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Abstract
Functionalizing foods involve discovering and integrating new candidate health-promoting bacteria into the food matrix.  
This study aimed (i) to reveal the probiotic potential of autochthonous Lacticaseibacillus paracasei AD22 by a series of 
in vitro tests and molecular characterization and (ii) to evaluate its application to the matrix of brined white cheese, which  
is the most common cheese in Türkiye, in terms of survival and stress response. To evaluate in vitro probiotic characteristics,  
L. paracasei AD22 was exposed to functional, technological, and safety tests. Pilot scale production was conducted to inte-
grate L. paracasei AD22 into the brined white cheese matrix. The expression levels of stress-related genes (dnaK, groES, 
ftsH, argH, and hsp20) were detected by reverse-transcriptase polymerase chain reaction to determine the transcriptional 
stress response during ripening. The presence of genes encoding stress-related proteins was determined by whole-genome 
sequence analysis using a subsystem approach; the presence of antibiotic resistance and virulence genes was determined by  
ResFinder4.1 and VirulenceFinder 2.0 databases. The BAGEL4 database determined the presence of bacteriocin clusters. L. 
paracasei AD22 was found to survive in pH 2 and medium with 12% NaCl and did not cause hemolysis. Adhesion of the strain 
to Caco2 cells was 76.26 ± 4.81% and it had coaggregation/autoaggregation properties. It was determined that L. paracasei  
AD22 exceeded 7 log cfu/g in the cheese matrix at the end of the ripening period. Total mesophilic aerobes decreased in the 
cheese inoculated with L. paracasei AD22 after the 45th day of ripening. While hsp20 and groES genes were downregu-
lated during ripening, argH was upregulated. Both downregulation and upregulation were observed in dnaK and ftsH. Fold 
changes indicating the expression levels of dnaK, groES, ftsH, argH, and hsp20 genes were not statistically significant during 
ripening (p > 0.05). Whole-genome sequence profiles revealed that the strain did not contain antibiotic and virulence genes 
but bacteriocin clusters encoding Enterolysin A (Class III bacteriocin), Carnosine CP52 (class II bacteriocin), Enterocin X 
beta chain (Class IIc bacteriocin), and the LanT region. Subsystems approach manifested that the most functional part of the 
genomic distribution belonged to metabolism, protein processing, and stress response functions. The study findings highlight 
that L. paracasei AD22 will provide biotechnological innovation as a probiotic adjunct because it contains tolerance factors  
and probiotic characteristics to produce new functional foods.
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Introduction

Recent scientific research has focused on selecting and char-
acterizing new species and more specific probiotic strains 
that survive in the food matrix and contain functional prop-
erties [1, 2]. In particular, the isolation of new probiotic 
strains from traditional food products such as kefir grains, 
cheese, fermented olives, meat products, and the possible 
usage of new isolates in food production has been taken into 
consideration [3–7]. Probiotics are part of functional foods 
and are proposed as one of the main mechanisms providing 
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beneficial effects such as protecting mucosal barrier, pre-
venting the proliferation of pathogens, synthesizing immu-
nomodulatory the cellular metabolites in the host [8].

Viability in the product matrix during food production, 
distribution, and storage is a factor assigning the efficacy of 
probiotics and starter cultures. Cheese is described as a suit-
able food matrix for the delivery of probiotics; hence, studies 
have emphasized the positive effect of probiotic addition on 
the physicochemical, microbiological, and sensory proper-
ties of cheese [9, 10]. Cheese is a decent option for probiot-
ics with advantages in terms of better buffering capacity, less 
water activity, and low storage temperature over other fer-
mented milk products [11]. However, a strain designated as 
a starter culture, probiotic, or adjunct culture must be present 
in sufficient quantities to meet industrial requirements. High 
survival stability in the cheese production process and before 
inclusion is important in determining probiotic properties 
[11]. Therefore, it is essential to reveal the stress response 
of lactic acid bacteria (LAB) and the molecular regulatory 
mechanism of the process under environmental stresses to 
reduce stress-related damage and increase the survival rate 
of the product.

Research on strains used as probiotics is generally predi-
cated on functional properties, but information on their stress 
tolerance capacity integrated into food matrix and storage is 
insufficient. Model food systems are required since when a 
new strain is incorporated into the cheese production process, 
it must exhibit appropriate survival behavior and control its 
effects on carbohydrate, protein, and fat utilization [12].

In this study, the following were aimed: (i) to reveal the 
probiotic potential of autochthonous L. paracasei AD22 by 
a series of in vitro tests and molecular characterization and 
(ii) to evaluate its integration into the matrix of brined white 
cheese in terms of survival and stress response.

Materials and Methods

Isolation and Identification of L. paracasei AD22

In this experimental study, cheese samples (n: 25) were 
obtained from the villages of Kayseri province between 
November and December 2021, which were produced from 
raw milk and stored in plastic barrels for at least six months 
to mature. The cheese samples (25 g) were kept anaerobi-
cally at 37 °C in 225 mL Man, Rogosa, and Sharpe (MRS; 
Merck, Germany) broth for overnight incubation. Each inoc-
ulum (100 μL) was spread on MRS agar and anaerobically  
incubated at 37 °C for 48 h [13]. Selected colonies were 
purified and examined according to gram staining and cata-
lase test. The tolerance properties of the selected isolates  
were examined and the genomic DNAs (gDNA) of iso-
lates were subjected to 16S rRNA sequence analysis. For 

identification of L. paracasei AD22, gDNA was amplified 
by Polymerase Chain Reaction (PCR) using universal prim-
ers targeting 16S rRNA gene region (27F:5′-AGA GTT TGA 
TCC TGG CTC AG -3′, 1492R: 5′- GGT TAC CTT GTT ACG 
ACT T -3′) [14]. The amplicons were subjected to Sanger 
sequencing by Macrogen (South Korea). Paired nucleotide 
sequences were assembled using the program Geneious 
Prime 2020.1 (https:// www. genei ous. com). It was decided 
to use L. paracasei AD22 for the pilot scale application and 
characterize it molecularly. Stock cultures of the isolates are 
kept at – 80 °C in MRS medium with glycerol (20% v/v) 
in the culture collection of Food Hygiene and Technology 
Department Laboratuary, Faculty of Veterinary Medicine.

