Skip to main content

Advertisement

Log in

Mushroom as Prebiotics: a Sustainable Approach for Healthcare

  • RESEARCH
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kulshreshtha S (2012) Current trends in bioremediation and biodegradation. J Bioremediat Biodegrad 3:7 3:1–2. https://doi.org/10.4172/2155-6199.1000E114

  2. Kulshreshtha S (2018) Mushroom biomass and spent mushroom substrate as adsorbent to remove pollutants. 281–325. https://doi.org/10.1007/978-3-319-92162-4_9

  3. Kulshreshtha et al (2011) (17) (PDF) Pros and cons of P. Florida cultivation for managing waste of handmade paper and cardboard industries. https://www.researchgate.net/publication/49615824_Pros_and_cons_of_P_Florida_cultivation_for_managing_waste_of_handmade_paper_and_cardboard_industries. Accessed 18 Jun 2023

  4. Kulshreshtha S, Mathur N, Bhatnagar P (2011) Handmade paper and cardboard industries: In health perspectives. Toxicol Ind Health 27. https://doi.org/10.1177/0748233710391992

  5. Jayachandran M, Xiao J, Xu B (2017) A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int J Mol Sci 18. https://doi.org/10.3390/IJMS18091934

  6. Soodpakdee K, Nacha J, Rattanachart N et al (2022) Fermentation with Pleurotus Ostreatus enhances the prebiotic properties of germinated riceberry Rice. Front Nutr 9:610. https://doi.org/10.3389/FNUT.2022.839145/BIBTEX

    Article  Google Scholar 

  7. Moumita S, Das B (2022) Assessment of the prebiotic potential and bioactive components of common edible mushrooms in India and formulation of synbiotic microcapsules. LWT 156:113050. https://doi.org/10.1016/J.LWT.2021.113050

  8. Asad F, Anwar H, Yassine HM et al (2020) White button mushroom, agaricus bisporus (Agaricomycetes), and a probiotics mixture supplementation correct dyslipidemia without influencing the colon microbiome profile in hypercholesterolemic rats. Int J Med Mushrooms 22:235–244. https://doi.org/10.1615/INTJMEDMUSHROOMS.2020033807

    Article  PubMed  Google Scholar 

  9. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015. https://doi.org/10.1155/2015/376387

  10. Mallik BP, Bhawsar H (2018) Evaluation of prebiotic score of edible mushroom extract. Int J Eng Res Technol 7. https://doi.org/10.17577/IJERTV7IS100028

  11. Delzenne NM, Bindels LB (2015) Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity? Nat Rev Gastroenterol Hepatol 12:p553. https://doi.org/10.1038/NRGASTRO.2015.137

  12. Xu Y, Xie L, Zhang Z et al (2021) Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium-treated mice via Foxp3+ T cells, gut microbiota, and bacterial metabolites. Front Immunol 12:948. https://doi.org/10.3389/FIMMU.2021.648162/BIBTEX

    Article  Google Scholar 

  13. Lam KL, Chi-Keung Cheung P (2013) Non-digestible long chain beta-glucans as novel prebiotics. Bioactive Carbohydrates and Dietary Fibre 2:45–64. https://doi.org/10.1016/J.BCDF.2013.09.001

    Article  CAS  Google Scholar 

  14. Steve NTI, Hui S (2020) Mushrooms bioactive as prebiotics to modulate gut microbiota in relationships with causes and prevention of liver diseases (Review). Int J Med Mushrooms 22:509–519. https://doi.org/10.1615/INTJMEDMUSHROOMS.2020034706

    Article  Google Scholar 

  15. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499. https://doi.org/10.3390/IJMS11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uthan ET, Yamaç M, Yildiz Z (2022) In vitro prebiotic activity of polysaccharides extracted from edible / medicinal macrofungi species. J Fungus 13:15–29. https://doi.org/10.30708/MANTAR.994693

  17. Davani-Davari D, Negahdaripour M, Karimzadeh I et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8:92. https://doi.org/10.3390/FOODS8030092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziemer CJ, Gibson GR (1998) An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int Dairy J 8:473–479. https://doi.org/10.1016/S0958-6946(98)00071-5

