially improve accuracy and reduce
recall rates [37].

Recent European Society of Breast Imaging (EUSOBI)
guidelines recommend the usage of HHUS or 3D ABUS as
a supplemental screening modality following a negativemam-
mogram in women of average or intermediate risk with dense
breasts, C and D, according to Breast Imaging Reporting and
Data System (BI-RADS) Atlas, 5th edition [38, 39]. In addi-
tion, screening ABUS can be offered as an alternative to MRI
in high-risk women in limited facilities or when MRI is con-
traindicated [11]. Incremental cancer detection rates are
higher, between 2 and 3.6 per 1000 screens, for ABUS in
comparison to digital breast tomosynthesis (DBT) (1–2 per
1000 screens) when used as a supplemental screening tool in
women with dense breasts. These values are similar to HHUS
but significantly lower than MRI and CESM. However, this
comes at the expense of IV contrast administration, ionizing
radiation, and higher recall rates [29]. In addition, MRI is not
as widely accessible and requires more specialized training.
Large multicentric randomized trials with long-term follow-
up are needed to assess the feasibility of ABUS as an addi-
tional screening tool in reducing mortality rates [22].

Computer-Aided Detection/Diagnosis

A drawback of ABUS is the relatively long interpretation time
due to a larger volume of images to be analyzed in both cor-
onal and axial planes. The reading time reported so far varies
significantly (2.9–9 min), attributable to variation in radiolo-
gists’ experience and complexity of cases [23, 29, 31, 40]. A
CAD software for 3D ABUS (QVCAD™, QView Medical)
has been recently developed and FDA approved [41]. Several
studies have been investigating the benefits of concurrent-read
CAD systems for interpretation of screening ABUS, and CAD
seems to significantly reduce interpretation time, up to 35%,
as well as improving diagnostic accuracy [42–44]. Another
approach to speed up reading is the use of coronal plane only
[45], but more work on this is required to ensure that sensitiv-
ity does not drop. Further work is required to evaluate the
feasibility of CAD in a screening setting.

In the ASSURE project, 120 unilateral ABUS exams cho-
sen randomly were analyzed by eight experienced breast radi-
ologists using CAD software. The reading time was signifi-
cantly reduced by 15% overall [46]. CAD discarded 42.6% of
BI-RADS ≥3 lesions, 85.5% of which were benign, suggest-
ing that CAD software could improve accuracy and potential-
ly reduce unnecessary recalls [47].

ABUS Implementations in Clinical Setting

Symptomatic Breast Imaging

ABUS use in clinical practice is still under investiga-
tion. Several studies have reported similar diagnostic
performance of ABUS to HHUS in differentiation of
benign and malignant lesions (Table 2). In a recent
meta-analysis of nine studies involving 1527 lesions,
ABUS was found to have higher pooled sensitivity
(93%) and specificity (86%) in detecting lesions,

Table 1 Results from 4 major studies examining supplemental screening with ultrasound [33, 34]

Study SomoInsight
(Brem 2015) [23]

Wilczek (2016) [31] ACRIN 6666
(Berg 2012) [16]

J- START
(Ohuchi 2016) [18]

Modality ABUS ABUS HHUS HHUS

Study population Asymptomatic
women with dense
breasts (15,318)

Asymptomatic women
with dense breasts (1668)

Asymptomatic women
at high risk (2809)

Asymptomatic women
in their 40s (36,752)

Cancer detection (rate per 1000) 1.9 2.4 5.3 1.8

Net added recalls per screen (%) 13.5 0.9 7.4 5.4

Invasive cancers (%) 93.3 NR 93.7 82.0

Mean size of cancers (mm) 12.9 21.8 10.0 14.2

Node negative cancers (%) 92.6 50.0 96.7 85.5
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compared to HHUS (90% and 82%, respectively) [48].
However, these are small studies with relatively low
number of lesions. Looking at interobserver reliability
in BI-RADS assessment, heterogeneous results with
considerable variation in kappa values have been report-
ed [57]. Vourtsis and Katchulis found a very high (99.8
%; kappa = 0.994, p < 0.0001) interobserver agreement
in BI-RADS classification between 3D ABUS and
HHUS, in a retrospective study of 1886 women, with
ABUS superiority in detecting architectural distortion
[29]. Another recently published multicentric study of
937 Chinese women with dense breasts, evaluating the
diagnostic performance of ABUS and HHUS in combi-
nation with mammography, reported significant im-
provement in cancer detection rate as well as strong
correlation between ABUS and HHUS, with an accura-
cy of 93% for ABUS and 92% for HHUS and 94%
agreement between them [58].

The coronal plane is a specific feature of ABUS that
enables the visualization of a lesion in the anatomical
plane and contributes to better detection and characteri-
zation [59, 60]. One of the unique findings of coronal
plane is the so-called retraction phenomenon, frequently
a sign of architectural distortion and malignancy (Fig. 3)
that can supplement mammography in detecting
noncalcified carcinomas in women with dense breasts
[29]. Zheng et al. reported that the retraction sign and
microlobulated margins have both high diagnostic
values in distinguishing between benign and malignant
breast masses in ABUS [60].

A recent study analyzing 457 lesions in coronal
plane, including 80 non-mass lesions, concluded that
the retraction phenomenon is highly predictive of malig-
nancy; continuous hyper- or hypoechoic rims were more
associated with benign lesions, whereas discontinuous
rims were suggestive of malignancies. For the non-
mass lesions, the skip artifact was found to correlate
more with malignant lesions [61]. In addition, ABUS

seems to outperform HHUS in volumetric measurements
of lesions, with significant higher accuracy [62, 63].

