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Abstract
Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiot-
ics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can 
serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to 
develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, 
originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic 
identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria 
were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack 
of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum 
strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. 
Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with pos-
sible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 
protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile 
salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select 
candidate strains to assess their probiotic potential further in animal experiments.
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Introduction

A balanced and highly diverse microbiota is essential for 
healthy life of living organisms in the animal kingdom. Per-
turbed balance of the microbiota may lead to disease devel-
opment. Conditions in industrial scale livestock production 
frequently result in increased stress and health problems. 
Farming conditions, environmental and nutritional effects 
and weaning difficulties are the main stress factors in the 
pig production sector affecting significantly animal health 
and production. The usage of antibiotics, to overcome stress 
related negative health effects as well as for growth promo-
tion particularly, was banned in the European Union and 
in many other countries [1]. Probiotics, used as feed sup-
plements, can serve as alternatives to antibiotics in various 
cases to avoid economic losses in swine production [2]. 
Probiotics have beneficial impacts on the balance of gastro-
intestinal microbiota, the ability to fight enteric pathogens, 
and capacity to support the immune system [3].

Lactic acid bacteria (LAB) are the most commonly used 
microorganisms as probiotics. LAB display a strong anti-
microbial activity against a range of pathogenic microor-
ganisms and can provide nutritional and health benefits 
to the hosts [4]. Among LAB, the most commonly used 
probiotic strains belong to lactobacilli [5], at a large extent 
due to the “Generally Regarded as Safe” (GRAS) status of 
these organisms [6]. Probiotic strains for pigs can improve 
growth performance, feed conversion efficiency, nutrient 
utilization, community structure of intestinal microbiota, 
gut health and regulate the immune system. There are sev-
eral requirements for probiotic bacteria, the most impor-
tant being that they must be harmless to the host, i.e. they 
must not have hemolytic activity or carry acquired antibi-
otic resistance determinants. It must also possess benefi-
cial properties, such as antibacterial activity, pH and bile 
acid tolerance, vitamin production, immune-stimulatory 
activity. However, a given strain does need to possess all 
the beneficial properties. The roles of Lactobacillus sp. as 
probiotics for swine were reviewed widely [2, 7].

The source of probiotic strains is important, and they should 
be isolated from the intestinal microflora of the host animal spe-
cies in order to achieve easier intestinal colonization and more 
specific applications. Host specificity was observed among 
lactobacilli isolated from human and animal sources [8]. Lac-
tobacilli and streptococci isolated from swine have shown better 
adherence to swine squamous epithelial cells than strains iso-
lated from other animals [9], indicating that survival of probi-
otic bacteria is dependent on a host-specific environment.

Although there is an extensive literature on the intestinal flora 
of domestic pig, the knowledge on the intestinal flora of wild 
boar, which are taxonomically the same species, is scarce. One 
of the main differences between domestic pigs and wild boars, 

apart from genetic differences, is that wild boars have to survive 
under natural conditions without the use of any feed additives, 
antibiotics or probiotics used in livestock production. Their 
microbiota may contain beneficial microorganisms that help to 
prevent various diseases and provide resistance to pathogens. As 
a result of domestication and prolonged selection in large-scale 
farming, the composition of the gut microbiota of domestic pigs 
has changed significantly, and bacterial strains with physiologi-
cally beneficial effects that are still found in natural populations 
may have been lost. Wild boars have a very diverse fecal bacte-
rial community, probably due to their complex food structure 
[10], therefore it is possible to isolate microorganisms with dif-
ferent properties. Furthermore, wild boars have generally shown 
high tolerance and/or resistance to many diseases, suggesting 
that their gut bacteria may be a good source for isolation of 
potential probiotic strains. Therefore, we have chosen the intes-
tinal contents of the different segments of the intestinal tract of 
wild boars as a source for the isolation of useful microorganisms. 
Recognition of the value of wild boar as a potential source of 
probiotic strains has been reported recently [11, 12].

The aim of the present study was to identify LAB isolated 
from wild boars and to screen them for probiotic attributes 
and safety properties in vitro, in order to select strains that 
can be used as direct fed microbials in the swine industry. 
The sampled wild boars were living in their native habitat, in 
one of the less human-affected regions in Hungary. Guide-
lines for the evaluation of probiotic activity of candidate 
strains, recommended by the Food and Agriculture Organi-
zation of the United Nations (FAO) [13] and reviewed in 
several articles [14–16], were followed to characterize the 
isolates. Determination of draft genome sequences and their 
bioinformatic analyses also facilitated the selection of can-
didate strains for further evaluation in animal experiments 
as direct-fed microbials for pigs.

Materials and Methods

Sources and Collection of Samples

Samples were taken from 5 (#1 - #5) wild boars (Sus scrofa) 
living in a native habitat of the Zemplén Mountain in Hun-
gary near to the Slovakian border [17]. Wild boars were shot 
during regular hunts organized by the local hunting party 
in Füzérkomlós, the rightful owner of this hunting area for 
hunting with reference to the LV of 1996 Hungarian State 
Law on wildlife protection, wildlife management, and hunt-
ing, where the boars were professionally eviscerated. All the 
animals were healthy except for boar #1, which showed signs 
of enteritis with diarrhea [17]. Four of the wild boars were 
sows (#1 - #3 and #5) and one boar was male (#4). Three 
of the sampled animals were adults (#1 - #3), while two (#4 
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and #5) were young animals. During sampling, the parts 
of the intestinal tract designated for sampling were sealed 
with forceps, excised and transported to the laboratory under 
refrigerated and anaerobic conditions using anaerobic jars 
and processed within 24 h. The intestinal contents from 
ileum, colon, caecum and rectum were removed under ster-
ile conditions.

Isolation and Identification of Lactic Acid Bacteria

Handling and Storage of Bacterial Samples

One gram from each sample was aseptically added to 5 mL 
of sterile phosphate buffered saline (PBS) solution (pH 7.2) 
and mixed thoroughly. Serial dilutions were performed and 
0.1 mL aliquots from the dilutions were plated out onto dif-
ferent kinds of media such as BHI – Brain Heart Infusion 
Agar (Biolab Ltd., Hungary), TSA – Tryptic Soy Agar (Bio-
lab Ltd., Hungary), M17 Agar (Biolab Ltd., Hungary), MRS 
– De Man, Rogosa and Sharpe Agar (BIOKAR Diagnostics, 
France), MRSCC – MRS agar supplemented with 5-5 g  L−1 
maltose, fructose, sucrose and 0.05 g  L−1 cysteine-HCL 
(Sigma-Aldrich, Japan) and EA – Elliker Agar (Biolab Ltd., 
Hungary) in triplicate by spreading method. One set of the 
plates was incubated in an aerobic thermostat, the second set 
was placed into a  CO2 (5 %) incubator (Sheldon Manufactur-
ing, Inc., OR, US) (semi-anaerobic condition) and the third 
set of plates was placed into anaerobic jars supplemented 
with AnaeroGen 2.5 L sachets (Oxoid, Basingstoke, UK). 
Incubation was carried out at 35 °C for 48-72 hrs.

Single colonies (without selection) were suspended in 
105 μL PBS buffer, then 45 μL of 50 % glycerol was added 
and the tubes were placed into a -70 °C freezer for storage.