In Vitro Physiological and Safety Traits of L. 
paracasei AD22

pH tolerance (pH 2, 3 and 7), bile salt tolerance (0.3% and 
0.6% bile of bovine origin) and the simulated gastric juice 
tolerance (%0.3 pepsin at pH 2.5) tests applied by Zheng 
et al. and the simulated intestinal juice tolerance (adjusting 
to pH 8.0 with 1 N NaOH by containing 1 mg/L pancreatin, 
0.5%NaCl) tests applied by de Oliveira et al. were followed 
with slight alterations. pH, simulated gastric and intestinal 
juice tolerance were tested at the 3rd hour of incubation; bile 
tolerance was analyzed at the 3rd and 24th hour of incubation 
[15, 16]. Plate counting assessed cell viability and results 
were expressed as log cfu/mL. NaCI tolerance was evalu-
ated according to Optical Density (OD) indicating turbid-
ity formation measured at 600 nm (OD: 0.10–0.30 indicated 
slightly turbid, positive poor growth; OD:0.30–0.50 indicated 
medium turbidity, good growth; OD > 0.60 indicated very 
turbid, very good improvement; OD < 0.10 indicated nega-
tive growth) [17]. Determination of autoaggregation and 
cell surface hydrophobicity properties was performed via 
the method described by Yasmin et al. with minor modi-
fications [18]. A coaggregation test was conducted against 
Staphylococcus aureus ATCC 25923, Salmonella Typhimu-
rium NCTC 74, Escherichia coli ATCC 25922, and Listeria 
monocytogenes N7144 by adjusting the bacterial suspension 
of pathogenic bacteria and L. paracasei AD22 at OD600 
to 0.5 ± 0.02 [19]. Bacterial adhesion to Caco2 cells was 
applied according to the method specified by Xu et al. [20]. 
Antibacterial activity of cell-free supernatant (CFS, 80 μL) 
from L. paracasei AD22 against Escherichia coli ATCC 
25922, Salmonella Typhimurium NCTC74, Listeria mono-
cytogenes N7144, and Staphylococcus aureus ATCC 25923 
adjusted to 0.5 MacFarland turbidity was determined by the 
agar well diffusion method [19]. CFS was obtained by filter-
ing the supernatant after centrifuging an overnight culture 
inoculated into MRS broths [21]. Antibacterial activity was 
also determined against selected pathogens using the spot-on 
lawn method [22]. Antibiotic susceptibility of L. paracasei 
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AD22 to selected antibiotics [vancomycin (VA, 30 μg; Oxoid,  
UK), trimethoprim and sulfamethoxazole (SXT, 25 μg; Bio-
analyse, Türkiye), ampicillin (AMP, 10 mcg; Bioanalyse,  
Türkiye), cefotaxime (CTX), 30 mcg; Bioanalyse, Türkiye),  
clindamycin (DA, 2 μg; Bioanalyse, Türkiye), tetracycline  
(TE, 30 μg; Bioanalyse, Türkiye), streptomycin (S, 10 mcg;  
Bioanalyse, Türkiye), ciprofloxacin (CIP, 5 μg; Bioanalyse,  
Türkiye), and erythromycin (E, 15 μg; Oxoid, UK)] were  
analyzed by disc diffusion method [23]. Inhibition zone 
diameters of ≤ 14 mm, ≥ 20 mm, and 15–19 mm were con-
sidered as resistant (R), sensitive (S), and intermediate (I), 
respectively [24]. Hemolytic activity was determined using 
blood agar containing 5% (w/v) sheep blood and plates were 
incubated at 37 °C for 48 h. Hemolysis status was classified 
according to the lysis of red blood cells in the medium around 
the colonies. Green regions around colonies (α-hemolysis), 
clear regions around colonies (β-hemolysis), and no regions 
around colonies (γ-hemolysis) indicated hemolysis status. 
S. aureus ATCC 25923 strain was used as positive control. 
L. paracasei AD22 was tested for its proteolytic activity on 
skimmed milk agar medium. A clear or opaque region sur-
rounding the wells indicated positive protease activity [25].

Pilot Scale Cheese Production

Raw milk (10 L) was obtained thrice from Jersey dairy 
cows in a local farm. Pilot-scale experimental brined white 
cheeses were grouped as cheese containing L. paracasei 
AD22 and culture-free control cheese. After pasteurization 
(72 °C for 20 s), the milk (10 L) was cooled at 42 °C. Cal-
cium chloride solution (0.2% w/v) was added to the cheese 
milk, followed by L. paracasei AD22. The culture grown 
overnight on MRS agar was washed three times with 0.5% 
saline by centrifugation (4000 rpm, 10 min). The suspension 
(50 mL), adjusted to 1  (5x108 cfu/mL) with 0.5% saline at 
OD600, was added to 10 L of milk. Rennet (2 mL/100 L) 
was added to the milk (pH 6.6) when the milk was at 37 °C 
and coagulation took place in 90 min. Following coagula-
tion, the clot was cut into cubes (3 to 4  cm3) and rested for 
10 min. After leaching of the whey (without pressing), pres-
sure was applied at room temperature for eight hours or until 
the whey drainage stopped. Next, the weights were removed, 
and the cheese block cut into cubes (3 to 4  cm3) was placed 
in autoclaved brine (12% NaCl). Precautions were taken to 
prevent cross-contamination at all stages of cheese making 
and the glass jars were autoclaved. Cheese groups were rip-
ened for 60 days at 4 °C.