Local Staging Breast magnetic resonance imaging (MRI) is
the gold standard in the evaluation of disease extent
and treatment planning. 3D ABUS could be a good
alternative to MRI in finding additional lesions due to
its three-dimensional orientation and repeatability (Fig.
3). In a recent study comparing the diagnostic value of
ABUS to HHUS with MRI as gold standard, they re-
ported similar diagnostic accuracy for ABUS and HHUS
(87.2% and 89.7%) but better size correlation between
ABUS and MRI (r = 0.89) compared to HHUS (r =
0.82) [64]. In a similar study including 100 index can-
cers, ABUS showed better agreement with histology
than HHUS with a higher intraclass correlation (ICC),
0.85 vs 0.75, respectively [65]. Furthermore, the coronal
plane provides better segmental approach, and global
visualization of the tumor with similar surgical orienta-
tion therefore might be useful in surgical planning (Fig.
4). In another analysis of 142 biopsy-proven DCIS
cases examining the use of ABUS in guiding breast
conservation surgery, ABUS was superior to HHUS in
both surgery planning and predicting recurrence, with a
detection rate significantly higher (χ2 = 268.000, P <
0.001) [63]. Semiautomated and automated algorithms
for ABUS lesion segmentation and volume measuring
are under investigation [66, 67].

Monitoring Response to Neoadjuvant Chemotherapy US can
be a potentially useful imaging modality for early pre-
diction of pathological response to NAC [68]. ABUS is
a promising tool, offering better orientation and repro-
ducibility in comparison to HHUS. In a recent study,
Wang et al. reported high sensitivity (88.1%) and spec-
ificity (81.5%) of ABUS coronal plane, in predicting
pathological complete response (pCR) rate after four
cycles of chemotherapy [69]. They concluded that

Table 2 Major studies comparing
sensitivity and specificity of
ABUS (automatic breast
ultrasound) and HHUS (handheld
ultrasound) in clinical practice
[48, 49]

Study Patients number Sensitivity % Specificity %

ABUS US ABUS US

Cho et al. [50] 141 98.3 96.7 96.7 64.4

Kotsianos-Hermle et al. [51] 97 95 97 93 88

Wang HY et al. [52] 213 95.3 90.6 80.5 82.5

Wang ZL et al. [53] 155 96.1 93.2 91.9 88,7

Chen et al. [54] 175 92.5 88.1 86.2 87.5

Jeh et al. [55] 173 88 95.7 76.2 49.4

Niu et al. [56] 398 92.23 82.52 77.62 80.24
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ABUS is a useful tool in early evaluation of patholog-
ical complete response after 2 cycles of NAC while less
reliable when predicting poor pathological outcomes.

Second-look ABUS Another potential application of ABUS is
the further evaluation of MRI findings instead of second-look
HHUS. Recent studies have shown that ABUS is better than

HHUS and with similar performance to MRI in predicting
breast cancer size and finding additional lesions [65, 70, 71].
Therefore, it can be a good alternative to MRI in guiding
breast conservation surgery and predicting recurrence [63].

However, there are some limitations of ABUS such
as lack of image-guided biopsy and axilla and tumor
vascularity assessment.

Fig. 3 A multifical grade II
invasive carcinoma of no special
type ( NST) with intratumoral low
grade DCIS, presenting with (a)
“The retraction sign” (circle) and
two foci of tumour, 18 mm and 6
mm (arrows) on ABUS coronal
plane and (b) corresponding
HHUS images

Fig. 4 Irregular 9 mm
hypoechoic lesion on ABUS (a)
coronal and (b) axial planes
(circle) ,corresponding (c)
postcontrast MRI and (d) second-
look US images (arrows).
Unifocal Invasive Lobular
Carcinoma with very good
correlation of lesion size and
location betweenMRI and ABUS
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Future Perspectives

Ongoing research is looking at correlation between molecular
subtypes of breast cancer and ABUS morphological features.
In a recent analysis of 303 malignant lesions, strong correla-
tion was found between their specific imaging features on
ABUS such as retraction, post-acoustic shadowing, echogenic
halo, calcifications, and molecular subtypes, especially for the
“retraction phenomenon” on coronal views, as the strongest
independent predictor for the luminal-A subtype when present
and for the triple-negative subtype when absent [72].

Other possible implementations of ABUS include breast
density evaluation [54, 73]. In their study, Chen et al. found
a high correlation of density results between MRI and ABUS,
for whole breast volume (r = 0.798) and for breast percentage
density (r = 0.825) [74].

ABUS can be used for follow-up of benign lesions, due to
its precise documentation and orientation. In a retrospective
study evaluating the reproducibility of ABUS, readers ICCs
for lesion location (clock face location, distance from nipple)
and size were reported as 0.994, 0.926, and 0.980, respective-
ly, suggesting high reliability [75].

Fusion-X-US is a new device under investigation, combin-
ing ABUS and tomosynthesis in one device, aiming to im-
prove workflow in clinical practice. Preliminary results of a
prospective study, analyzing 101 patients with this prototype,
showed good breast coverage (80.0%) and diagnostic accura-
cy of ABUS (85.0%), as well as 97.1% lesion identification
with the combined system [76].

Conclusions

ABUS is a good supplemental screening tool for women with
dense breasts and should be considered as an alternative to
other modalities due to good patient tolerance, lack of ionizing
radiation, and IV contrast. CAD is a promising tool in reduc-
ing interpretation time and improving ABUS accuracy. Other
possible applications include use in symptomatic clinics in
younger women and for surveillance of benign lesions, local
staging, monitoring response to NAC, second-look tool, cor-
relation with molecular subtypes of breast cancer, and breast
density evaluation. Further developments are expected in the
field of deep learning and integration of radiomics. Larger
studies, robust training, and software incorporation and stan-
dardization are required for better implementation of this im-
aging modality in screening and diagnostic setting.
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