Screening and Species‑level Determination of Isolates By 
16S Sanger Sequencing

Polymerase chain reaction (PCR) was used for determina-
tion of the 16S sequence of the isolates. A single colony was 
suspended in 100 μL peptone saline water (0.85 % NaCl and 
0.1 % peptone) buffer. PCR was carried out using DreamTaq 
2X PCR master mix (Thermo Scientific Ltd, UK) accord-
ing to manufacturer’s instructions. As template, 1 μL of cell 
suspension from each strain in the collection was used in 
20 μL reaction. Primer Lac1F (5’-AGC AGT AGG GAA TCT 
TCC A-3’) and Lac2GCR (5’-ATT YCA CCG CTA CAC ATG 
-3’) [18] were used for screening LAB strains, Leucgrp fw 
(5’-GCG GCT GCG GCG TCA CCT AG-3’) and Leucgrp rev 
(5’-GGNTAC CTT GTT ACG ACTTC-3’) primers [19] were 
used to identify isolates belonging to the Leuconostoc genus. 
Universal primer pair, 27f (5’-AGA GTT TGA TCC TGG CTC 
AG-3’) and 1492r (5’-GGT TAC CTT GTT ACG ACT T-3’) 

[20] was used for amplification of the 16S rDNA. PCR con-
ditions were the same as given in the papers reporting the 
primer pairs. The PCR products were purified using Min-
Elute PCR Purification Kit (QIAGEN, Germany) according 
to the manufacturer’s instructions, and then sequenced with 
both primers (27f and 1492r). Sequencing of the amplicons 
was performed using Big-Dye Sequencer ABI 3130xl by 
BIOMI Ltd. (Gödöllő, Hungary). Sequence homologies were 
examined by comparing the sequences obtained with those 
of the NCBI databases (Reference RNA Sequences (refseq_
ma) and RefSeq Genome Database (refseq_genomes)) using 
Basic Local Alignment Search Tool (BLAST) software [21] 
and identified according to the closest relative.

Screening of Isolates for Probiotic Attributes

Demonstration of Antimicrobial Activities

To assess the antimicrobial activity of the isolates the agar 
well diffusion assay [22] was applied. The isolates were inoc-
ulated to MRSCC broth at 35 °C for 24 h and the cell-free 
supernatants were collected by centrifugation (15,600×g, 10 
min) to use in the test. Out of the 4 tester strains, Escherichia 
coli W3110 [23], Staphylococcus aureus SP17 [24] and Sal-
monella enterica serov. Typhimurium LT2 (ATCC 700720) 
were cultured in Luria-Bertani (LB) broth [25] and plated 
on LB agar, while M17 media (broth and agar) (Biolab Ltd., 
Hungary) were used to work with Streptococcus thermophi-
lus T9 (Hungarian Dairy Research Institute Ltd, Hungary). 
After spreading 0.1 mL of overnight grown cultures from the 
tester strains on the agar plates by soft agar overlay, wells of 
5 mm diameters were punched. Aliquots (80 μL) from the 
supernatants of the LAB cultures were dispensed into the 
wells, and the plates were incubated for 24 h at 35 °C and the 
appearance of a clearing zone was examined. The diameter of 
clear inhibition zone around the wells was measured with a 
ruler and isolates were rated as –, +, ++ and +++ (–: 6 mm; 
+: >6-9 mm; ++: 9-15 mm and +++: >15 mm).

Determination of Acid Tolerance of Selected Isolates

The acid tolerance of the isolates was tested at pH 2.0 and 
3.0 in pilot experiments and finally measured accurately at 
pH 2.5. The isolates were sub-cultured in MRSCC broth at 
35 °C for 24 h. From the cultures, 60 μL were added to 3 mL 
of MRSCC broth which was adjusted to pH 2.5. Viable count 
was conducted by counting colony forming units (CFU) on 
MRSCC agar plates from 20 μL aliquots taken immediately 
after inoculation and after 1 and 2 hours of incubation. Liq-
uid cultures were incubated in  CO2 incubator while plates 
were incubated in anaerobic jars (Oxoid, UK) containing 
AnaeroGen™ 2.5 L sachet (Thermo Scientific, UK).
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Bile Tolerance Assay to Determine the Sensitivity of Isolates

To evaluate the ability of isolates growing in the presence 
of bile salt, isolates were cultured in MRSCC broth supple-
mented with 0.3 and 1.0 % (w/v) bile salt (bovine, Sigma-
Aldrich, USA). Viable count was conducted by counting 
colony forming units on MRSCC agar plates from 20 μL 
aliquots taken after 4 and 7 hours of incubation. Liquid 
cultures were incubated in  CO2 incubator while plates were 
incubated in anaerobic jars (Oxoid, UK) containing Anaer-
oGen™ 2.5 L sachet (Thermo Scientific, UK).

Tests for Addressing Safety Concerns

Antibiotic Susceptibility Testing to Detect Certain Acquired 
Antibiotic Resistances

The selection of antibiotics was based on previous publica-
tions [26–28]. These publications were designed to detect 
antibiotics specific to Gram-positive bacteria and repre-
senting multiple antibiotic types. Susceptibility of strains 
to selected antibiotics was evaluated by soft agar overlay 
disc diffusion method on MRSCC agar [26], with slight 
modifications (Petri plates, containing 20 mL agar, were 
overlaid with 3 ml of 0.8 % soft agar seeded with 50 μL of 
an active culture at 45 ℃). The following antibiotic discs 
(BIO-RAD, France) were used: erythromycin (15 μg), kana-
mycin (30 μg), tetracycline (30 μg), trimethoprim (5 μg), 
vancomycin (30 μg), oxacillin (5 μg) and azithromycin (15 
μg). The diameters of inhibition zones were determined after 
anaerobic incubation at 35 ℃ for 24 h by using a Scan 500 
inhibition zone reader (Interscience, France). Strains were 
categorized as resistant (R), intermediate (I) or susceptible 
(S) according to interpretative standards described previ-
ously [27]. The interpretation for oxacillin and azithromycin 
were based on data reported by the National Committee for 
Clinical Laboratory Standards [29] for staphylococci, as no 
other data of inhibition zone diameters for Limosilactoba-
cillus were found in the literature. However, LAB strains 
showed various patterns when disks of 1 μg oxacillin were 
used [30, 31]. Quality was controlled by using Staphylococ-
cus aureus ATCC 25923 for oxacillin and azithromycin and 
Enterococcus faecalis ATCC 19433 for the rest.

Monitoring the Presence of Bile Salt Hydrolase (BSH) Activity

BSH activity of candidate probiotics can be evaluated by 
the well-established agar plate assay [32]. In the setup of 
the semi-qualitative assay, we followed the report of [33] 
with some modifications. Sterile filter paper discs of 8 mm 
diameter were impregnated with 20 μL of cultured isolates 
on MRSCC agar (supplemented with 0.5 % sodium salt of 

taurodeoxycholic acid (Sigma-Aldrich, MO, USA) and 0.37 
%  CaCl2) plates. Plates were incubated at 35 °C for 72 h in 
anaerobic condition and the diameters of the precipitation 
zones around the disks were measured and rated as –, +, ++ 
and +++ (–: ≤ 14 mm, no precipitation zone; +: 14-24 mm; 
++: 24-29 mm and +++: > 29 mm). Results were obtained 
and averaged from three independently repeated experiments.

Blood Hemolysis Test to Confirm the Safe Use of Isolates

Isolates were cultured in MRSCC broth for 24 h at 35 °C 
and the streak plate methods were performed on Columbia 
agar (Biolab Ltd., Hungary) plates supplemented with ster-
ile sheep blood (5 % v/v) and kept for anaerobic incubation 
at 35 °C for 48 h. Hemolytic activity was judged by visual 
observation using Salmonella enterica serov. Typhimurium 
LT2 and Staphylococcus aureus SP17 strains as positive 
controls, showing complete hemolysis.