Total Mesophilic Aerobes and Lactobacilli Counting

Microbiological cultivations were carried out at certain 
intervals (days 0, 1, 3, 7, 15, 30, 45, and 60) during the rip-
ening of the cheeses. To count the total aerobic mesophilic 

microorganisms on each test day, serial dilutions were pre-
pared with sterile phosphate buffered saline (1:9, pH 7.3) 
and inoculated onto Plate Count Agar (PCA; Merck, Ger-
many) and incubated at 30 °C for 48–72 h. To count lactoba-
cilli, serial dilutions were inoculated onto MRS agar (Merck, 
Germany) and incubated at 37 °C for 48–72 h. Analyses 
were carried out in two parallels. All cell numbers were 
expressed as logarithms of average colony-forming units 
per gram of cheese [10].

RNA Extraction, cDNA Synthesis, and Reverse 
Transcriptase PCR

RNA extraction and determination of RNA concentration (ng/
µL), cDNA synthesis and RT-PCR reaction were implemented 
according to the manufacturer's instructions for the kits men-
tioned hereinafter. RNA extraction from cheese was per-
formed with the TransZol Up RNA extraction kit (TransGen 
Biotech, China). The amount of RNA was determined with the 
Qubit RNA HS Assay Kit (Thermo Fisher Scientific, USA). 
cDNA was synthesized from two separate RNA extractions 
concentration adjusted to 30 ng/µL. A high-capacity cDNA 
Reverse Transcription Kit (Thermo Fisher Scientific, USA) 
was used for cDNA synthesis. For each reaction, adjusted con-
centration of 10 μL RNA was added to the mixture containing 
10X RT Buffer (2.0 μL), 25X dNTP Mix (100 mM, 0.8 μL), 
10X RT Random Primers (2.0 μL), MultiScribeTM Reverse 
Transcriptase (1 μL), Nuclease-free H2O (4.2 μL). Reverse 
Transcriptase PCR reaction mixture containing 3.5 µL iQ™ 
SYBR® Green Supermix (BioRad, USA), 0.5 µL cDNA tem-
plate, 0.5 µL forward primer (10 µM), 0.5 µL reverse primer 
(10 µM), and 5 µL sterile water the mixture with a volume of 
10 µL was prepared. Each analysis was run with a DNA-free 
control. Livak and Schmittgen’s  2−ΔΔCT calculation method 
was used to determine stress-related gene expression level 
changes [26]. Primer sequences are given in Table 1.

Table 1  Primer sequences for PCR amplification

Target gene Nucleotide sequence Reference

argH-F GCA ACG GAG TTA GCG GAT TA This study
argH-R TTC CTG CAA GGC AGT GTT 
ftsH-F TGC GCG ATA ATG GGA CAA 
ftsH-R CCA GAT GGC TGG AGT GAA TAA 
dnaK-F CCG TTG TCT CTT GGG ATT GA
dnaK-R CAA CGG CTG GTT GAC TAT CT
hsp20-F ATG TGG ATG TAC CTG GGA TTG 
hsp20-R GGT CGG TGA TAT CGT CCT TATG 
groES-F GTT GAA GAA GAG GAG CAG ACAG 
groES-R CCT TCA CCT ACT GCA ACA ACT 
16S-F GAA GAA TGG TCG GCA GAG TAA 
16S-R CGC TTG CCA CCT ACG TAT TA
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Whole‑Genome Sequencing

DNA Extraction and Fragment Analysis

Genomic DNA (gDNA) of Lacticaseibacillus paracasei 
AD22 was extracted using the Pure Link Genomic DNA 
Mini Kit (Invitrogen, USA) according to the manufactur-
er’s instructions. The concentrations of gDNA from the 
samples and the level of integrity and purity were checked 
using the Agilent 5400 Fragment Analyzer system. The 
obtained gDNA was subjected to DNA library prepara-
tion using Nextera XT DNA Library Preparation Kit (Illu-
mina, USA) before being transferred to the next-generation 
sequencing platform. The components other than the frag-
ments to be sequenced in the library were removed fol-
lowing the AMPure XP Bead (Beckman Coulter, UK) kit 
manufacturer’s instructions. The sequencing process was 
performed using the NovaSeq 6000 platform (Illumina, 
USA) with 2 × 150 bp double-ended (PE) chemistry. At the 
end of the sequencing process, the whole-genome data of 
the samples were obtained in the “fastq.gz” format.

Bioinformatic Analysis

The Trim Galore open-access program was used to trim 
adapters and barcodes in the raw readings obtained [27]. In 
the trimming stage, the -q 10 argument was set to have a base 
quality score of 10. De novo assembly analyses trimmed.
fastq format reads with SPAdes 3.13.0 [28]. Mapping of the 
isolate with the reference genome was performed with the 
ProgressiveMauve open-access program using the Lacti-
caseibacillus paracasei ATCC 27092 (GenBank accession 
number: NZ_JAMOIQ000000000.1) record as the reference 
genome [29]. The RAST algorithm was used in the annota-
tion of the strain [30]. The web-based Proksee program was 
used for the circular graphic representation of the genome 
assembly and annotation distribution (https:// proks ee. ca/). 
Functional subsystems approach was used for the functional 
genomic distribution of the strain [31]. The BAGEL4 open-
access database was used to reveal the bacteriocin clusters 
[32]. ResFinder4.1 and VirulenceFinder 2.0 databases were 
used to detect the presence of antibiotic resistance and viru-
lence genes [33, 34].

