Skip to main content
Log in

Safety Assessment of Levilactobacillus brevis KU15006: A Comprehensive Analysis of its Phenotypic and Genotypic Properties

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked β-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations/World Health Organization, London, Ontario

  2. Jang Y-J, Gwon H-M, Jeong W-S, Yeo S-H, Kim S-Y (2021) Safety evaluation of Weissella cibaria JW15 by phenotypic and genotypic property analysis. Microorganisms 9(12):2450. https://doi.org/10.3390/microorganisms9122450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen W, Yu L, Shi Y (2019) Safety evaluation of lactic acid bacteria. In: Chen W (ed) Lactic acid bacteria. Springer, Singapore, pp 371–409. https://doi.org/10.1007/978-981-13-7832-4_11

  4. Bernardeau M, Vernoux JP, Henri-Dubernet S, Guéguen M (2008) Safety assessment of dairy microorganisms: the Lactobacillus genus. Int J Food Microbiol 126(3):278–285. https://doi.org/10.1016/j.ijfoodmicro.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best Pract Res Clin Gastroenterol 18(2):299–313. https://doi.org/10.1016/j.ijfoodmicro.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  6. Chamba J, Irlinger F (2004) Secondary and adjunct cultures. Cheese: Chem Phys Med Biol 1(C):191–206. https://doi.org/10.1016/S1874-558X(04)80068-X

    Article  CAS  Google Scholar 

  7. Liong M-T (2008) Safety of probiotics: translocation and infection. Nutr Rev 66(4):192–202. https://doi.org/10.1111/j.1753-4887.2008.00024.x

    Article  PubMed  Google Scholar 

  8. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach JT, Hörmannsperger G et al (2010) Safety assessment of probiotics for human use. Gut microbes 1(3):164–185. https://doi.org/10.4161/gmic.1.3.12127

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  10. Son S-H, Jeon H-L, Yang S-J, Lee N-K, Paik H-D (2017) In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb Pathog 112:135–141. https://doi.org/10.1016/j.micpath.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  11. Kang MJ, Jeong H, Kim S, Shin J, Song Y, Lee B-H et al (2023) Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Sci Biotechnol 32:1–13. https://doi.org/10.1007/s10068-022-01213-w

  12. Kang M-S, Yeu J-E, Hong S-P (2019) Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. Int J Mol Sci 20(11):2693. https://doi.org/10.3390/ijms20112693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prakash R, Bharathi Raja S, Devaraj H, Devaraj SN (2011) Up-regulation of muc2 and il-1β expression in human colonic epithelial cells by shigella and its interaction with mucins. PLoS ONE 6(11):e27046. https://doi.org/10.1371/journal.pone.0027046

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740. https://doi.org/10.2903/j.efsa.2012.2740

    Article  CAS  Google Scholar 

  15. KMFDS (2021) Guidelines for the safety evaluation of probiotics as functional ingredients in health functional foods. Republic of Korea, Korean Ministry of Food and Drug Safety

    Google Scholar 

  16. Zhou J, Pillidge C, Gopal P, Gill H (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98(2):211–217. https://doi.org/10.1016/j.ijfoodmicro.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  17. Das DJ, Shankar A, Johnson JB, Thomas S (2020) Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition 69:110567. https://doi.org/10.1016/j.nut.2019.110567

    Article  CAS  PubMed  Google Scholar 

  18. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105(3):281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  19. Morelli L, Wright A (1997) Probiotic bacteria and transferable antibiotic resistance-safety aspects. Demonstration of the nutritional functionality of probiotic foods. News Lett 2(9):14

    Google Scholar 

  20. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM et al (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1–2):93–106. https://doi.org/10.1016/S0168-1605(98)00128-7

  21. Saarela M, Mogensen G, Fonden R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/S0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

  22. McConnell M, Mercer A, Tannock G (1991) Transfer of plasmid pamβl between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microb ecol health dis 4(6):343–355. https://doi.org/10.3109/08910609109140149

    Article  Google Scholar 

  23. Morelli L, Sarra P, Bottazzi V (1988) In vivo transfer of pamβ1 from Lactobacillus reuteri to Enterococcus faecalis. J Appl Bacteriol 65(5):371–375. https://doi.org/10.1111/j.1365-2672.1988.tb01905.x

    Article  CAS  PubMed  Google Scholar 

  24. Kowalska-Krochmal B, Dworniczek E, Dolna I, Bania J, Wałecka E, Seniuk A et al (2011) Resistance patterns and occurrence of virulence determinants among GRE strains in southwestern Poland. Adv Med Sci 56(2):304–310. https://doi.org/10.2478/v10039-011-0022-2

    Article  CAS  PubMed  Google Scholar 

  25. Kiruthiga A, Padmavathy K, Shabana P, Naveenkumar V, Gnanadesikan S, Malaiyan J (2020) Improved detection of esp, hyl, asa1, gelE, cylA virulence genes among clinical isolates of enterococci. BMC Res Notes 13:1–7. https://doi.org/10.1186/s13104-020-05018-0