    Article  CAS  Google Scholar 

  19. Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310. https://doi.org/10.1038/NRGASTRO.2015.47

    Article  CAS  PubMed  Google Scholar 

  20. Hutkins RW, Krumbeck JA, Bindels LB et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1. https://doi.org/10.1016/J.COPBIO.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  21. Li M, Yu L, Zhao J et al (2021) Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 83:104538. https://doi.org/10.1016/j.jff.2021.104538

    Article  CAS  Google Scholar 

  22. Das M, Banerjee N (2021) Antioxidant and prebiotic potential of cultured mushroom (Agaricus bisporus) extract. J Adv Sci Res 12:267–272. https://doi.org/10.55218/JASR.S2202112236

  23. Sarkar A, Lehto SM, Harty S et al (2016) Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 39:763–781. https://doi.org/10.1016/J.TINS.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bermúdez-Humarán LG, Salinas E, Ortiz GG et al (2019) From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11. https://doi.org/10.3390/NU11040890

  25. Marteau P, Seksik P (2004) Tolerance of probiotics and prebiotics. J Clin Gastroenterol 38:. https://doi.org/10.1097/01.MCG.0000128929.37156.A7

  26. Aida FMNA, Shuhaimi M, Yazid M, Maaruf AG (2009) Mushroom as a potential source of prebiotics: a review. Trends Food Sci Technol 20:567–575. https://doi.org/10.1016/J.TIFS.2009.07.007

    Article  CAS  Google Scholar 

  27. Bhakta M, Kumar P (2013) Mushroom polysaccharides as a potential prebiotics. Int J Health Sci Res 3:77–84

    Google Scholar 

  28. Sanders ME, Merenstein DJ, Reid G et al (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16:605–616. https://doi.org/10.1038/S41575-019-0173-3

    Article  PubMed  Google Scholar 

  29. Míguez B, Gómez B, Gullón P et al (2016) Pectic oligosaccharides and other emerging prebiotics. Probiotics and Prebiotics in Human Nutrition and Health. https://doi.org/10.5772/62830

    Article  Google Scholar 

  30. Bell V, Silva CRPG, Guina J, Fernandes TH (2022) Mushrooms as future generation healthy foods. Front Nutr 9:. https://doi.org/10.3389/FNUT.2022.1050099/FULL

  31. Törős G, El-Ramady H, Prokisch J et al (2023) Modulation of the Gut microbiota with prebiotics and antimicrobial agents from Pleurotus ostreatus mushroom. Foods 12. https://doi.org/10.3390/FOODS12102010

  32. Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17:770–775. https://doi.org/10.1016/J.IDAIRYJ.2006.10.006

    Article  CAS  Google Scholar 

  33. Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37:281–284. https://doi.org/10.1046/J.1472-765X.2003.01398.X

    Article  CAS  PubMed  Google Scholar 

  34. Ghoddusi HB, Grandison MA, Grandison AS, Tuohy KM (2007) In vitro study on gas generation and prebiotic effects of some carbohydrates and their mixtures. Anaerobe 13:193–199. https://doi.org/10.1016/J.ANAEROBE.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Sawangwan T, Wansanit W, Pattani L, Noysang C (2018) Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources 52:519–524. https://doi.org/10.1016/J.ANRES.2018.11.020

    Article  Google Scholar 

  36. Saman P, Chaiongkarn A, Moonmangmee S, Sukcharoen J, Kuancha C, Fungsin B (2016) Evaluation of prebiotic property in edible mushrooms. Biological and Chemical Research 3:75–85

    Google Scholar 

  37. Zhou K (2017) Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods 33:194–201. https://doi.org/10.1016/J.JFF.2017.03.045

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chang CJ, Lin CS, Lu CC et al (2015) Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 6:1–19. https://doi.org/10.1038/ncomms8489

  39. Hsu CN, Lin YJ, Hou CY, Tain YL (2018) Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients 10. https://doi.org/10.3390/NU10091229

  40. Muszyńska B, Kała K, Firlej A, Sułkowska-Ziaja K (2016) Cantharellus cibarius - culinary-medicinal mushroom content and biological activity. Acta Poloniae Pharmaceutica - Drug Research 73:589–598

