Skip to main content
Log in

Comparative Probiogenomics Analysis of Limosilactobacillus fermentum 3872

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Limosilactobacillus fermentum is an important member of the lactic acid bacteria group and holds immense potential for probiotic properties in human health and relevant industries. In this study, a comparative probiogenomic approach was applied to analyze the genome sequence of L. fermentum 3872, which was extracted from a commercially available yogurt sample, along with 20 different publicly available strains. Results indicate that the genome size of the characterized L. fermentum 3892 strain is 2,057,839 bp, with a single- and circular-type chromosome possessing a G + C content of 51.69%. The genome of L. fermentum 3892 strain comprises a total of 2120 open reading frames (ORFs), two genes encoding rRNAs, and 53 genes encoding tRNAs. Upon comparative probiogenomic analysis, two plasmid sequences were detected among the study strains, including one for the L. fermentum 3872 genome, which was found between position 1,288,203 and 1,289,237 with an identity of 80.98. The whole-genome alignment revealed 2223 identical sites and a pairwise identity of 98.9%, indicating a significant difference of 1.1% among genome strains. Comparison of amino acid encoding genes among strains included in this study suggests that the strain 3872 exhibited the highest degree of amino acids present, including glutamine, glutamate, aspartate, asparagine, lysine, threonine, methionine, and cysteine. The comparative antibiotic resistome profiling revealed that strain 3872 exhibited a high resistant capacity only to ciprofloxacin antibiotics as compared to other strains. This study provides a genomic-based evaluation approach for comparative probiotic strain analysis in commercial foods and their significance to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw sequencing data used in this study has been submitted to NCBI with the Accession number PRJNA795894. The detailed information of the strains used for comparative probiogenomics is given in Table 1.

References

  1. Klein G et al (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41(2):103–125

    Article  CAS  PubMed  Google Scholar 

  2. Bernardeau M et al (2008) Safety assessment of dairy microorganisms: the Lactobacillus genus. Int J Food Microbiol 126(3):278–285

    Article  CAS  PubMed  Google Scholar 

  3. Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15(12):546–553

    Article  CAS  PubMed  Google Scholar 

  4. Brandt K et al (2020) Genomic characterization of Lactobacillus fermentum DSM 20052. Bmc Genomics 21(1)

  5. Zhang LH et al (2022) Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics. Microb Pathog 162

  6. Karlyshev AV, Raju K, Abramov VMJGA (2013) Draft genome sequence of Lactobacillus fermentum strain 38721

  7. Aбpaмoв BM et al (2013) Strain Lactobacillus fermentum having broad spectrum of antagonistic activity and probiotic lactobacterium consortium for manufacturing bacterial preparations

  8. Hernando-Amado S et al (2019) Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 4(9):1432–1442

    Article  CAS  PubMed  Google Scholar 

  9. European Food Safety Authority and European Centre for Disease Prevention and Control (2018) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. Efsa J 16(2)

  10. Florez AB et al (2016) Antibiotic susceptibility profiles of dairy leuconostoc, analysis of the genetic basis of atypical resistances and transfer of genes in vitro and in a food matrix. Plos One 11(1)

  11. Toropov V et al (2020) Whole-genome sequencing of Lactobacillus helveticus D75 and D76 confirms safety and probiotic potential. Microorganisms 8(3)

  12. Beck BR et al (2019) Whole genome analysis of lactobacillus plantarum strains isolated from kimchi and determination of probiotic properties to treat mucosal infections by Candida albicans and Gardnerella vaginalis. Front microbiol 10

  13. Wick RR et al (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6)

  14. Mikheenko A et al (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34(13):142–150

    Article  Google Scholar 

  15. Brettin T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5

  16. Aziz RK et al (2008) The RAST server: rapid annotations using subsystems technology. Bmc Genomics 9

  17. Klimke W et al (2007) NCBI entrez resourcesfor genomes and plasmids. Plasmid 57(2):242–243

    Google Scholar 

  18. Ripma LA, Simpson MG, Hasenstab-Lehman K (2014) Geneious! Simplified genome skimming methods for phylogenetic systematic studies: a case study in Oreocarya (Boraginaceae). Applications in Plant Sciences 2(12)