Statistical Analysis

The statistical significance of the effects of different con-
centrations and times on the survival profiles of Lactica-
seibacillus paracasei AD22 in tested environments was 
determined by analysis of variance. The effect of ripening 
time on total mesophilic aerobe count, lactobacilli count, 
and pH of cheeses was determined by analysis of variance. 
Additionally, the statistical significance of the difference in 

total mesophilic aerobe count, lactobacilli count, and pH 
change between the control and L. paracasei AD22 inocu-
lated cheese groups was determined by analysis of variance. 
The effect of ripening time on the expression levels of stress-
related genes was also examined by analysis of variance. 
Post hoc analysis was applied to compare intragroup results 
in each test (Duncan’s multiple comparison, p < 0.05). All 
statistical analyses were performed using the SPSS 24.0 sta-
tistical program [35].

Results

The sequence obtained from the assembly data belonged to 
16S rRNA sequencing analysis of the gDNA of Lacticasei-
bacillus paracasei AD22 has been deposited in GenBank 
under accession number OR143727.

In Vitro Characterization

Tolerance Characteristics

Tolerance to pH, bile salt, simulated gastric juice, and simu-
lated intestinal juice are shown in Table 2. The effect of dif-
ferent pH exposures on the survival of L. paracasei AD22 
was found to be statistically significant (p < 0.05). The effect 
of different bile salt concentration on the survival rate of L. 
paracasei AD22 at 3 h was not significant (p > 0.05), but 
significant at 24 h (p < 0.05). Absorbance values measured 
at OD600 nm as a result of exposure to environments con-
taining 4%, 8%, and 12% NaCl are shown in Table 2. While 

Table 2  Tolerance characteristics of L. paracasei AD22

A, B Means shown with different exponential letters in the same row 
are statistically different (p < 0.05)
a, b, c Means shown with different exponential letters in the same col-
umn are statistically different (p < 0.05) (statistical analysis of this 
table was evaluated for each test)

pH tolerance 3rd hour

pH 2 31.00c ± 0.53
pH 3 100.29a ± 0.16
pH 7 94.35b ± 0.88
Simulated gastric juice tolerance 96.95 ± 1.66
Simulated intestinal juice tolerance 99.80 ± 0.81
Bile salt tolerance 3rd hour 24th hour
0.3% 95.27 ± 1.59A 65.80 ± 0.85Bb

0.6% 96.58 ± 1.25A 78.75 ± 0.71Ba

NaCl tolerance (OD 600 abs) 24th hour
0% 0.448 ± 0.02a

4% 0.438 ± 0.02a

8% 0.148 ± 0.02b

12% 0.140 ± 0.007b

https://proksee.ca/
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moderate turbidity and good growth were detected after 
exposure to salt-free medium and 4% NaCl medium, less 
turbidity and weak growth were observed in 8% and 12% 
NaCl medium. The effect of different salt concentrations on 
the viability of L. paracasei AD22 was found to be signifi-
cant (p < 0.05). However, the effect of salt-free medium and 
4% NaCl medium on the survival rate was not statistically 
different from each other (p > 0.05). The effect of 8% and 
12% NaCl environments on the survival rate was also statis-
tically insignificant from each other (p > 0.05).

Cell Surface Hydrophobicity, Autoaggregation, 
Coaggregation, and Bacterial Adhesion to Caco2 Cells

Cell surface hydrophobicity and autoaggregation val-
ues were given in Table 3. The effect of time change on 
the level of autoaggregation was found to be significant 
(p < 0.05). Coaggregation potential against Staphylococ-
cus aureus ATCC 25923, Salmonella Typhimirium NCTC 
74, Escherichia coli ATCC 25922, and Listeria monocy-
togenes N7144 was given in Table 3. The coaggregation 
values obtained against each standard pathogen at the 
2nd, 20th, and 24th hours were statistically significant 
(p < 0.05). When standard pathogens were compared, the 
coaggregation values obtained at each tested time were 
statistically different (p < 0.05), except for values against 
Escherichia coli ATCC 25922 and Listeria monocytogenes 
N7144 at the 24th hour. The adhesion percentage of L. 
paracasei AD22 to Caco2 cells is given in Table 3.

Antimicrobial Activity

The inhibition effect of L. paracasei AD22 on E. coli 
ATCC 25922, S. Typhimurium NCTC 74, S. aureus 
ATCC 25923, and L. monocytogenes ATCC N7144 were 

determined as 13.5 ± 0.7 mm, 14.5 ± 0.7 mm, 11 ± 0.3 mm, 
and 13.5 ± 0.7 mm, respectively. Also, according to the 
spot-on lawn test, zone formation was observed against 
each standard pathogen examined.

Antibiotic Susceptibility

The sensitivity of L. paracasei AD22 against antibiotics 
is indicated in Table 4.

Hemolytic and Proteolytic Activity

As a result of the hemolytic activity test, it was observed 
that L. paracasei AD22 did not form a zone. On skim milk 
agar medium, L. paracasei AD22 formed zone indicating 
the proteolytic activity.

Microbiological Enumeration and pH Change

The total mesophilic aerobe and lactobacilli counts of sam-
ples on the 1st, 3rd, 7th, 30th, 45th, and 60th days of the 

Table 3  Hydrophobicity, 
autoaggregation, in vitro 
adhesion, and coaggregation of 
L. paracasei AD22

A, B, C Means shown with different exponential letters in the same row are statistically different (p < 0.05)
a, b, c, d Means shown with different exponential letters in the same column are statistically different 
(p < 0.05) (statistical analysis of this table was evaluated for each test)

Hydrophobicity 2nd hour

28.73 ± 1.25
Autoaggregation 2nd hour 20th hour 24th hour

18.21 ± 0.66C 58.87 ± 2.05B 65.86 ± 2.36A

Caco2 adhesion 2nd hour
76.26 ± 4.81

Coaggregation 2nd hour 20th hour 24th hour
S. Typhimirium NCTC 74 10.51 ± 0.22Bc 60.91 ± 0.06Ac 61.11 ± 0.03Ab