Genome Sequencing and Bioinformatics Analyses

Sequence Determination of Selected LAB Strains

The complete genome sequence of ten Limosilactobacil-
lus mucosae (formerly Lactobacillus mucosae) [34] and 
three Leuconostoc suionicum (formerly Leuconostoc mes-
enteroides subs. suionicum) [35] strains were determined. 
Strains were grown using MRSCC broth medium at 35 °C 
for 24 h, then the cells were harvested and kept frozen in 
a –70 °C freezer until delivered to the sequencing facility. 
DNA preparation and sequence determination of the strains 
were performed by Xenovea Ltd. (Szeged, Hungary), except 
strain F1 which was performed by BIOMI Ltd. (Gödöllő, 
Hungary). De novo assembly of the raw reads was per-
formed with SPAdes v3.0.0 software [36, 37] (https:// cab. 
spbu. ru/ softw are/ spades/). After the de novo assembly, con-
tigs below 500 bp were filtered out by using in-house Linux 
scripts. Contamination was removed using a BLAST search 
against the eukaryotic RefSeq sequences. RefSeq sequences 
were downloaded from NCBI. If the alignment length of 
the match was bigger than the half of the contig’s length we 
marked the scaffold as contamination and removed it from 
further analysis. The sequences of the cleaned draft genomes 
were deposited in the NCBI database, under accession num-
ber PRJNA926800.

Bioinformatics Analyses of Sequenced Potential LAB Strains

K‑Mer Analyses Draft genome sequences of the strains were 
analyzed by KmerFinder 3.2 program (Software version 
3.0.2) [38–40]. The service was available at the homepage 
of Center for Genomic Epidemiology (https:// cge. food. dtu. 
dk/ servi ces/ KmerF inder/). Sequences in FASTA format 

https://cab.spbu.ru/software/spades/
https://cab.spbu.ru/software/spades/
https://cge.food.dtu.dk/services/KmerFinder/
https://cge.food.dtu.dk/services/KmerFinder/
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were uploaded and compared to sequences in the “Bacteria 
organism” database (version 2022-07-11). “Query Coverage 
(%), the percentage of input query Kmers that match the 
template” in the output of the results, was used to evaluate 
taxonomical relationships at strain level.

Phylogenetic Analyses Whole genome alignment was 
performed using progressiveMauve [41] (build date: Feb 
13 2015). The command lines were the following for 
Limosilactobacillus:

progressiveMauve --output-guide-tree=Limosilactobacillus.
tree --output Limosilactobacillus *.fasta

and for Leuconostoc:
progressiveMauve --output-guide-tree=Leuconostoc.tree 

--output Leuconostoc *.fasta

The guided tree was used to create trees which were drawn 
by using the ape package from R [42]. The used com-
mands were the following for Limosilactobacillus:tree1 
<- read.tree(“Limosilactobacillus.tree”); plot(tree1)and 
for Leuconostoc:

tree2 <- read.tree(“Leuconostoc.tree”); plot(tree2)
Similarity matrixes were created by using FastANI (ver-

sion 1.33) [43]. The program calculates the average nucleo-
tide identity for every sequence pair. The query and refer-
ence dataset were the same, they contained sequences of 
selected publicly available strains and of our sequenced 
strains. The command line options were the following for 
Limosilactobacillus:

fastANI --ql Limosilactobacillus.txt --rl Limosilactobacil-
lus.txt -o Limosilactobacillus.out --matrix -t 10

and for Leuconostoc:
fastANI --ql Leuconostoc.txt --rl Leuconostoc.txt -o 

Leuconostoc.out --matrix -t 10

Screening for the Presence of Antibiotic Resistance 
Genes Draft genome sequences of the strains were ana-
lyzed by ResFinder 4.1 software [44–46] to uncover the 
presence of any acquired antibiotic resistance gene. The 
service, available at the homepage of “Center for Genomic 
Epidemiology” (https:// cge. food. dtu. dk/ servi ces/ ResFi 
nder/), was used with the following settings: selected %ID 
threshold 90 %, selected minimum length 60 %. ResFinder 
database: (2022-05-24). Sequences in FASTA format were 
uploaded according to instructions of the service provider.

Screening for Known Bacteriocin Genes BAGEL4 web 
server (http:// bagel4. molge nrug. nl/) has the ability for 
searching bacteriocins and RiPPs (ribosomally synthesized 
and posttranslationally modified peptides) [47]. Genome 
sequences were uploaded in FASTA format. Analyses were 
focused on genes with possible involvement in biosynthesis 
and functioning of bacteriocins.

Genes with  Potential Relevance for  Probiotics A 
29-kDa protein (Lam29) from L. mucosae ME-340 is an 
ABC transporter component, but it has also been shown to 
function as mucin- and epithelial cell-adhesion factor [48, 
49]. Sequence of the lam29 gene was identified in each L. 
mucosae draft genome sequence by BLAST search. Genes 
were cut using seqret program [50]. Multiple alignment was 
constructed using Mafft (version 7.429) [51] with the fol-
lowing parameters:

--treeout --thread 10 --localpair --maxiterate 2000 
--clustalout –reorder

The final tree was drawn using the ape package of R [42].
BSH genes were identified using Tblastn [52] search, 

because the query sequence was protein. Seqret from 
Emboss [50] was used to cut the region of the genes. Mul-
tiple alignment was constructed using Mafft with the same 
parameters as mentioned above. The final tree was drawn 
using the ape package of R [42].

Data Availability of Draft Genome Sequences

Tha draft genome sequences are available at NCBI under the 
BioProject: PRJNA926800.

Results

Isolation and Identification of Lactic Acid Bacteria

Bacterial Isolates and Their Screening By PCR Amplification

A primary strain collection of 4334 isolates has been 
established from colonies of different kinds of bacteria, 
originated from four locations of the gastrointestinal tracts 
(ileum, colon, caecum and rectum) of five wild boars living 
in natural habitat. Altogether, 1650 ileum, 1049 colon, 727 
caecum and 908 rectum isolates were collected; 1128, 1624, 
655, 409 and 518 derived from wild boar #1 to wild boar 
#5, respectively. Aerobic condition provided 2738 isolates, 
while semi-anaerobic and anaerobic gave 436 and 1160 
ones, respectively.

For the screening of isolates from the strain collection, 
isolates belonging to four genera such as Lactobacillus, 
Pediococcus, Leuconostoc and Weissella could be identi-
fied by LAB specific PCR. PCR positive isolates were puri-
fied by sub-culturing and plating until pure colonies were 
obtained, and a secondary strain collection (894 isolates) 
has been created from pure cultures. For further screening 
and characterization, 166 strains were selected (Supple-
mentary Table 1). PCR specific for Leuconostoc genus was 
suitable to identify 20 strains which belong to this genus 

https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/ResFinder/
http://bagel4.molgenrug.nl/
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(Supplementary Table 1), while classification of the rest of 
the isolates required other sequence-based method, such as 
16S sequencing.

Demonstration of Antimicrobial Activities 
of the Selected Isolates

Ability of the 166 LAB strains to produce any antimicrobial 
compound was tested against 4 tester strains, Escherichia 
coli W3110, Staphylococcus aureus SP17, Salmonella enter-
ica serov. Typhimurium LT2 (ATCC 700720) and Strep-
tococcus thermophilus T9. The antimicrobial activity was 
quantified by measuring the diameter of the inhibition zone 
and rated as -, +, ++ and +++.

Of the 166 strains, 164 exerted antimicrobial activity 
against Escherichia coli and 158 against Salmonella enterica 
and Staphylococcus aureus. It was found that 64 strains had 
inhibitory effect on the growth of Streptococcus thermophi-
lus as well (Supplementary Table 1).

