Skip to main content

Advertisement

Log in

Lactiplantibacillus plantarum X7022 Plays Roles on Aging Mice with Memory Impairment Induced by D-Galactose Through Restoring Neuronal Damage, Relieving Inflammation and Oxidative Stress

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, Lactiplantibacillus plantarum X7022 was applied to ameliorate memory impairment of aging mice induced by D-galactose. The strain showed specific choloylglycine hydrolysis ability based on in vitro investigation. Morris water maze test showed L. plantarum X7022 administration improved learning ability and spatial memory of aging mice. The gavage of L. plantarum X7022 displayed a promising ability of relieving cerebral oxidative stress and hippocampal inflammatory condition according to the increased GSH level and SOD activity and decreased MDA level, as well as decreased TNF-α, IL-1β, and IL-6 levels. The intervention with the strain could protect neuron by regulating cell apoptosis and AChE overexpression and inhibiting amyloid-β deposition, as well as affect neuron functions by regulating CREB-BDNF signaling pathways and iNOS expression. Besides, the strain could improve fecal SCFA contents and increase the abundance of anti-inflammatory and antioxidant-related genera such as Lactobacillus, Akkermansia, and Adlercreutzia. These results suggest that L. plantarum X7022 could be a prospective therapeutic alternative for the improvement of memory impairment among the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Mittelbrunn M, Kroemer G (2021) Hallmarks of T cell aging. Nat Immunol 22:687–698. https://doi.org/10.1038/s41590-021-00927-z

    Article  PubMed  CAS  Google Scholar 

  2. Hou YJ, Dan XL, Babbar M, Wei Y, Hasselbalch SG, Croteau DL et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581. https://doi.org/10.1038/s41582-019-0244-7

    Article  PubMed  Google Scholar 

  3. Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH (2019) Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 119:1221–1322. https://doi.org/10.1021/acs.chemrev.8b00138

    Article  PubMed  CAS  Google Scholar 

  4. Van Schependom J, D’Haeseleer M (2023) Advances in neurodegenerative diseases. J Clin Med 12(5):1709. https://doi.org/10.3390/jcm12051709

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harbor Perspect Biol 9:22. https://doi.org/10.1101/cshperspect.a028035

    Article  CAS  Google Scholar 

  6. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B et al (2018) Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med 378:1691–1703. https://doi.org/10.1056/NEJMoa1706441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94. https://doi.org/10.3389/fphys.2011.00094

  8. Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenteroland Motil 25:48–60. https://doi.org/10.5056/jnm18087

    Article  Google Scholar 

  9. Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H (2022) Probiotics for Alzheimer’s disease: a systematic review. Nutrients 14:24. https://doi.org/10.3390/nu14010020

    Article  CAS  Google Scholar 

  10. Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M (2022) Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 231:23. https://doi.org/10.1016/j.pharmthera.2021.107978

    Article  CAS  Google Scholar 

  11. Ho ST, Hsieh YT, Wang SY, Chen MJ (2019) Improving effect of a probiotic mixture on memory and learning abilities in D-galactose-treated aging mice. J Dairy Sci 102:1901–1909. https://doi.org/10.3168/jds.2018-15811

    Article  PubMed  CAS  Google Scholar 

  12. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C et al (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7:2426. https://doi.org/10.1038/s41598-017-02587-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kiriyama Y, Nochi H (2019) The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules 9:20. https://doi.org/10.3390/biom9060232

    Article  CAS  Google Scholar 

  14. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM (2018) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18:83–90. https://doi.org/10.1080/14737175.2018.1400909

    Article  PubMed  CAS  Google Scholar 

  15. Liu G, Liu YF, Ro KS, Du L, Tang YJ, Zhao L et al (2022) Genomic characteristics of a novel strain Lactiplantibacillus plantarum X7021 isolated from the brine of stinky tofu for the application in food fermentation. LWT Food Sci Technol 156:12. https://doi.org/10.1016/j.lwt.2021.113054

  16. Li XF, Wang N, Yin BX, Fang DS, Zhao JX, Zhang H et al (2016) Lactobacillus plantarum X1 with alpha-glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Adv 6:63536–63547. https://doi.org/10.1039/c6ra10858j

    Article  CAS  Google Scholar 

  17. Teng Y, Wang Y, Tian Y, Chen YY, Guan WY, Piao CH et al (2020) Lactobacillus plantarum LP104 ameliorates hyperlipidemia induced by AMPK pathways in C57BL/6N mice fed high-fat diet. J Funct Foods 64:10. https://doi.org/10.1016/j.jff.2019.103665