E. coli ATCC 25922 17.89 ± 0.24Ca 63.36 ± 0.10Bb 67.78 ± 0.39Aa

L. monocytogenes N7144 11.57 ± 0.06Cb 65.49 ± 0.09Ba 67.56 ± 0.10Aa

S. aureus ATCC 25923 9.52 ± 0.02Cd 53.83 ± 0.45Bd 58.07 ± 0.02Ac

Table 4  Antibiotic resistance profile of L. paracasei AD22

S susceptible, R resistant, I intermediate

Antibiotics Antibiotic group Zone (mm) Profile

CTX Beta lactam 35.5 ± 0.7 S
AMP Penicillin 33.5 ± 0.7 S
DA Lincosamide 51 ± 1.4 S
SXT Sulfonamide 21.5 ± 0.7 S
E Macrolide 40.5 ± 0.7 S
TE Tetracycline 52.5 ± 0.7 S
CIP Fluoroquinolone 13.5 ± 0.7 R
VA Glycopeptide - R
S Aminoglycoside - R
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ripening period are given in Table 5. There is a statistically 
significant difference among the groups in the total aerobic 
mesophilic microorganisms and the lactobacilli counts (log 
cfu/g) throughout ripening (p < 0.05). A decrease in total 
aerobic mesophilic microorganisms was observed in the 
cheese inoculated with L. paracasei AD22 after the 45th 
day. The pH values measured on the 1st, 3rd, 7th, 30th, 
45th, and 60th days of the ripening period are also given in 
Table 5. The pH change between the groups was statistically 
significant (p < 0.05) from the first day.

Expression Profile of Stress‑Related Genes

The time-dependent variation of the fold changes is shown 
in Table 6. During ripening, the time-dependent changes of 
hsp20, dnaK, groES, ftsH, and argH target genes were not 
statistically significant (p > 0.05).

Table 5  Total aerobic 
mesophilic microorganism (log 
cfu/g), lactobacilli count (log 
cfu/g), and pH change of cheese 
groups

A, B, C Means shown with different exponential letters in the same row are statistically different (p < 0.05)
a, b, c, d, e Means shown with different exponential letters in the same column are statistically different 
(p < 0.05)
PCA represents total mesophilic aerobe count; MRSA represents lactobacilli count

PCA MRSA pH change

Time Control AD22 Control AD22 Control AD22

Curd 6.67 ± 0.02abc 6.49 ± 0.08a 2.31 ± 0.06Bc 6.42 ± 0.34Ac 6.46 ± 0.01a 6.45 ± 0.01a

1st day 5.40 ± 0.12Ad 5.34 ± 0.06Bc 2.25 ± 0.04Bbc 6.59 ± 0.22Abc 6.41 ± 0.05Aab 6.32 ± 0.01Bb

3rd day 6.07 ± 0.89Ac 5.81 ± 0.08Bb 2.42 ± 0.16Bbc 6.58 ± 0.15Abc 6.36 ± 0.04Aabc 6.13 ± 0.03Bc

7th day 6.25 ± 0.23Abc 6.29 ± 0.10Ba 2.48 ± 0.01Bbc 6.58 ± 0.22Abc 6.34 ± 0.02Aabc 6.00 ± 0.1Bd

15th day 6.42 ± 0.49Aabc 6.38 ± 0.09Ba 2.54 ± 0.03Bbc 6.68 ± 0.18Abc 6.31 ± 0.01Abc 5.97 ± 0.13Bd

30th day 6.49 ± 0.38Aabc 6.37 ± 0.03Ba 2.54 ± 0.17Bb 6.77 ± 0.15Ab 6.26 ± 0.02Ac 5.83 ± 0.09Be

45th day 6.82 ± 0.22Aab 6.27 ± 0.34Ba 2.58 ± 0.05Bab 6.88 ± 0.05Aab 6.13 ± 0.16Ad 5.58 ± 0.02Bf

60th day 6.98 ± 0.36Aa 6.02 ± 0.72Bb 2.61 ± 0.01Ba 7.11 ± 0.09Aa 6.03 ± 0.15Ad 5.53 ± 0.05Bf

Table 6  Fold changes in expression level of stress-related genes during ripening

FC fold change

Target genes 1st day 3rd day 7th day 15th day 30th day 45th day 60th day p value

hsp20 FC 0.808 ± 0.39 0.452 ± 0.13 0.595 ± 0.24 0.780 ± 0.00 0.873 ± 0.28 0.565 ± 0.09 0.834 ± 0.31 0.25
log2(FC) −0.307 −1.144 −0.746 −0.356 −0.194 −0.821 −0.260

dnaK FC 0.940 ± 0.16 0.910 ± 0.05 1.904 ± 0.69 1.108 ± 0.20 0.946 ± 0.35 1.027 ± 0.14 1.131 ± 0.63 0.94
log2(FC) −0.088 −0.134 0.929 0.148 −0.079 0.039 0.178

groES FC 0.658 ± 0.18 0.827 ± 0.43 0.610 ± 0.12 0.583 ± 0.30 0.507 ± 0.33 0.49 ± 0.18 0.307 ± 0.14 0.27
log2(FC) −0.602 −0.273 −0.712 −0.776 −0.979 −1.027 −1.699

ftsH FC 1.169 ± 0.03 0.882 ± 0.11 1.197 ± 0.39 1.315 ± 0.37 1.232 ± 0.33 0.976 ± 0.11 1.132 ± 0.06 0.45
log2(FC) 0.225 −0.179 0.26 0.396 0.302 −0.035 0.18

argH FC 1.600 ± 0.22 3.201 ± 0.06 2.025 ± 0.12 2.373 ± 0.25 1.995 ± 0.06 1.929 ± 0.06 1.447 ± 0.09 0.12
log2(FC) 0.678 1.678 1.018 1.246 0.996 0.948 0.533