    Google Scholar 

  41. Uthan ET, Şentürk H, Uyanoglu M, Yamaç M (2021) First report on the in vivo prebiotic, biochemical, and histological effects of crude polysaccharide fraction of golden Chantharelle mushroom, Cantharellus cibarius (Agaricomycetes). Int J Med Mushrooms 23:67–77. https://doi.org/10.1615/INTJMEDMUSHROOMS.2021038233

    Article  PubMed  Google Scholar 

  42. Yang K, Zhang Y, Cai M et al (2020) In vitro prebiotic activities of oligosaccharides from the by-products in Ganoderma lucidum spore polysaccharide extraction. RSC Adv 10:14794–14802. https://doi.org/10.1039/C9RA10798C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin M, Zhu Y, Shao D et al (2017) Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats. Int J Biol Macromol 94:1–9. https://doi.org/10.1016/J.IJBIOMAC.2016.09.099

    Article  CAS  PubMed  Google Scholar 

  44. Li X, He Y, Zeng P et al (2019) Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J Cell Mol Med 23:4–20. https://doi.org/10.1111/jcmm.13564

    Article  CAS  PubMed  Google Scholar 

  45. He X, Wang X, Fang J et al (2017) Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. Int J Biol Macromol 101:910–921. https://doi.org/10.1016/J.IJBIOMAC.2017.03.177

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Zhao C, Diao M et al (2018) The prebiotic activity of simulated gastric and intestinal digesta of polysaccharides from the Hericium erinaceus. Molecules 23. https://doi.org/10.3390/MOLECULES23123158

  47. Synytsya A, Míčková K, Synytsya A et al (2009) Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym 76:548–556. https://doi.org/10.1016/J.CARBPOL.2008.11.021

    Article  CAS  Google Scholar 

  48. Yu ZT, Liu B, Mukherjee P, Newburg DS (2013) Trametes versicolor extract modifies human fecal microbiota composition in vitro. Plant Foods Hum Nutr 68:107–112. https://doi.org/10.1007/S11130-013-0342-4

    Article  CAS  PubMed  Google Scholar 

  49. Dylag K, Hubalewska-Mazgaj M, Surmiak M et al (2014) Probiotics in the mechanism of protection against gut inflammation and therapy of gastrointestinal disorders. Curr Pharm Des 20:1149–1155. https://doi.org/10.2174/13816128113199990422

    Article  CAS  PubMed  Google Scholar 

  50. Li C, Wu G, Zhao H et al (2021) Natural-derived polysaccharides from plants, mushrooms, and seaweeds for the treatment of inflammatory bowel disease. Front Pharmacol 12:755. https://doi.org/10.3389/FPHAR.2021.651813/BIBTEX

    Article  Google Scholar 

  51. Li Q, Li L, Li Q et al (2022) Influence of natural polysaccharides on intestinal microbiota in inflammatory bowel diseases: an overview. Foods 11:1084. https://doi.org/10.3390/FOODS11081084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguepi Tsopmejio IS, Ding M, Wei J et al (2022) Auricularia polytricha and Flammulina velutipes ameliorate inflammation and modulate the gut microbiota via regulation of NF-κB and Keap1/Nrf2 signaling pathways on DSS-induced inflammatory bowel disease. Food Biosci 47:101426. https://doi.org/10.1016/J.FBIO.2021.101426

  53. Bobek P, Nosálová V, Cerná S (2001) Effect of pleuran (β-glucan from Pleurotus ostreatus) in diet or drinking fluid on colitis in rats. Nahrung - Food 45:360–363. https://doi.org/10.1002/1521-3803(20011001)45:5%3c360::AID-FOOD360%3e3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  54. Zeman M, Nosáľová V, Bobek P et al (2001) Changes of endogenous melatonin and protective effect of diet containing pleuran and extract of black elder in colonic inflammation in rats 56:695–701

    CAS  Google Scholar 

  55. Guo WL, Deng JC, Pan YY et al (2020) Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 153:1231–1240. https://doi.org/10.1016/j.ijbiomac.2019.10.253