  19. Richter M et al (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931

    Article  CAS  PubMed  Google Scholar 

  20. Alikhan NF et al (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. Bmc Genomics 12

  21. de Jong A et al (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:W273–W279

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blin K et al (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51(W1):W46–W50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carattoli A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bairoch A et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159

    Article  CAS  PubMed  Google Scholar 

  26. Couvin D et al (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46(W1):W246–W251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Rossum T et al (2020) Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 18(9):491–506

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazziotta C et al (2023) Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 12(1)

  29. Koita K, Rao CV (2012) Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. Plos One 7(8)

  30. Papadimitriou K et al (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80(3):837–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kavanagh K et al (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65(24):3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levander F et al (2001) Physiological role of beta-phosphoglucomutase in Lactococcus lactis 67(10):4546–4553

    CAS  Google Scholar 

  33. Zarzecka U et al (2019) Chaperone activity of serine protease HtrA of Helicobacter pylori as a crucial survival factor under stress conditions. 17

  34. Xie G et al (2023) Functional genomic characterization unveils probiotic features of G1–11 isolated from the gut of the hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂)

  35. Ruane KM et al (2013) Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a mure enzyme ternary complex. J Biol Chem 288(46):33439–33448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koirala S, Wang XY, Rao CV (2016) Reciprocal regulation of L-arabinose and D-xylose metabolism in Escherichia coli. J Bacteriol 198(3):386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Süssmuth SD et al (2000) Aggregation substance promotes adherence, phagocytosis, and intracellular survival of within human macrophages and suppresses respiratory burst. Infect Immun 68(9):4900–4906

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jones SE et al (2014) Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol 192(10):4813–4820

    Article  CAS  PubMed  Google Scholar 

  39. Lopez MJ, Mohiuddin SS (2020) Biochemistry, Essential Amino Acids

  40. Rafati Rahimzadeh M et al (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145

    PubMed  PubMed Central  Google Scholar 

  41. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gasser B et al (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  43. Darmastuti A et al (2021) Adhesion properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley rat intestine. Microorganisms 9(11)

  44. Laishley EJ, Bernlohr RW (1968) Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol 96(2):322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernandez-Gonzalez JC et al (2021) Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 11(4)

  46. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69(5):2975–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abramov VM et al (2023) 3872 that produces class III bacteriocin forms co-aggregates with the antibiotic-resistant strains and induces their lethal damage. Antibiotics-Basel 12(3)

  48. Tegegne BA, Kebede B (2022) Probiotics, their prophylactic and therapeutic applications in human health development: a review of the literature. Heliyon 8(6)

  49. Pham HN et al (2017) Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities. Environ Sci Pollut Res Int 24(20):16735–16750

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Castillo V et al (2019) Evaluation of the immunomodulatory activities of the probiotic strain Lactobacillus fermentum UCO-979C. Front immunol 10

  51. Dos Santos CI et al (2021) Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. J Fungi (Basel) 7(10)

  52. Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W (2020) Starter cultures as a reservoir of antibiotic resistant microorganisms. LWT 127:109424

  53. Campedelli I et al (2018) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85(1)

  54. Bulajic S, Mijačević Z (2011) Antimicrobial susceptibility of lactic acid bacteria isolated from Sombor cheese. Acta Vet 61(2–3):247–258

    Article  Google Scholar 

  55. Álvarez-Cisneros YM, Ponce-Alquicira E (2019) Antibiotic resistance in lactic acid bacteria. IntechOpen

  56. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontana A et al (2019) Genomic comparison of Lactobacillus helveticus strains highlights probiotic potential. Front Microbiol 10:1380

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nakayama K et al (2000) The R-type pyocin of is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38(2):213–231

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFC2103004).

Author information

Authors and Affiliations

Authors

Contributions

MU and HC design the project. MU performed the experiments. MU, MR, JH, AR, YC, MY, YM, ZN, OAO analyzed the data. MU wrote the initial manuscript draft. HC provided suggestion to improve the initial article draft. MU wrote the final draft. All authors approved the final draft.

Corresponding author

Correspondence to Huayou Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, M., Rizwan, M., Han, J. et al. Comparative Probiogenomics Analysis of Limosilactobacillus fermentum 3872. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10286-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10286-4

Keywords

Navigation