Table 7  De novo assembly read results of Lacticaseibacillus paraca-
sei AD22

* bp

Properties Values

Average depth* 421.3
Average short reading coverage* 494.5
Min contig coverage threshold* 5.0
Min contig length threshold* 300
Number of contigs above the threshold 165
Number of contigs below the threshold 2138
Longest contig* 639.575
Total length* 3.123.435
GC (guanine/cytosine content, %) 46.22
CDS (protein encoding sequences) 3333
tRNA 56
rRNA 3
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Whole‑Genome Sequencing

The Lacticaseibacillus paracasei AD22 genome sequenc-
ing project has been deposited in GenBank under the 
accession number JAQPCD000000000. This project’s 
BioProject and BioSample numbers are PRJNA929671 
and SAMN32967350, respectively. De novo assembly 

read results of L. paracasei AD22 are indicated in Table 7. 
Figure 1 illustrates a circular graphic representation of the 
genome annotation distribution of the strain. Subsystem 
groups and related gene numbers of subsystems according 
to the functional genomic distribution obtained after whole-
genome sequencing and assembly are shown in Fig. 2. Com-
parative heat maps of heat-cold stress gene and osmotic 

Fig. 1  Circular graphical repre-
sentation of genome annotation 
distribution. Out-to-in loops: 
forward CDS regions, GC 
content, GC skews, reverse CDS 
regions

Fig. 2  Functional genomic 
distribution of Lacticaseibacil-
lus paracasei AD22 obtained 
after whole-genome sequencing 
and assembly
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stress gene presence with reference genomes are given in 
Fig. 3. ResFinder4.1 database determined that L. paracasei 
AD22 did not have an antibiotic-resistance gene. Virulence-
Finder 2.0 database manifested that L. paracasei AD22 did 
not carry virulence gene. Four regions of interest for bac-
teriocin production in the L. paracasei AD22 genome have 
been determined. Specifically, these genetic clusters encode 
the production of Enterolysin A (Class III bacteriocin), car-
nosine CP52 (class II bacteriocin), Enterocin X beta chain 
(Class IIc bacteriocin), and the LanT region.

Discussion

Evaluation of L. paracasei AD22 in Terms of In Vitro 
Physiological and Safety Traits

To qualify as a probiotic, the potential candidate must pos-
sess certain functional and safety characteristics, includ-
ing the stomach (low pH, gastric juice, and pepsin) and 
intestines (pancreatin and bile salts) conditions, adhesion 
capacity, hemolytic activity, and sensitivity to antibiotics 
[20, 36]. L. paracasei AD22 showed good probiotic proper-
ties, showing remarkable growth in the acidic pH 2 milieu. 
Kumar et al. and M’hamed et al. reported that no growth 
occurred due to the incubation of isolated lactobacilli at pH 
2 [37, 38]. Adaptation to bile salts is affected by changes 
in carbohydrate fermentation and glycosidase activity [39], 
exopolysaccharide production [40], the composition of 

membrane proteins and fatty acids [41], and human intes-
tinal mucosa and the inhibition of the attachment of patho-
gens [42]. Like the survival of L. paracasei AD22, Xu et al. 
stated that L. paracasei L1 strain exhibited 99.8%, 99.2%, 
and 98.3% tolerance to various levels of exposure to bile 
salts [20]. Tolerance to pepsin and pancreatic enzymes is 
also a critical factor in the survival of probiotics after entry 
into the host [19]. Lu et al. found the survival rate of L. 
paracasei X11 strain in the simulated gastric and intestinal 
environment close to the current study [43], while Yilmaz 
et al. reported the survival rate of L. paracasei KS-199 as 
64.1%. L. paracasei AD22 showed tolerance to all NaCl 
concentrations tested, indicating that the strain withstands 
the adverse effects of high osmotic pressure in the high 
salt environment of the gastrointestinal tract and maintains 
osmotic pressure balance [44].

Adhesion of probiotics is a phenomenon that begins with 
contact with host enterocytes and continues through vari-
ous surface interactions [45]. Adhesive strains exhibit an 
elevated level of hydrophobicity, and the degree of adhesion 
depends on the surface potential [46]. L. paracasei AD22 is 
thought to have specific cell surface molecules that play a 
role in its adhesion ability. While autoaggregation appears to 
be associated with attachment to epithelial cells [47], coag-
gregation exhibits antipathogenic traits by forming a defen-
sive barrier against the colonization of pathogenic micro-
organisms [48]. Coaggregation properties have been found 
to control a microenvironment around pathogens of probi-
otic strains and increase the concentration of antimicrobial 

Fig. 3  Heat stress and osmotic stress gene presence comparative heatmap with reference genomes (black: no representative protein; bright yel-
low: one representative protein; dark yellow: two representative proteins; dark orange: three or more representative proteins)
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substances released during aggregation [49]. Similar to the 
current study, Xu et al. found that the surface hydrophobic-
ity of L. paracasei L1 was 38.1%, and its autoaggregation 
ability increased significantly with incubation time [20] Xu 
et al. stated that L. paracasei ATCC 25598 could coaggre-
gate against L. monocytogenes (38.7%) and S. Typhimurium 
(44.7%) [50]. Amini et al. found the coaggregation level of 
L. paracasei AS20 to L. monocytogenes to be 56.7% at the 
end of the 24th hour [51]. Breyer et al. reported the coaggre-
gation percentages of L. paracasei LB 6.4 to E. coli ATCC 
25922 and S. aureus ATCC 25923 as 56.3 and 65.5, respec-
tively [52]. According to the findings of our study, L. para-
casei AD22 is thought to be beneficial for the competitive 
elimination of enteropathogens. Caco2 and HT-29 cell lines 
are the most widely used cell lines for evaluating bacterial 
strains’ adhesion and anti-adhesion properties [53]. Krausova  
et al. stated that the adhesion level of L. paracasei E3TA 
to Caco2 cells was ~ 35% [53]. Unlike L. paracasei strains 
studied by Xu et al., Xu et al. and Breyer et al., L. paracasei 
AD22 has a high adhesion ability to Caco2 cell lines [20, 50, 
52]. Yasmin et al. stated that cell surface properties still need 
to be studied in vivo to understand the interaction within the 
host cell better [18].