    Article  CAS  PubMed  Google Scholar 

  56. Rowaiye A, Wilfred OI, Onuh OA et al (2022) Modulatory effects of mushrooms on the inflammatory signaling pathways and pro-inflammatory mediators. Clin Complement Med Pharmacol 2:100037. https://doi.org/10.1016/j.ccmp.2022.100037

  57. Azad MAK, Sarker M, Wan D (2018) Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res Int 2018:. https://doi.org/10.1155/2018/8063647

  58. Solano-Aguilar GI, Jang S, Lakshman S et al (2018) The effect of dietary mushroom Agaricus bisporus on intestinal microbiota composition and host immunological function. Nutrients 10:1721. https://doi.org/10.3390/NU10111721

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kundu SK, Khan MdAHNA, Das SK (2021) Beneficial role of mushroom in recovering complications of hypercholesterolemia. Indonesian J Pharmaceutical Clin Res 4:1–14. https://doi.org/10.32734/IDJPCR.V4I2.6467

  60. Chang CJ, Lu CC, Lin CS et al (2018) Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obes (Lond) 42:231. https://doi.org/10.1038/IJO.2017.149

    Article  PubMed  Google Scholar 

  61. Nowakowski P, Markiewicz-Żukowska R, Gromkowska-Kępka K et al (2021) Mushrooms as potential therapeutic agents in the treatment of cancer: evaluation of anti-glioma effects of Coprinus comatus, Cantharellus cibarius, Lycoperdon perlatum and Lactarius deliciosus extracts. Biomed Pharmacother 133. https://doi.org/10.1016/J.BIOPHA.2020.111090/REFERENCES

  62. Nowacka-Jechalke N, Nowak R, Juda M et al (2018) New biological activity of the polysaccharide fraction from Cantharellus cibarius and its structural characterization. Food Chem 268:355–361. https://doi.org/10.1016/J.FOODCHEM.2018.06.106

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Chen P, Zhang P et al (2019) Protein-bound β-glucan from Coriolus versicolor has potential for use against obesity. Mol Nutr Food Res 63. https://doi.org/10.1002/mnfr.201801231

  64. Shimizu T, Mori K, Ouchi K et al (2018) Effects of dietary intake of Japanese mushrooms on visceral fat accumulation and gut microbiota in mice. Nutrients 10. https://doi.org/10.3390/NU10050610

  65. Harhaji L, Mijatović S, Maksimović-Ivanić D et al (2008) Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: in vitro and in vivo study. Food Chem Toxicol 46:1825–1833. https://doi.org/10.1016/J.FCT.2008.01.027

    Article  CAS  PubMed  Google Scholar 

  66. Su J, Li D, Chen Q et al (2018) Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol 9:3099. https://doi.org/10.3389/FMICB.2018.03099/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li LF, Liu HB, Zhang QW et al (2018) Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22885-7

  68. Sheng X, Yan J, Meng Y et al (2017) Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food Funct 8:1020–1027. https://doi.org/10.1039/C7FO00071E

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Guo Z, Xue Z et al (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9:1979–1990. https://doi.org/10.1038/ismej.2015.11

  70. Lv XC, Guo WL, Li L et al (2019) Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. J Funct Foods 57:48–58. https://doi.org/10.1016/J.JFF.2019.03.043

    Article  CAS  Google Scholar 

  71. Guo WL, Pan YY, Li L et al (2018) Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food Funct 9:3419–3431. https://doi.org/10.1039/C8FO00836A

    Article  CAS  PubMed  Google Scholar 

  72. Hu R, Guo W, Huang Z et al (2018) Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats. J Funct Foods 46:403–412. https://doi.org/10.1016/J.JFF.2018.05.020

    Article  CAS  Google Scholar 

  73. Kerezoudi EN, Mitsou EK, Gioti K et al (2021) Fermentation of Pleurotus ostreatus and Ganoderma lucidum mushrooms and their extracts by the gut microbiota of healthy and osteopenic women: potential prebiotic effect and impact of mushroom fermentation products on human osteoblasts. Food Funct 12:1529–1546. https://doi.org/10.1039/D0FO02581J