    Article  CAS  Google Scholar 

  18. Ro K-S, Chen Y, Du L, Wang L, Zhao L, Xie J et al (2022) Improvement of S-allyl-L-cysteine content, probiotic properties and constipation prevention effect of black garlic by the lactic acid bacteria fermentation. Process Biochem 115:110–117. https://doi.org/10.1016/j.procbio.2022.02.009

    Article  CAS  Google Scholar 

  19. Chen X, Liu G, Zhao L, Du L, Xie J, Wei D (2022) Lactiplantibacillus plantarum X7022 ameliorates loperamide-induced constipation and modulates gut microbiota in mice. Food Bioeng 1:252–263. https://doi.org/10.1002/fbe2.12029

    Article  Google Scholar 

  20. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC (2018) Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 9:890. https://doi.org/10.3389/fmicb.2018.00890

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grant SM, DeMorrow S (2020) Bile acid signaling in neurodegenerative and neurological disorders. Int J Mol Sci 21:25. https://doi.org/10.3390/ijms21175982

    Article  CAS  Google Scholar 

  24. Nho K, Kueider-Paisley A, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G et al (2019) Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimers Dement 15:232–244. https://doi.org/10.1016/j.jalz.2018.08.012

    Article  PubMed  Google Scholar 

  25. Song X, Zhao Z, Zhao Y, Wang Z, Wang C, Yang G et al (2021) Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl3 induced mouse model of Alzheimer’s disease via modulating gut microbiota and PI3K/Akt/GSK-3beta signaling pathway. Nutr Neurosci 1–13. https://doi.org/10.1080/1028415X.2021.1991556

  26. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26. https://doi.org/10.1016/j.anaerobe.2014.03.003

    Article  PubMed  CAS  Google Scholar 

  27. Ho SC, Liu JH, Wu RYY (2003) Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 4:15–18. https://doi.org/10.1023/A:1022417102206,Lassmann

    Article  PubMed  CAS  Google Scholar 

  28. Lassmann H, van Horssen J (2016) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta 1862:506–510. https://doi.org/10.1016/j.bbadis.2015.09.018

    Article  PubMed  CAS  Google Scholar 

  29. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601. https://doi.org/10.1212/wnl.45.8.1594

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, Zhao Z, Zhao L, Zhao Y, Yang G, Wang C et al (2022) Lactobacillus plantarum DP189 reduces alpha-SYN Aggravation in MPTP-induced Parkinson’s disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. J Agric Food Chem 70:1163–1173. https://doi.org/10.1021/acs.jafc.1c07711

    Article  PubMed  CAS  Google Scholar 

  31. Kheradmand E, Hajizadeh Moghaddam A, Zare M (2018) Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother 97:1096–1101. https://doi.org/10.1016/j.biopha.2017.11.047

    Article  PubMed  CAS  Google Scholar 

  32. Evrard B, Coudeyras S, Dosgilbert A, Charbonnel N, Alame J, Tridon A et al (2011) Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS ONE 6:e18735. https://doi.org/10.1371/journal.pone.0018735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 11:25. https://doi.org/10.3389/fendo.2020.00025

    Article  PubMed  Google Scholar 

  34. Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74:624–634. https://doi.org/10.1093/nutrit/nuw023

    Article  PubMed  Google Scholar 

  35. Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S (2012) Hippocampal neuronal loss in the Ca1 and Ca3 areas of Alzheimer’s disease patients. Psychiatr Danub 24:152–158. https://hrcak.srce.hr/106217

  36. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A et al (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472:319–324. https://doi.org/10.1038/nature09788

    Article  PubMed  CAS  Google Scholar 

  37. Ahmed NY, Knowles R, Dehorter N (2019) New insights into cholinergic neuron diversity. Front Mol Neurosci 12:204. https://doi.org/10.3389/fnmol.2019.00204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nalivaeva NN, Turner AJ (2016) AChE and the amyloid precursor protein (APP) - cross-talk in Alzheimer’s disease. Chem Biol Interact 259:301–306. https://doi.org/10.1016/j.cbi.2016.04.009

    Article  PubMed  CAS  Google Scholar 

  39. Musa NH, Mani V, Lim SM, Vidyadaran S, Abdul Majeed AB, Ramasamy K (2017) Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J Dairy Res 84:488–495. https://doi.org/10.1017/S0022029917000620

    Article  PubMed  CAS  Google Scholar 

  40. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 552:355–361. https://doi.org/10.1038/nature25158

    Article  PubMed  CAS  Google Scholar 

  41. Azm SAN, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F et al (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 43:718–726. https://doi.org/10.1139/apnm-2017-0648,Bonfili

    Article  Google Scholar 

  42. Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S et al (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55:7987–8000. https://doi.org/10.1007/s12035-018-0973-4