    Article  CAS  Google Scholar 

  26. Ray CG, Ryan KJ (2014) Sherris medical microbiology. McGraw-Hill Medical, New York

  27. Nodzo SR, Hohman DW, Crane JK, Duquin TR (2014) Hemolysis as a clinical marker for propionibacterium acnes orthopedic infection. Am J Orthop (Belle Mead NJ) 43(5):E93–E97

    PubMed  Google Scholar 

  28. Yasmin I, Saeed M, Khan WA, Khaliq A, Chughtai MFJ, Iqbal R et al (2020) In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of Bifidobacterium strains isolated from raw camel milk. Microorganisms 8(3):354. https://doi.org/10.3390/microorganisms8030354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mangia NP, Saliba L, Deiana P (2019) Functional and safety characterization of autochthonous Lactobacillus paracasei FD103 isolated from sheep cheese and its survival in sheep and cow fermented milks during cold storage. Ann Microbiol 69(2):161–170. https://doi.org/10.1007/s13213-018-1416-1

    Article  CAS  Google Scholar 

  30. Bujnakova D, Strakova E (2017) Safety, probiotic and technological properties of lactobacilli isolated from unpasteurised ovine and caprine cheeses. Ann Microbiol 67:813–826. https://doi.org/10.1007/s13213-017-1310-2

    Article  CAS  Google Scholar 

  31. Nami Y, Haghshenas B, Bakhshayesh RV, Jalaly HM, Lotfi H, Eslami S et al (2018) Novel autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic fermented milk. LWT 98:85–93. https://doi.org/10.1016/j.lwt.2018.08.035

    Article  CAS  Google Scholar 

  32. Tarrah A, da Silva Duarte V, de Castilhos J, Pakroo S, Junior WJFL, Luchese RH et al (2019) Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. J Funct Foods 54:489–497. https://doi.org/10.1016/j.jff.2019.02.004

    Article  CAS  Google Scholar 

  33. Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. JLR 47(2):241–259. https://doi.org/10.1194/jlr.R500013-JLR200

    Article  CAS  Google Scholar 

  34. Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Intl J Food Microbiol 63(1–2):81–90. https://doi.org/10.1016/S0168-1605(00)00398-6

    Article  CAS  Google Scholar 

  35. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jayashree S, Karthikeyan R, Nithyalakshmi S, Ranjani J, Gunasekaran P, Rajendhran J (2018) Anti-adhesion property of the potential probiotic strain Lactobacillus fermentum 8711 against methicillin-resistant Staphylococcus aureus (MRSA). Front Microbiol 9:411. https://doi.org/10.3389/fmicb.2018.00411

    Article  PubMed  PubMed Central  Google Scholar 

  37. Salim A, Nadri S, Hosseini M-J, Rokni-Zadeh H, Mohseni M (2020) Protective effect of probiotic Lactobacillus acidophilus against the toxicity of beauvericin mycotoxin on the Caco-2 cell line. Toxicon 185:184–187. https://doi.org/10.1016/j.toxicon.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  38. Hugas M, Garriga M, Aymerich T, Monfort J (1993) Biochemical characterization of lactobacilli from dry fermented sausages. Int J Food Microbiol 18(2):107–113. https://doi.org/10.1016/0168-1605(93)90215-3

    Article  CAS  PubMed  Google Scholar 

  39. Holck A, Axelsson L, McLeod A, Rode TM, Heir E (2017) Health and safety considerations of fermented sausages. J Food Qual 2017. https://doi.org/10.1155/2017/9753894

    Article  Google Scholar 

  40. Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int J Food Microbiol 66(3):185–189. https://doi.org/10.1016/S0168-1605(00)00526-2

    Article  CAS  PubMed  Google Scholar 

  41. Deepika WM, Priyadarshani D, Rakshit SK (2011) Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Intl J Food Sci Technol 46:2062–2069. https://doi.org/10.1111/j.1365-2621.2011.02717.x

    Article  CAS  Google Scholar 

  42. Nout MJR (1994) Fermented foods and food safety. Food Res Intl 27:291–298. https://doi.org/10.1016/0963-9969(94)90097-3

    Article  CAS  Google Scholar 

  43. Prester L (2011) Biogenic amines in fish, fish products and shellfish: a review. Food Addit Contam Part A 28(11):1547–1560. https://doi.org/10.1080/19440049.2011.600728

    Article  CAS  Google Scholar 

  44. Barbieri F, Montanari C, Gardini F, Tabanelli G (2019) Biogenic amine production by lactic acid bacteria: a review. Foods 8(1):17. https://doi.org/10.3390/foods8010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lonvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199(1):9–13. https://doi.org/10.1111/j.1574-6968.2001.tb10643.x