The 166 isolates were grouped according to their anti-
biotic activity patterns. The 20 Leuconostoc isolates were 
classified into 3 groups while the other LAB isolates were 
classified into 46 groups (results are presented in Table 1 
and Supplementary Table 1).

There were 56 isolates (9 Leuconostoc and 47 other 
LAB strains) selected for further characterization which 
represented the majority of the groups (Table 1). In addi-
tion to the obtained rating patterns of antimicrobial activ-
ity, origin of the samples was also taken into considera-
tion to cover as many gut regions as possible from each 
wild boar.

Taxonomic Identification of Selected Isolates

Sequencing of the 16S rRNA gene region (~1380±40 bp 
sequence between nucleotides 27 and 1492) from each 
selected strain was used for taxonomic identification at 
species level. Comparison of the obtained sequences to 
sequences in NCBI databases resulted in the identifica-
tion of 47 Limosilactobacillus mucosae (L. mucosae) and 9 
Leuconostoc suionicum (L. suionicum) strains (Table 1 and 
Supplementary Table 1). BLAST search in both refseq_ma 
and refseq_genomes databases gave concordant results for 
L. mucosae strains.

In the case of Leuconostoc strains, searches in the ref-
seq_ma database identified the strains as a member of 
Leuconostoc mesenteroides species with 99.93 % identity, 
while searches in the refseq_genomes database identified 
the strains as a member of L. suionicum species with 100 
% identity. We have accepted L. suionicum species as the 
closest relatives.

Table 1  Grouping of 56 selected LAB isolates based on pattern of 
their antimicrobial activity using four tester strains

Straina Antimicrobial activityc against

ID Originb Escherichia 
coli

Salmonella 
enterica

Staphylococcus 
aureus

Streptococcus 
thermophilus

F1 caecum +++ +++ +++ +++
F2
F4
F6

ileum
ileum
ileum

+++
+++
+++

++
++
++

+++
+++
+++

+++
+++
+++

F7
F9
F10
F13
F14

rectum
caecum
caecum
ileum
ileum

+++
+++
+++
+++
+++

+++
+++
+++
+++
+++

++
++
++
++
++

+++
+++
+++
+++
+++

F15 ileum +++ + +++ +++
F16 ileum +++ +++ + +++
F17 caecum +++ +++ +++ -
F18
F20

caecum
ileum

+++
+++

+++
+++

++
++

++
++

F23
F24

caecum
ileum

+++
+++

++
++

++
++

+++
+++

F29 ileum +++ ++ +++ +
F31 ileum +++ + +++ ++
F35 caecum +++ ++ + +++
F45
F48
F49

colon
ileum
ileum

+++
+++
+++

+++
+++
+++

++
++
++

-
-
-

F52 ileum +++ ++ +++ -
F61 ileum +++ + +++ -
F65 ileum +++ ++ ++ ++
F66 caecum ++ ++ ++ +++
F68 ileum +++ ++ ++ +
F69 ileum +++ + ++ +
F71 colon ++ + + +++
F79 rectum + + + +++
F84
F88
F98
F105

colon
colon
ileum
ileum

+++
+++
+++
+++

++
++
++
++

++
++
++
++

-
-
-
-

F108 ileum ++ +++ ++ +
F113 ileum ++ + +++ -
F116 caecum ++ ++ ++ ++
F120 colon ++ + + ++
F122 colon + + ++ +
F126
F132

caecum
ileum

++
++

++
++

++
++

-
-

F133 colon ++ ++ + -
F137 ileum ++ ++ - -
F138 ileum ++ - - -
F139 rectum + + + +
F144 caecum + - - -
F146 caecum - - - -
F147
F148
F150

caecum
caecum
caecum

+++
+++
+++

++
++
++

++
++
++

-
-
-

F151 rectum +++ ++ + -
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Screening of Isolates for Probiotic Attributes

Determination of Acid Tolerance of the Isolates

The effect of acidity on the viability of the selected iso-
lates was assessed by measuring their growth at pH 2.5 in 
MRSCC broth. Viable colony forming units were detected in 
aliquots collected immediately after inoculation and after 1 
and 2 hours of incubation, reflecting the time spent by food 
in the stomach [53]. The experiment was also performed at 
pH 2.0 and pH 3.0, but the results were inconclusive. Essen-
tially, at pH 3.0 there were no significant difference between 
viability of the isolates, whereas at pH 2.0 all strains were 
seriously affected after 1 h (data not shown).

The majority of L. mucosae strains tolerated pH 2.5 for 
2 hours very well, as viable counts were close to or even 
higher than the starting state (over 0.7 log unit increase in 
the case of F4, F23, F49, F68, F116 and F132), while in 
some cases (F10, F105, F120 and F122) a significant reduc-
tion (1-3 log units) was observed (Supplementary Table 2).

L. suionicum strains were rather sensitive to low pH expo-
sure, as differences were visible after 1 h incubation. The 
viability of four strains was reduced with 1.5-2.1 log units 
(F150, F151, F156 and F163) while the other five strains 
lost their viability entirely. Further incubation eliminated 
viability of all strains (Supplementary Table 2).

Identification of Isolates Tolerant to Bile Stress

When the experimental parameters were determined, the 
bile salt concentration of 0.3 % was considered as physi-
ological condition in mammalian guts [54], whereas 1.0 % 
bile salt concentration represented a high stress condition. 
The 7 h incubation time resemble to the time that bacteria 
spend in the gut region where high bile salt stress condi-
tion occurs.

At 0.3 % bile salt concentration, 28 out of the 56 
strains showed increased viable counts after 7 h incuba-
tion compared to initial counts, two of them over 0.8 
log units (F139 and F151) (Table 3). Decrease in viable 
counts were less than 0.2 log unit in the case of another 
12 strains. Only 3 strains (F13, F45 and F69) suffered 
over 1.0 log unit decrease in viable counts at this condi-
tion (Supplementary Table 3).

At 1.0 % bile salt concentration, only three L. mucosae 
(F20, F84 and F88) and two L. suionicum (F151 and F158) 
strains were able to maintain or exceed initial counts after 
7 h incubation. Six L. mucosae (F2, F4, F7, F35, F45 and 
F133) and two L. suionicum (F150 and F156) strains showed 
less than 0.4 log unit decrease. These 13 strains were con-
sidered to be highly tolerant against bile stress. Four L. 
mucosae strains (F15, F16, F71 and F132) were rather sen-
sitive against bile stress (over 2.5 log units decrease in viable 
counts) (Supplementary Table 3).

Tests for Addressing Safety Concerns of LAB Strains

Antibiotic Susceptibility Testing to Determine Resistance 
Pattern of Isolates

We have tested the 56 strains for 7 antibiotics (erythromy-
cin, kanamycin, tetracycline, trimethoprim, vancomycin, 
oxacillin and azithromycin) by disc diffusion method and 
the results are shown in Fig.1. All strains were resistant to 
vancomycin and kanamycin, however, we have found 5 L. 
mucosae strains (F10, F20, F23, F24 and F113) sensitive to 
trimethoprim, while the rest of the strains were resistant. 
All strains were sensitive to erythromycin. There were no 
strains resistant to tetracycline, oxacillin and azithromycin 
but the phenotype distribution of L. mucosae strains was 29 
sensitive and 18 intermediate to tetracycline, 35 sensitive 
and 12 intermediate to oxacillin and 37 sensitive and 10 
intermediate to azithromycin, according to criteria published 
in [27]. L. suionicum strains were mainly sensitive to these 
three antibiotics except for 1 intermediate to tetracycline 
(F158) and 2-2 intermediate to oxacillin (F147 and F150) 
and azithromycin (F150 and F158).