L. paracasei AD22 does not show hemolytic activity. 
Regarding the safety of probiotics, lack of hemolytic activity 
is essential in selecting probiotic strains, as virulence is not 
observed among hemolysin-deficient bacterial strains [54]. 
It has been demonstrated that L. paracasei AD22 exhibits 
proteolytic activity. The hydrolysis site produced in skimmed 
milk agar may be related to the amount of protease pro-
duced by the organism. Proteolytic enzymes are a group of 
enzymes that catalyze many different biochemical reactions 
and can be used in many industries. In particular, in the dairy 
industry, the proteolytic system of lactic acid bacteria pro-
vides essential amino acids to cells during their growth, is 
involved in the utilization of casein, and plays a remarkable 
role in regulating the organoleptic properties of fermented 
milk products [55]. L. paracasei AD22 showed resistance to 
vancomycin, streptomycin, and ciprofloxacin while showing 
sensitivity to other antibiotics tested. Anisimova et al. and 
Liu et al. reported that all lactobacilli tested showed intrin-
sic resistance to streptomycin, kanamycin, vancomycin, and 
ciprofloxacin [19, 56]. The resistance of lactobacilli to anti-
biotics such as aminoglycosides and the absence of electron 
transfer enzymes mediated by the cytochrome responsible 
for the metabolism of the antibiotic cannot be taken into the 
cell, and this is considered as natural resistance [57]. Resist-
ance to vancomycin has been attributed to the presence of 
D-Ala-D-lactate in its peptidoglycans instead of D-Ala-D-
Ala, which is the target of the antibiotic [57]. The European 
Food Safety Authority (EFSA, 2012) considered the evalu-
ation of vancomycin on L. paracasei as ‘not required’ in 
the guideline on the antimicrobial susceptibility assessment 

[58]. Resistance to ciprofloxacin is thought to be due to 
natural features such as the impermeability of the cell wall 
or the flow mechanism. Natural resistance to antibiotics is 
not seen as a threat to the health of animals or humans [59]. 
One of the crucial mechanisms of probiotics’ action is their 
antagonistic effect against microbial pathogens with their 
antimicrobial metabolites. Our study findings comply with 
Miao et al., Cizeikiene and Jagelaviciute, and Qureshi and 
Li [60–62]. The main compounds responsible for the antimi-
crobial activity of CFS are lactic and acetic acids, long-chain 
fatty acids and esters, and proteinaceous compounds [63].

Evaluation of L. paracasei AD22 in Cheese Matrix

It is critical for white-brined cheese to maintain a concentra-
tion level of  107 cfu/g for probiotics [64]. It was observed 
that L. paracasei AD22 achieved this criterion by reaching 
7.11 log. Lactobacillus growth was observed on MRS agar 
plates in the control group. Non-starter LAB can be found in 
cheese by maintaining its viability from milk pasteurization 
or post-pasteurization contamination in the dairy [65]. Leeu-
wendaal et al. reported that the cultures used as adjuncts 
with probiotic properties continued at  107–108 cfu/g levels 
in cheese during ripening [66]. Buriti et al. emphasized that 
the lactobacilli count in Minas cheese produced with com-
mercial starter culture and L. paracasei increased from 6.66 
to 8.44 log cfu/g in 21 days and that protocooperation/sym-
biosis might have occurred between cultures [67]. The dif-
ferences detected between cheeses in the study were attrib-
uted to the initiating microorganism rather than L. paracasei. 
When the total mesophilic aerobe counts were examined, 
there were differences from the first day between the control 
group and the cheese with added L. paracasei AD22. How-
ever, the total aerobic mesophilic microorganism count was 
suppressed in L. paracasei AD22 added cheese after day 
45. Similar to the present study, Buriti et al. concluded that 
the pH value of cheese with probiotics was lower than the 
control group. Bruti et al. reported that using additional cul-
tures, such as Lactobacillus paracasei, for producing fresh 
Minas cheese can potentially improve the health properties 
and quality of the product [67]. However, adding probiotic 
microorganisms and lactic cultures can solve the problem of 
weak acidification.