    Article  CAS  PubMed  Google Scholar 

  74. Shuwen H, Miao D, Quan Q et al (2019) Protective effect of the “food-microorganism-SCFAs” axis on colorectal cancer: from basic research to practical application. J Cancer Res Clin Oncol 145:2169–2197. https://doi.org/10.1007/S00432-019-02997-X

    Article  PubMed  Google Scholar 

  75. Kilner J, Corfe BM, McAuley MT, Wilkinson SJ (2015) A deterministic oscillatory model of microtubule growth and shrinkage for differential actions of short chain fatty acids. Mol Biosyst 12:93–101. https://doi.org/10.1039/C5MB00211G

    Article  CAS  PubMed  Google Scholar 

  76. De Giani A, Bovio F, Forcella ME et al (2021) Prebiotic effect of maitake extract on a probiotic consortium and its action after microbial fermentation on colorectal cell lines. Foods 10. https://doi.org/10.3390/foods10112536

  77. Pan YY, Zeng F, Guo WL et al (2018) Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Food Funct 9:6268–6278. https://doi.org/10.1039/C8FO01116H

    Article  CAS  PubMed  Google Scholar 

  78. Yang Y, Wang D, Zhang Y, Wang M (2019) Effects of Hericium erinaceus polysaccharide on the content of short-chain fatty acids in the intestine of ulcerative colitis model rats. China Pharmacy 2763–2767

  79. Wang D, Zhu X, Tang X et al (2020) Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. J Food Sci 85:1872–1890. https://doi.org/10.1111/1750-3841.15134

    Article  CAS  PubMed  Google Scholar 

  80. Dongdong W, Chen D, Guoxiao L et al (2018) Fungal proteins from Hericium Erinaceus show auxiliary antitumor effects with 5-Fluoro-2,4(1H,3H)-pyrimidinedione by improving the gut microbiota in mice. SSRN Electron J. https://doi.org/10.2139/SSRN.3244809

    Article  Google Scholar 

  81. Szychowski KA, Skóra B, Pomianek T, Gmiński J (2021) Inonotus obliquus – from folk medicine to clinical use. J Tradit Complement Med 11:293–302. https://doi.org/10.1016/J.JTCME.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  82. Hu Y, Teng C, Yu S et al (2017) Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express 7:39. https://doi.org/10.1186/S13568-017-0341-1

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hu B, Dong Y, Zhou W et al (2021) Effect of Inonotus obliquus polysaccharide on composition of the intestinal flora in mice with acute endometritis. PLoS One 16:e0259570. https://doi.org/10.1371/JOURNAL.PONE.0259570

  84. Lin CH, Chang CY, Lee KR et al (2016) Cold-water extracts of Grifola frondosa and its purified active fraction inhibit hepatocellular carcinoma in vitro and in vivo. Exp Biol Med 241:1374. https://doi.org/10.1177/1535370216640149

    Article  CAS  Google Scholar 

  85. Anwar H, Suchodolski JS, Ullah MI et al (2019) Shiitake culinary-medicinal mushroom, Lentinus edodes (Agaricomycetes), supplementation alters gut microbiome and corrects dyslipidemia in rats. Int J Med Mushrooms 21:79–88. https://doi.org/10.1615/INTJMEDMUSHROOMS.2018029348

    Article  PubMed  Google Scholar 

  86. Anwar H, Hussain G, Rasul A et al (2021) Potential role of probiotic species in ameliorating oxidative stress, effect on liver profile and hormones in male albino rat model 19:1–9. https://doi.org/10.1177/20587392211016119

  87. Liu Y, Wang C, Li J et al (2020) Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB J 34:1065–1078. https://doi.org/10.1096/FJ.201901943RR

    Article  CAS  PubMed  Google Scholar 

  88. Sun SS, WANG K, MA K, et al (2019) An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin J Nat Med 17:3–14. https://doi.org/10.1016/S1875-5364(19)30003-2

    Article  CAS  PubMed  Google Scholar 

  89. Chen J, Liu J, Yan C et al (2020) Sarcodon aspratus polysaccharides ameliorated obesity-induced metabolic disorders and modulated gut microbiota dysbiosis in mice fed a high-fat diet. Food Funct 11:2588–2602. https://doi.org/10.1039/C9FO00963A