Monitoring the Presence of Bile Salt Hydrolase (BSH) 
and Blood Hemolysis Activity

Out of the 56 isolates tested for BSH activity, none of the 
9 L. suionicum strains were positive, while all the 47 L. 
mucosae strains expressed reasonable activity. Strains F14, 
F16, F18, F69, F79 and F105 showed below average, while 
F10, F35, F49, F133, F139 and F146 showed above average 
BSH activity (Table 2).

It is important that probiotic bacteria do not cause lyses of 
red blood cells in the host organism. Although there are no 

Table 1  (continued)

Straina Antimicrobial activityc against

ID Originb Escherichia 
coli

Salmonella 
enterica

Staphylococcus 
aureus

Streptococcus 
thermophilus

F156
F158
F162
F163
F166

caecum
rectum
rectum
rectum
rectum

++
++
++
++
++

+
+
+
+
+

+
+
+
+
+

-
-
-
-
-

a taxonomic identification of the strains is based on 16S rDNA 
sequencing. F1-F146 are Limosilactobacillus mucosae, F147-F166 
are Leuconostoc suionicum strains
b gut region of sample origin
c activity is rated according to the size of clear inhibition zone around 
the wells, diameter rating is: –: 6 mm; +: >6-9 mm; ++: >9-15 mm 
and +++: >15 mm
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Fig. 1  Heat map of antibiotic 
susceptibility classification of 
selected isolates. F1-F146 are L. 
mucosae, while F147-F166 are 
L. suionicum strains. Horizontal 
lines maintain and separate 
groups established according 
to antimicrobial patterns of the 
strains. Strains in a group have 
identical antimicrobial pattern 
for the four tester strains used. 
(Table 1 and Supplementary 
Table 1). Color coding: red = 
resistant; orange = intermediate 
and green = susceptible
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published reports on the hemolytic activity in lactobacilli so 
far, for safety reasons, the analyses cannot be avoided. None 
of the strains, except positive controls (Salmonella enterica 
serov. Typhimurium LT2 and Staphylococcus aureus SP17), 
showed hemolytic activity under the assay conditions.

Genome Sequencing and Bioinformatics Analyses

Whole Genome Sequencing of Selected Isolates

Ten L. mucosae and three L. suionicum strains were selected 
for whole genome sequencing. Features of sequence assem-
bly are shown in Table 3, and the sequences were deposited 
in NCBI database (accession number PRJNA926800). The 
relatively low contig numbers and the size of longest contigs 
indicate that sequencing quality meets the general standards. 
The genome size range of L. mucosae strains is 1.86-2.45 
Mb [55], and the observed genome size of our strains fell in 
the range of 2.08-2.32 Mb (Table 3), while the genome size 
of L. suionicum falls between 2.02 and 2.13 Mb according to 
ten known strains available in NCBI database, our genomes 
have a size range of 2.13-2.16 Mb (Table 3).

Taxonomic Analyses of Isolates Based On Whole  
Genome Sequencing

K-mer analysis can identify the closest relatives of a 
query sequence within a targeted database, in our case the 
“Bacteria database”. All ten L. mucosae strains showed 
the best match to L. mucosae LM1 strain (Accession No: 
NZ_CP011013.1), however, F7, F88 and F108 comprise 

a cluster with values within the 65-71 % range, while the 
other 7 strains formed a different cluster with values in the 
16-21 % range (Table 3). All three L. suionicum strains 
showed the best match to L. mesenteroides subsp. suioni-
cum DSM 20241 (Accession No: NZ_CP015247.1). Due 
to a recent update in the NCBI database, accession number 
NZ_CP015247.1 now represents the genome sequence of L. 
suionicum DSM 20241. The K-mer analyses confirmed the 
results of our previous, 16S sequence-based species identi-
fication as well as identified the closest known relatives in 
the database at strain level.

Phylogenetic Relationships of the Sequenced Strains

Sequence comparison of the draft genome of the strains 
by FastANI (version 1.33) program revealed their relation-
ships. Similarity matrixes, based on the average nucleotide 
identity for each sequence pair, were obtained (Supple-
mentary Table 4) and relationship between the strains was 
demonstrated by phylogenetic trees (Fig. 2A and B).

The L. mucosae strains F7, F88 and F108 form a sub-
clade, which is clustered together with certain known L. 
mucosae strains available in the database such as LM1 (NZ_
CP011013.1), LM011 (CP062966.1), L1 (CP049766.1), A1 
(CP058954.1) and DPC6426 (JSWI00000000.1). The other 
7 sequenced strains form another subclade but with higher 
diversity in their genome sequences (Fig. 2A). However, 
the subclade of 7 strains could be divided further into two 
clusters, one containing the genomes of the F1, F2, F20 
and F146 strains while the other one the genomes of the 
F4, F17 and F45 strains. It is worth noting that clustering 

Table 2  BSH activity rating of 
selected L. mucosae (F1-F146) and 
L. suionicum (F147-F166) strains

a rating of precipitation zones around the disks: –: ≤ 14 mm, no precipitation zone; +: 14-24 mm; ++: 
24-29 mm and +++: > 29 mm
* strains with high BSH activity
** strains with low BSH activity

strain ID ratinga strain ID ratinga strain ID ratinga strain ID ratinga

F1 ++ F23 ++ F71 ++ F137 ++
F2 ++ F24 ++ F79 +** F138 ++
F4 ++ F29 ++ F84 ++ F139* +++
F6 ++ F31 ++ F88 ++ F144 ++
F7 ++ F35* +++ F98 ++ F146 +++
F9 ++ F45 ++ F105** + F147 -
F10* +++ F48 ++ F108 ++ F148 -
F13 ++ F49* +++ F113 ++ F150 -
F14 +** F52 ++ F116 ++ F151 -
F15 ++ F61 ++ F120 ++ F156 -
F16 +** F65 ++ F122 ++ F158 -
F17 ++ F66 ++ F126 ++ F162 -
F18 +** F68 ++ F132 ++ F163 -
F20 ++ F69 +** F133* +++ F166 -
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of the strains was completely independent from their origin 
within the gastrointestinal tract.

L. suionicum strains F150, F151 and F156 clustered 
together with L. suionicum DSM 20241 (NZ_CP015247.1) 
and other L. suionicum strains such as MTCC 10508 
(CP058345.1) and LT-38 (AP017935.1) but they were 
completely distinct from the group of L. mesenteroides 
strains (Fig. 2B).

Testing for the Presence of Transmissible Antibiotic 
Resistance Genes

Draft genome sequences were analyzed to identify strains 
carrying potentially transmissible antibiotic resistance deter-
minants. ResFinder 4.1 was applied and the results did not 
provide evidence for the presence of any known acquired 
antibiotic resistance gene in the strains investigated (data 
not shown). Consequently, our strains can be considered safe 
regarding possible transmissible antibiotic resistances.

Screening for Known Bacteriocin Genes

The BAGEL4 web tool was used to identify genes with pos-
sible bacteriocin function in the sequences of the strains. 
There were no hits with significant similarity (protein 

BLAST results were below 50 % match) to any known bacte-
riocin protein or peptide in the sequences of the L. mucosae 
strains. The annotation of the LM1 sequence, their closest 
relative L. mucosae, was also checked in the database and 
the result was also negative.