Evaluation of Stress Responses in Cheese Matrix 
of L. paracasei AD22

In the current study, L. paracasei AD22 was kept at 4 °C 
during the ripening of brined white cheese and was exposed 
to a brine environment containing 12% salt and a pH change. 
Examining the argH, ftsH, hsp20, dnaK, and groES genes 
was deemed appropriate because the main stress responses 
result from cold shock, osmotic, and acidity changes. The 
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present study determined the downregulation of genes 
encoding groES chaperone proteins and hsp20 at refrig-
erator temperature. The fold changes of these genes dur-
ing ripening were not statistically significant. However, the 
stress response of the dnaK shifted to upregulation, which is 
thought to be due to the cross-protection mechanism during 
ripening. Liu et al. found that dnaK as a cold stress response 
is significantly downregulated due to complex translational 
rearrangements in L. plantarum [68]. Duru evaluated the 
expression of heat shock response genes such as chaperone 
genes, Clp protease genes, and the chaperone-binding gene 
grpE [69]. All these genes have been reported to be down-
regulated in cold environments in Leuconostoc gelidum, 
Lactococcus piscium, and Lactobacillus oligofermentans. 
GroES/GroEL and DnaK/DnaJ have been reported to be 
induced during environmental conditions such as osmotic 
and saline stresses, oxidative stress, pH extremes, UV radia-
tion, and the presence of toxic compounds, as well as heat 
shock stress [70–73]. Adu et al. emphasized that the Hsp20 
family heat shock protein is highly upregulated in response 
to heat stress compared to other molecular chaperones and 
that this protein can serve as a valuable biomarker for L. 
casei GCRL163 in revealing long-term heat stress [74]. ftsH 
is regulated under the osmotic stress response and heat shock 
cross-resistance [75]. Expression of ftsH in Oenococcus oeni 
increased with elevated temperatures and osmotic shock. 
Bagon et al. emphasized that ftsH is involved in tolerance of 
L. plantarum WCFS1 and promotes bacterial survival, thus 
increasing survival under elevated levels of biliary stress 
[76]. argG and argH are critical genes involved in aspar-
tate and arginine metabolism [77]. Breyer et al. emphasized 
that overexpression of atpD and argH genes is related to the 
response to acid and maintaining the presence of LAB in 
this environment [52]. Huang et al. reported that the expres-
sion of argH and argJ in the arginine biosynthesis pathway 
of Streptococcus thermophilus T1C2 was almost fourfold 
upregulated compared to control, indicating that S. thermo-
philus T1C2 began to synthesize arginine to meet growth or 
survival requirements [78]. In our study, the argH gene for 
the L. paracasei AD22 showed an upregulation profile over 
time during cheese ripening. The difference between the fold 
changes over time was not significant. However, it is thought 
that L. paracasei AD22, resistant to pH 2.5 in MRS broth, 
will be a suitable probiotic candidate in cases where the pH 
drop is high in industrial use.

Whole‑Genome Sequencing of L. paracasei AD22

The suitability of the candidate species for use as probiot-
ics is supported by their lack of antibiotic resistance and 
virulence factors and their ability to produce bacteriocins 
[79]. No resistance gene was found for L. paracasei AD22. 
Likewise, Tarrah et al. stated that there are no potential 

negative features such as antibiotic resistance and viru-
lence factors for L. paracasei DTA93 and reported that 
it can be evaluated in food products within the scope of 
health-promoting cultures [80]. The most functional part 
of the genomic distribution of L. paracasei AD22, show-
ing its potential biological functions, consists of metabo-
lism, protein processing, and stress response functions. 
Genomic analysis provides in-depth information on the 
functional mechanisms involved in potential probiotics and 
their adaptation to the environment. Zheng et al. reported 
that the immune system process, adhesion, amino acid, 
and carbohydrate metabolism constitute the majority of 
the functional genomic features of L. rhamnosus CY12 and 
stated that the strain has metabolic ability and tolerance 
[15]. Comparative heat maps with reference genomes iden-
tified genes conferring heat and cold shock tolerance, such 
as heat shock proteins and members of the cold shock pro-
tein family. Accordingly, L. paracasei AD22 encodes the 
DnaK and DnaJ chaperone system that helps protein fold-
ing under stress conditions. The protein repair function of 
DnaK, GrpE, and especially DnaJ is likely to be part of the 
role of these proteins in regulating the heat shock response 
[81]. The gene yabA, which encodes DNA replication-ini-
tiating protein, has a functional relationship with the repli-
cation mechanism [82]. While HSPs are essential for cell 
development, their catalytic activity becomes particularly 
important under stress conditions that lead to the accumu-
lation of unfolded or misfolded proteins. These include 
genes encoding the chaperone protein (DnaK, DnaJ) and 
the nucleoside 5′-triphoaphate RdgB, essential in adapta-
tions to psychrophilic lifestyles [83]. LepA induces back-
translocation of tRNAs on the ribosome [84, 85], which is 
formed by progressing from the post-translocation com-
plex to the pre-translocation complex [86]. A thorough 
understanding of the cold-adaptation process can be used 
to optimize low-temperature fermentations. It can provide 
insight into methods of controlling the growth of patho-
genic bacteria and spoilage, which affect the shelf life and 
safety of foods stored in the refrigerator [87]. On the other 
hand, cold shock refers to the reaction of mesophilic or 
psychrotrophic microorganisms to a sudden and significant 
drop in temperature. Protein-encoding genes facilitating 
glycerol uptake are necessary for the intracellular trans-
port of glycerol and metabolism functions in bacteria [88]. 
When osmotic stress responses were examined, it was con-
cluded that L. paracasei AD22 contains opuBA-opuBB-
opuBC-opuBD operons that are involved in the transport 
of osmoprotectants such as glycine betaine, proline, cho-
line, or carnitine [89]. The expression of opuB operons is 
regulated in response to the increased osmolality of the 
growth medium [90]. Kiousi et al. stated that L. paracasei 
SP5 contains genes necessary to produce glycine betaine 
binding factors and osmolyte transporters that accumulate 
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in the cell under hypertonic shock [91]. In addition, it has 
been reported that the synergistic activity of GrpE with 
DnaK and DnaJ during hyperosmotic shock reduces the 
damage to the macromolecular mechanism of the cell. The 
BAGEL4 analysis revealed the existence of Enterolysin A, 
Carnosine CP52, Enterocin X beta chain interested in bac-
teriocin production in the L. paracasei AD22 genome. In 
addition, the lantibiotic transporter LanT region identified 
in its genome can be evidence of the possible existence of 
new clusters for lantibiotic production [92].

In conclusion, L. paracasei AD22 can be used in develop-
ing new functional products and producing fermented foods 
since it has the structural features that a probiotic culture 
should have. Considering L. paracasei AD22 more compre-
hensively within the framework of omics approaches will 
enable it to be evaluated in terms of revealing the character-
istics and capabilities of the strain, obtaining scientific data 
regarding health-promoting studies.
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