    Article  CAS  PubMed  Google Scholar 

  90. Pallav K, Dowd SE, Villafuerte J et al (2014) Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers. 5:458–467. https://doi.org/10.4161/GMIC.29558

  91. Ali Hadwan H, Kareem Abdulrazzaq A, Raheem Hameed F et al (2021) The impact of edible mushroom species on lipid profiles and blood picture of male balb-c mice. Journal of Hunan University(Natural Sciences) 48

  92. Luo J, Zhang C, Liu R et al (2018) Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells. J Funct Foods 47:127–135. https://doi.org/10.1016/J.JFF.2018.05.041

    Article  CAS  Google Scholar 

  93. Altomare A, Putignani L, Del Chierico F et al (2019) Gut mucosal-associated microbiota better discloses inflammatory bowel disease differential patterns than faecal microbiota. Dig Liver Dis 51:648–656. https://doi.org/10.1016/J.DLD.2018.11.021

    Article  PubMed  Google Scholar 

  94. Xu S, Yin W, Zhang Y et al (2020) Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers 12:372. https://doi.org/10.3390/CANCERS12020372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen M, Xiao D, Liu W et al (2020) Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol 155:890–902. https://doi.org/10.1016/J.IJBIOMAC.2019.11.047

    Article  CAS  PubMed  Google Scholar 

  96. Huang C-H, Lin W-K, Chang S-H, Tsai G-J (2020) Ganoderma lucidum culture supplement ameliorates dyslipidemia and reduces visceral fat accumulation in type 2 diabetic rats. Mycology 12:94–104. https://doi.org/10.1080/21501203.2020.1740409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mitsou EK, Saxami G, Stamoulou E et al (2020) Effects of rich in Β-glucans edible mushrooms on aging gut microbiota characteristics: an in vitro study. Molecules 25. https://doi.org/10.3390/MOLECULES25122806

  98. Christodoulou P, Vlassopoulou M, Zervou M et al (2023) In vitro fermentation of Pleurotus eryngii mushrooms by human fecal microbiota: metataxonomic analysis and metabolomic profiling of fermentation products. Journal of Fungi 9:128. https://doi.org/10.3390/JOF9010128/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hess J, Wang Q, Gould T, Slavin J (2018) Impact of Agaricus bisporus mushroom consumption on gut health markers in healthy adults. Nutrients 10. https://doi.org/10.3390/NU10101402

  100. Bulam S, N.Ş. Üstün AP, (2021) Effects of different processing methods on nutrients, bioactive compounds, and biological activities of Chanterelle mushroom (Cantharellus cibarius): a review. European Food Science and Engineering 2:52–58

    Google Scholar 

  101. Yang L, Kang X, Dong W et al (2022) Prebiotic properties of Ganoderma lucidum polysaccharides with special enrichment of Bacteroides ovatus and B. uniformis in vitro. J Funct Foods 92:105069. https://doi.org/10.1016/J.JFF.2022.105069

  102. Tian B, Geng Y, Xu T et al (2022) Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation. Front Nutr 0:373. https://doi.org/10.3389/FNUT.2022.858585

  103. Ayimbila F, Siriwong S, Nakphaichit M, Keawsompong S (2022) In vitro gastrointestinal digestion of Lentinus squarrosulus powder and impact on human fecal microbiota. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-06648-z

  104. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344. https://doi.org/10.1111/J.1365-2672.2007.03520.X

    Article  CAS  PubMed  Google Scholar 

  105. Tupamahu IPC, Budiarso TY (2017) The effect of oyster mushroom (Pleurotus ostreatus) powder as prebiotic agent on yoghurt quality. AIP Conf Proc 1844:030006. https://doi.org/10.1063/1.4983433

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Shweta Kulshreshtha- originate idea, write and review manuscript, draw figure, and typesetting.

Corresponding author

Correspondence to Shweta Kulshreshtha.

Ethics declarations

I certify that the information given is true and complete to the best of my knowledge. I shall bear full responsibility for the submission. I confirm that I have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to publication in your esteemed journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshreshtha, S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics & Antimicro. Prot. 16, 699–712 (2024). https://doi.org/10.1007/s12602-023-10164-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10164-5

Keywords

Navigation