In the case of L. suionicum strains, no bacteriocin gene was 
detected in F151 according to BAGEL4 search, while F150 
and F156 showed identical, positive results. Both strains have 
the same identical bacteriocin genes, encoding a 53 amino 
acid (AA) long peptide with 96.23 % identity to mesentericin 
B105 according to BAGEL4 and lactococcin family bacte-
riocin (Accession number: WP_032489578) according to 
protein BLAST. In the close proximity of this gene (1310 bp 
downstream), two tandem open reading frames were identi-
fied. The mesD gene, encoding a 722 AA long protein, showed 
84.10 % identity to mesentericin Y105 transport/processing 
ATP-binding protein, MesD (Accession number: Q10418.1). 
Next to this gene, the mesE gene, coding a 458 AA long pro-
tein, showed 66.81 % identity to mesentericin Y105 secretion 
protein, MesE (Accession number: Q10419.1).

Upstream to the mesentericin B105 gene, there were 
two more genes, encoding bacteriocin class IIc type pro-
teins. The 48 AA protein showed 97.96 % identity to 
lactococcin G-beta/enterocin 1071B family bacteriocin 
(Accession number: WP_010015613.1), while the 47 AA 

Table 3  Features of sequence assembly of ten L. mucosae and three L. suionicum genomes after eliminating small (< 500 bp) and contaminant 
contigs

a  values of best match (similarity %), to strain L. mucosae LM1 (Accession No: NZ_CP011013.1) in the cases of L. mucosae species, and to 
strain L. suionicum DSM 20241 (Accession No: NZ_CP015247.1) in the cases of L. suionicum species, derived from K-mer analyses
b  similarity values were also obtained from the data matrix generated by FastANI during comparison of the entire genome sequences (Supple-
mentary Table 4)

Strain ID Species Number of contigs Longest contig (bp) Total length (bp) Similarity (%) to
L. mucosae LM1 by

K-mera FastANIb

F1 L. mucosae 36 335 235 2 035 530 18.07 88.03
F2 L. mucosae 26 330 013 2 132 369 20.88 88.72
F4 L. mucosae 60 280 701 2 165 593 19.23 88.31
F7 L. mucosae 24 520 166 2 117 367 70.15 97.43
F17 L. mucosae 48 247 731 2 185 230 18.20 88.11
F20 L. mucosae 25 335 771 2 078 702 18.06 88.15
F45 L. mucosae 43 343 086 2 260 567 17.33 88.05
F88 L. mucosae 31 476 267 2 316 090 66.67 97.56
F108 L. mucosae 34 513 221 2 312 507 65.35 97.62
F146 L. mucosae 28 330 013 2 263 663 16.34 88.16
Strain ID Species Number of contigs Longest contig (bp) Total length (bp) Similarity (%) to L. suionicum 

DSM 20241 by
K-mera FastANIb

F150 L. suionicum 10 803 932 2 156 525 64.03 97.64
F151 L. suionicum 16 877 041 2 128 721 64.74 97.59
F156 L. suionicum 11 803 932 2 156 765 64.01 97.64
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protein showed 95.74 % identity to lactococcin G-alpha/
enterocin 1071A family bacteriocin (Accession number: 
WP_224172900.1).

Identification of Genes With Potential Relevance 
for Probiotics

Gastrointestinal retention of probiotic bacteria is highly 
dependent on the interaction between bacterial cell surface 
proteins and the mucus layer of the host gut. In the case of 
L. mucosae, a 29-kDa protein (Lam29), a cysteine-binding 
protein of an ABC transporter, has been identified previ-
ously and its mucin- and epithelial cell-adhesion capability 
was proved. We have intended to see whether the Lam29 
protein gene exist in our strains. The corresponding coding 
region has been identified in each L. mucosae draft genome 
sequence, and they were compared to sequences of other L. 
mucosae strains found in the NCBI database. Relationships 
of the alleles are shown in a phylogenetic tree (Fig. 3A). 
Clustering of F1, F2 and F20 as well as F7, F88 and F108 
strains based on relatedness of the lam29 genes resemble 
their clustering based on the entire genomes, while cluster-
ing of F146 together with F4 and F45 and the position of 
F17 shows a significant alteration in this context.

It has been shown experimentally that all 47 L. mucosae 
strains expressed reasonable BSH activity, while none out 
of the 9 L. suionicum strains did. We have intended to trace 
this phenomenon in the obtained sequences as well. No bsh 
gene was found in the L. suionicum sequences, while one bsh 
gene was identified in each L. mucosae genome, and their 
relationship is presented in a phylogenetic tree (Fig.3B). 
Clustering of F1, F2, F20 and F146 as well as F4, F17 and 
F45 strains based on relatedness of the bsh genes is similar 
to their clustering based on the entire genome sequences. 
F88 and F108 also clustered together as it could be expected 
but F7 did not join to this group, it rather showed closer 
relationship with L. mucosae LM1.

Discussion

Probiotics development has become a promising field of 
biological investments in the last decade. Despite the fact 
that large number of probiotic strains have been isolated, 
characterized and published so far and many of them are 
commercially available worldwide, discovery of new strains 
with promising probiotic properties is always desirable, as 

Fig. 2  Phylogenetic relationship of Limosilactobacillus (A) and 
Leuconostoc (B) strains based on comparison of whole genome 
sequences. CP011013.1 indicates the position of L. mucosae LM1 
(Accession No: NZ_CP011013.1) in part A and CP015247.1 indi-
cates the position of L. suionicum DSM 20241 (Accession No: NZ_
CP015247.1) in part B, which were the best matching strains accord-
ing to the K-mer analyses. Strain sequences used for comparison with 
genome sequences of our strains were obtained from the NCBI data-
base and marked with their accession numbers. L. reuteri SD2112 

(CP002844.1) was used as outgroup control, and CP062966.1, 
CP058954.1, CP049766.1 and JSWI00000000.1 refer to L. mucosae 
strains, such as LM011, A1, L1 and DPC6426, respectively in part 
A. CP058345.1 refers to Leuconostoc sp. MTCC 10508, reclassi-
fied as L. suionicum [56], and AP017935.1 refers to L. suionicum 
LT-38, while CP028255.1, CP021966.1, CP035271.1, CP035746.1, 
CP021491.1 and CP035139.1 refer to L. mesenteroides strains, 
such as SRCM102735, CBA7131, SRCM103453, SRCM103460, 
WiKim33 and SRCM103456, respectively in part B 
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probiotic features are strain-specific and possess different 
beneficial properties and effects [3, 57]. In our study we 
report our efforts to isolate lactic acid bacteria from free-
living wild boars to select strains with probiotic values for 
swine industry.

To establish a primary strain collection, colonies were 
isolated from gut content at four locations of the gastrointes-
tinal tracts (ileum, colon, caecum and rectum) of five wild 
boars. The use of six different media in three incubation 
conditions (aerobic, semi-anaerobic and anaerobic) ensured 
that a broad spectrum of bacteria was isolated.

For screening the isolates, a PCR-based approach was 
an efficient way to narrow down the strain collection by 
using a primer pair, specific for four genera (Lactobacil-
lus, Pediococcus, Leuconostoc, and Weissella) [18]. The 
narrowed collection including the genus Lactobacillus, the 
one that has been found to be safe for consumption (hav-
ing “Generally Regarded as Safe” (GRAS) status) [6]. PCR 
positive isolates were further classified by culture-based 
methods. This step led to further selection of the isolates, 
since only well-culturable strains are suitable for probiot-
ics development, so strains not meeting this criterium were 
omitted from further study.

Based on the above criteria, 166 strains were selected for 
further screening. Since having antimicrobial activity is one 

of the main requirements for probiotics, the isolates were 
evaluated for their antibacterial activity against four tester 
strains and according to their antimicrobial activity pattern, 
56 strains were selected for further analysis.