  43. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726. https://doi.org/10.1016/S0896-6273(00)81010-7

    Article  PubMed  CAS  Google Scholar 

  44. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x

    Article  PubMed  Google Scholar 

  45. Jeong JJ, Kim KA, Ahn YT, Sim JH, Woo JY, Huh CS et al (2015) Probiotic mixture KF attenuates age-dependent memory deficit and lipidemia in Fischer 344 rats. J Microbiol Biotechnol 25:1532–1536. https://doi.org/10.4014/jmb.1505.05002

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi K, Kurokawa K, Miyagawa K, Mochida-Saito A, Nemoto Y, Iwasa H et al (2020) Antidementia effects of Enterococcus faecalis 2001 are associated with enhancement of hippocampal neurogenesis via the ERK-CREB-BDNF pathway in olfactory bulbectomized mice. Physiol Behav 223:112997. https://doi.org/10.1016/j.physbeh.2020.112997

    Article  PubMed  CAS  Google Scholar 

  47. Tse JKY (2017) Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci 8:1438–1447. https://doi.org/10.1021/acschemneuro.7b00176

    Article  PubMed  CAS  Google Scholar 

  48. Zheng H, Xu P, Jiang Q, Xu Q, Zheng Y, Yan J et al (2021) Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. Microbiome 9:145. https://doi.org/10.1186/s40168-021-01088-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96. https://doi.org/10.1016/j.cell.2013.12.016

    Article  PubMed  CAS  Google Scholar 

  50. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. https://doi.org/10.1186/1471-2180-9-123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J et al (2019) Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 80:633–643. https://doi.org/10.1016/j.bbi.2019.05.008

    Article  PubMed  Google Scholar 

  52. de LeBlanc AD, del Carmen S, Chatel JM, Miyoshi A, Azevedo V, Langella P et al (2015) Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol Res Pract 2015:146972. https://doi.org/10.1155/2015/146972

    Article  PubMed  PubMed Central  Google Scholar 

  53. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ou ZH, Deng LL, Lu Z, Wu FF, Liu WT, Huang DQ et al (2020) Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 10(1):12. https://doi.org/10.1038/s41387-020-0115-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ogata Y, Sakamoto M, Ohkuma M, Hattori M, Suda W (2020) Complete genome sequence of Adlercreutzia sp. Strain 8CFCBH1, a potent producer of equol, isolated from healthy Japanese feces. Microbiol Resour Announce 9(49):e02140-20. https://doi.org/10.1128/MRA.01240-20

  56. Nilsen M, Saunders CM, Angell IL, Arntzen MO, Carlsen KCL, Carlsen KH et al (2020) Butyrate levels in the transition from an infant- to an adult-like gut microbiota correlate with bacterial networks associated with Eubacterium Rectale and Ruminococcus Gnavus. Genes 11(11):1245. https://doi.org/10.3390/genes11111245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fernández J, Redondo-Blanco S, Gutiérrez-del-Río I, Miguélez EM, Villar CJ, Lombó F (2016) Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. J Funct Foods 25:511–522. https://doi.org/10.1016/j.jff.2016.06.032

    Article  CAS  Google Scholar 

  58. Zhao YH, Jaber V, Lukiw WJ (2017) Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 7:318. https://doi.org/10.3389/fcimb.2017.00318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kountouras J, Boziki M, Gavalas E, Zavos C, Deretzi G, Grigoriadis N et al (2009) Increased cerebrospinal fluid Helicobacter Pylori antibody in Alzheimer’s disease. Intl J Neurosci 119:765–777. https://doi.org/10.1080/00207450902782083

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0907800 and 2021YFC2100300), China; Natural Science foundation of Shanghai (No. 21ZR1416200).

Author information

Authors and Affiliations

Authors

Contributions

DY and LZ wrote the main manuscript text and prepared all figures. YX did the investigation and prepared Fig. 2. K-SR and SD did the data curation and formal analysis. ZY did the data curation and formal analysis. LD and JX conceptualized and supervised the investigation and edited the manuscript. DW supervised the investigation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lei Du or Jingli Xie.

Ethics declarations

Ethical Approval

This study was carried out in accordance with the Guidelines for Care and Use of Laboratory Animals of East China University of Science and Technology. All the animal experiments were approved by the Animal Ethics Committee of East China University of Science and Technology (Permission number: 2012SK001).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 195 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Zhao, L., Deng, S. et al. Lactiplantibacillus plantarum X7022 Plays Roles on Aging Mice with Memory Impairment Induced by D-Galactose Through Restoring Neuronal Damage, Relieving Inflammation and Oxidative Stress. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-023-10208-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10208-w

Keywords

Navigation