    Article  CAS  PubMed  Google Scholar 

  46. Izquierdo-Pulido M, Albalá-Hurtado S, Mariné-Font A, Carmen Vidal-Carou M (1996) Biogenic amines in spanish beers: differences among breweries. Z Lebensm Unters Forsch 203(6):507–511. https://doi.org/10.1007/BF01193154

    Article  CAS  PubMed  Google Scholar 

  47. Park J-G, Yun S-Y, Oh S-J, Shin J-G, Baek Y-J (2003) Probiotic characteristics of Lactobacillus acidophilus KY1909 isolated from Korean breast-fed infant. Korean Journal of Food Science and Technology 35(6):1244–1247

    Google Scholar 

  48. Adeva M, González-Lucán M, Seco M, Donapetry C (2013) Enzymes involved in l-lactate metabolism in humans. Mitochondrion 13(6):615–629. https://doi.org/10.1016/j.mito.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  49. Lefèvre CR, Turban A, Paz DL, Penven M, René C, Langlois B et al (2023) Early detection of plasma D-lactate: Toward a new highly-specific biomarker of bacteraemia? Heliyon 9:e16466. https://doi.org/10.1016/j.heliyon.2023.e16466

  50. Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24:95–102. https://doi.org/10.1007/s11011-008-9112-7

    Article  CAS  PubMed  Google Scholar 

  51. Patra A, Mandal A, Roy S, Mandal S, Mondal KC, Nandi DK (2014) Protective effect of selected urease positive lactobacillus strains on acetaminophen induced uremia in rats. Biomed Prev Nutr 4(2):271–276. https://doi.org/10.1016/j.bionut.2014.02.001

    Article  Google Scholar 

  52. Lee J-H, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34(4):426–444. https://doi.org/10.1111/j.1574-6976.2009.00204.x

    Article  CAS  PubMed  Google Scholar 

  53. Mortezaei M, Dadmehr M, Korouzhdehi B, Hakimi M, Ramshini H (2021) Colorimetric and label free detection of gelatinase positive bacteria and gelatinase activity based on aggregation and dissolution of gold nanoparticles. J Microbiol Methods 191:106349. https://doi.org/10.1016/j.mimet.2021.106349

    Article  CAS  PubMed  Google Scholar 

  54. Argudín MA, Vanderhaeghen W, Butaye P (2015) Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves. Res Vet Sci 99:10–16. https://doi.org/10.1016/j.rvsc.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  55. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37(2):127–137. https://doi.org/10.1016/S0732-8893(00)00130-9

    Article  CAS  PubMed  Google Scholar 

  56. Gevers D, Danielsen M, Huys G, Swings J (2003) Molecular characterization of tet (M) genes in Lactobacillus isolates from different types of fermented dry sausage. AME 69(2):1270–1275. https://doi.org/10.1128/AEM.69.2.1270-1275.2003

    Article  CAS  Google Scholar 

  57. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G et al (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59(5):900–912. https://doi.org/10.1093/jac/dkm035

    Article  CAS  PubMed  Google Scholar 

  58. Nami Y, Haghshenas B, Haghshenas M, Yari Khosroushahi A (2015) Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Front Microbiol 6:782. https://doi.org/10.3389/fmicb.2015.00782

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. AME 67(4):1628–1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001

    Article  CAS  Google Scholar 

  60. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R et al (2004) Development of a multiplex PCR for the detection of asa1, gele, cyla, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42(10):4473–4479. https://doi.org/10.1128/jcm.42.10.4473-4479.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan MA, van der Wal M, Farrell DJ, Cossins L, van Belkum A, Alaidan A et al (2008) Analysis of VanA vancomycin-resistant Enterococcus faecium isolates from Saudi Arabian hospitals reveals the presence of clonal cluster 17 and two new Tn1546 lineage types. J Antimicrob Chemother 62(2):279–283. https://doi.org/10.1093/jac/dkn173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the High Value-Added Food Technology Development Program, and was supported by the Gachon University research fund of 2022 (GCU- 202301280001).

Funding

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the High Value-Added Food Technology Development Program funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (grant number: 321035052HD020).

Author information

Authors and Affiliations

Authors

Contributions

Min-Gyu Lee: methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, visualization. Min-Joo Kang: writing—original draft, formal analysis, investigation. Suin Kim: formal analysis, investigation. Huijin Jeong: software, validation. Dae‐Kyung Kang: conceptualization, resources. Hyun‐Dong Paik: conceptualization, resources, funding acquisition. Young-Seo Park: conceptualization, methodology, investigation, resources, writing—review and editing, supervision, project administration, funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Young-Seo Park.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MG., Kang, MJ., Kim, S. et al. Safety Assessment of Levilactobacillus brevis KU15006: A Comprehensive Analysis of its Phenotypic and Genotypic Properties. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10237-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10237-z

Keywords

Navigation