Taxonomic identification at species level, based on 16S 
rDNA sequence determination and comparison to sequences 
in reference databases, was essential for further characteri-
zation of potential probiotic isolates. It is worth mentioning 
that a major reclassification of lactobacilli species was per-
formed recently [34], renaming the former species Lactoba-
cillus mucosae to Limosilactobacillus mucosae. Leuconostoc 
suionicum is a young species, it was first established as a 
subspecies within the L. mesenteroides species [58] and later 
became a self-standing species [35]. Out of our 166 strains 
we have identified so far, 61 L. mucosae and 11 L. suionicum 
strains (Supplementary Table 1). There is currently no expla-
nation why only these two species were identified from our 
samples instead of isolating more species, particularly from 
lactobacilli. However, it remains possible that other species 
are present among the remaining 94 isolates.

L. mucosae was discovered by Roos et al. [59] as a new 
Lactobacillus species with in vitro mucus-binding ability, 
isolated from pig small intestine. Since then, L. mucosae 
strains were isolated from human source, such as feces [60], 
ileal epithelium [61], vaginal tract [62] and from bovine 

Fig. 3  Phylogenetic relationship of lam29 genes (A) and bsh genes 
(B) found in Limosilactobacillus mucosae strains. Sequences used for 
comparison with sequences of our strains were obtained from NCBI 
database and marked with their accession numbers. AB458523.1 

refers to ABC2745 gene in L. mucosae OLL2745, CP062966.1 refers 
to L. mucosae LM011 in part A, and CP011013.1, CP058954.1, 
CP049766.1 and JSWI00000000.1 refer in both part A and B to L. 
mucosae strains, such as LM1, A1, L1 and DPC6426, respectively
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intestine and stool [63], as well as from milk of goat [64], 
sheep [65] and donkey [66]. Recently, the isolation and 
comparative genome analyses of 93 of L. mucosae strains 
from different niches have been reported [55]. Taxonomic 
position of the species within the genus Limosilactobacillus 
has been confirmed recently [67]. In parallel to isolation of 
new L. mucosae strains of different origins, the evaluation 
of the probiotic potential of the species was also performed, 
confirming that L. mucosae strains can be selected as pro-
biotics since they possess a broad spectrum of biological 
functional attributes [66]. L. mucosae strain LM1 has been 
studied extensively in vitro [59, 68–73] and its probiotic 
potential was also investigated in vivo [74].

L. mucosae strains have been shown to inhibit a number 
of Gram (+) and Gram (-) pathogens [71], such as Escheri-
chia coli, Salmonella enterica [69] and Staphylococcus 
aureus [75]. Our results are consistent with these findings, 
56 out of the 61 identified L. mucosae strains exerted antimi-
crobial activity against Escherichia coli, Salmonella enterica 
and Staphylococcus aureus, while 38 of them had inhibited 
the growth of Streptococcus thermophilus (Supplementary 
Table 1 and Table 1).

Regarding Leuconostoc suionicum, the first complete 
genome sequence was published in 2017 (L. suionicum 
DSM 20241 [76]). Currently, 2 complete and 8 draft genome 
sequences are available in the NCBI database, and recent 
reclassification within the Leuconostoc genus confirmed 
the taxonomic status of the species [77]. A high degree of 
similarity between the genome sequences of L. suionicum 
and Leuconostoc mesenteroides was detected, which is not 
surprising since the previous L. suionicum strains belonged 
to a subspecies of Leuconostoc mesenteroides [35]. Studies 
addressing probiotic assessment of microorganisms in the 
genus Leuconostoc, in particular L. mesenteroides species, 
are very diverse in the literature but no detailed probiotic 
study has been performed on strains of L. suionicum species. 
It was shown that all 20 Leuconostoc strains, including the 
11 L. suionicum ones exerted antimicrobial activity against 
Escherichia coli, Salmonella enterica and Staphylococcus 
aureus but not against Streptococcus thermophilus (Supple-
mentary Table 1 and Table 1).

It is very important that probiotic strains do not cause 
any harm to the host organism, so their safety of use should 
be monitored in this respect as well. According to safety 
regulations and standards [1], – “Strains of micro-organisms 
carrying an acquired resistance to antimicrobial(s) shall not 
be used as feed additives, unless it can be demonstrated that 
resistance is a result of chromosomal mutation(s) and it is 
not transferable.” –, determination of the antibiotic suscep-
tibility profile of potential strains should be performed. The 
aim is to exclude the presence of any transmissible, acquired 
antibiotic resistance gene, but the presence of non-transmis-
sible, intrinsic antibiotic resistance genes is acceptable or 

can be even beneficial. Seven antibiotics (erythromycin, 
kanamycin, tetracycline, trimethoprim, vancomycin, oxacil-
lin and azithromycin) were used to determine the antibiotic 
resistance/susceptibility patterns of the selected strains by 
disc diffusion method.

In general, most Lactobacillus species are intrinsically 
resistant to kanamycin, vancomycin and trimethoprim, while 
sensitive to tetracycline, erythromycin and oxacillin [78, 79]. 
However, acquired determinants encoding resistance for tet-
racycline and erythromycin were detected in some Lactoba-
cillus species [79]. It is difficult to say how reliably the vast 
amount of data and analyses accumulated for the genus Lac-
tobacillus can be applied to the genus Limosilactobacillus. 
Data on the susceptibility of L. mucosae strains are sparse, 
but two strains reported were resistant to vancomycin and 
sensitive to tetracycline and erythromycin [66]. As expected, 
all 47 L. mucosae strains tested were resistant to vancomycin 
and kanamycin but surprisingly 5 strains were sensitive to 
trimethoprim. All 47 strains were sensitive to erythromycin. 
Although none of the strains were resistant to tetracycline, 
oxacillin and azithromycin, 18, 12 and 10 strains had inter-
mediate phenotype, respectively (Fig. 1). If all strains with 
intermediate antibiotic resistance are excluded, 21 of the 47 
L. mucosae strains need to be excluded from further probi-
otic development.

Leuconostoc species have intrinsic resistance to vanco-
mycin and trimethoprim, while atypical resistance to kana-
mycin, tetracycline and erythromycin has been observed 
[80]. All 9 L. suionicum strains tested were resistant to 
vancomycin, trimethoprim and kanamycin (Fig. 1), and all 
strains were sensitive to erythromycin. While vancomycin 
and trimethoprim resistance are acceptable, the presence 
of kanamycin resistance raises concerns. It will be neces-
sary to prove their non-transmissible nature if the strains 
are selected for probiotics development. Intermediate phe-
notypes were also detected: 1 strain to tetracycline and 2-2 
strains showed intermediate resistance to oxacillin and 
azithromycin respectively (Fig. 1). These results suggest 
that a total of 3 out of 9 L. suionicum strains should be con-
sidered for exclusion.

As a molecular approach we have used specific primer 
pairs to reveal the presence of blaZ gene for ampicillin, 
tet(K) for tetracycline, sat4 for streptothricin, mph(C) and 
msrA for macrolides, mecA for meticillin and oxacillin, 
dfr(A) for trimethoprim, aph(3)-III for kanamycin resistance 
by PCR methods [28]. None of these genes were present in 
our strains investigated. Since both the disk diffusion anti-
biotic susceptibility and PCR tests have serious limitation, 
whole genome sequence could be a good way to assess the 
safety of the strains. Draft whole genome sequences of ten 
L. mucosae and three L. suionicum strains were determined. 
Bioinformatic analysis ruled out the presence of any known 
acquired antibiotic resistance gene within these genomes. 
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Based on this result, there is no reason to exclude any of 
these candidate strains due to presence of prohibited trans-
missible antibiotic resistance.

Taxonomical identity of the strains was confirmed in 
three independent ways. Primarily, 16S rDNA sequenc-
ing gave convincing results for species-level identification. 
Using draft genome sequences, K-mer analyses identified 
the best matching sequences in the database and thus, in 
addition to species determination, the closest relatives were 
identified at strain level (Table 3). Finally, analysis of the 
average nucleotide identity (ANI) of the genomes of our own 
and some related strains in the NCBI database confirmed the 
previous results, and phylogenetic trees showed the relation-
ship between the strains investigated (Fig. 2A and B).

Phylogenetic relationship of the strains, as shown by 
both, the pairwise values of the similarity matrix of the 
ANI analyses (Supplementary Table 4) and phylogenetic 
trees (Fig. 2A and B), indicate that our isolation and screen-
ing protocol worked well and allowed the identification of 
distinct strains for both species. L. mucosae strain F7, F88 
and F108 are closely related to the type strain L. mucosae 
LM1 and some other known strains in the database, while 
the other 7 strains form a separate subclade (Table 3 and 
Fig. 2A). The similarity between L. suionicum strains F150 
and F156 is 99.9999 % based on FastANI analysis, indicat-
ing that they could be identical. Although it would not be a 
surprising result, since they derived from the same sample, 
but their behavior was different in both, the antimicrobial 
activity test (Table 1) and antibiotic susceptibility profile 
(Fig. 1), so they are still considered to be different strains.

Bacteriocin production of some LAB strains may ensure 
their stable persistence in the microbial population as they 
may have competitive advantage over other microorgan-
isms. The presence of enterolysin A genes was reported 
in several L. mucosae strains by sequence analyses [55]. 
However, there was no known bacteriocin gene detected 
either in our L. mucosae strains, or in the closest relative 
L. mucosae LM1, although some of the strains, such as 
F1, F2, F4 and F7, exhibited strong antimicrobial activity 
against several different microorganisms.

The sequences of the two very closely related L. sui-
onicum strains (F150 and F156) contained such genetic 
elements that are likely to be involved in antibacterial 
function, whereas we could not identify bacteriocin related 
genes in the closely related F151. From the antibacterial 
factors identified in Leuconostoc strains F150 and F156, 
mesentericin B105 could theoretically be functional, as it 
has been reported that the MesDE secretion machinery is 
capable of transporting and maturing different pre-bacteri-
ocins, mesentericin Y105 and B105 [81]. Since the mesDE 
genes in strains F150 and F156 showed significant similar-
ity to the mesDE genes of the mesentericin Y105 system, 
and it has been previously shown that the mesentericin 

Y105 system is cross-compatible with B105 system [81, 
82], and as a consequence, functional mesentericin B105 
may be present in F150 and F156 strains. In addition to 
mesDE genes, the mesentericin operon in different Leu-
conostoc strains also contained some additional genes [83], 
however, we have not identified similar genes in the region.

It is well known that there are multifunctional proteins, 
sometimes called moonlighting proteins, which perform two 
or more functions in addition to their primary (originally 
identified) function [84]. In lactobacilli, the following pro-
teins have been reported to act as mucin adhesion factors: 
elongation factor Tu (EF-Tu), glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), chaperonin GroEL, and ATP-
binding cassette (ABC) transporter [85]. The presence of 
the mucus-binding protein (MUB) leaded to the discovery 
of the new species, Lactobacillus mucosae [59] and mucin-
adhesion ability of L. mucosae LM1 was tested in vitro [69]. 
The elongation factor Tu, glyceraldehyde 3-phosphate dehy-
drogenase, and the phosphocarrier protein HPr were upregu-
lated in L. mucosae LM1 when co-cultured with intestinal 
porcine epithelial cells [72]. In L. mucosae a 29-kDa protein 
(Lam29), an ABC transporter component protein has been 
identified and its mucin- and epithelial cell-adhesion capa-
bility was proved [48, 49]. The presence of an orthologue 
gene of the ABC transporter protein has also been demon-
strated in the L. mucosae LM1 genome [68].

It is evident that mucin binding ability of the strains 
investigated needs to be addressed experimentally, since 
even more than one adhesion factor may be involved, and 
their combined effect should be determined. However, the 
Lam29 protein appears to be a L. mucosae-specific mucin 
adhesion factor, and the presence of the lam29 gene in 
the sequenced strains raises the possibility that the strains 
possess one of the desirable properties of probiotics, the 
ability to bind mucins. The likelihood of the presence of 
a functional lam29 gene in our strains investigated is fur-
ther supported by the fact that the proven mucin-binding L. 
mucosae LM1 was their closest relative in the entire data-
base (Table 3), the relationship of this gene family is pre-
sented in Fig. 3A.

Gut microbial enzymes contribute significantly to bile 
acid metabolism through deconjugation and dehydroxylation 
reactions to generate unconjugated and secondary bile acids. 
These microbial enzymes (which include bile salt hydrolase 
(BSH)) are essential for bile acid homeostasis in the host 
and represent a vital contribution of the gut microbiome to 
host health [86].

Conjugated bile acids are toxic to bacteria, particularly 
at low pH, and can affect the bacteria growth in different 
regions of the GI tract [87]. BSH can confer a protective 
effect to certain bacteria through bile acid deconjugation 
and can be an advantage during bacterial colonization, thus 
BSH activity can be associated with a higher survival of 
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intestinal transit by rendering them more tolerant to bile 
salts. Therefore, it has become a selection criterium for 
probiotics [88–91]. However, it is yet not completely clear 
whether BSH activity is a desirable property [92], as high 
levels of certain secondary bile acids have proinflammatory 
effect [93] and can promote the development of infectious, 
inflammatory or malignant diseases [94, 95]. On the other 
hand, abundance of the bsh gene was significantly reduced 
in patients with inflammatory bowel disease (IBD) and 
type-2 diabetes [96].

BSH enzymes are present in various microbial species 
in most phyla [89]. It was shown that BSH-positive LAB 
commonly exists in the GIT and the BSH activity of LAB 
was correlated with their natural habitat [97]. BSH-encoding 
lactobacilli have primarily a vertebrate-adapted lifestyle as 
opposed to environment- or plant-associated lactobacilli [95].

The number of bsh alleles can vary, with up to 4 different 
alleles occurring in certain isolates of different Lactobacil-
lus species [98–103], but misclassification of bsh genes in 
databases has also occurred [98, 103]. It was shown by in sil-
ico analysis of 8 Lactobacillus mucosae genomes that all of 
them contained only one bsh gene [98]. More than 300 LAB 
strains belonging to several genera have been investigated 
and BSH activity was found in the majority of Lactobacillus 
strains but was absent in L. mesenteroides strains [97]. Our 
results coincide with these findings, since BSH activity was 
found in all the 47 L. mucosae strains investigated (Table 2) 
and identified one bsh gene in each of the 10 sequenced 
genomes (Fig. 3B). Surprisingly, no bsh gene was found 
in the genome sequence of L. mucosae LM011 (Accession 
number: CP062966.1). On the other hand, our 9 L. suioni-
cum strains did not show any BSH activity (Table 2), and 
three sequenced genomes did not contain any bsh gene.

For probiotics development, isolation of candidate bacte-
ria, assessment of their probiotic potential and safety attrib-
utes in vitro are only the beginning steps. In this context, 
a wide range of in vitro attributes should be investigated, 
preferably using a combination of classical microbiological, 
molecular biological and genomic methods. In this way, the 
range of potential probiotic strains can be narrowed down 
considerably, as we have done in our current work. However, 
even the most careful in vitro experiments cannot provide a 
conclusive answer as to which strains are suitable for use as 
probiotics. As a consequence, potential probiotic strains can 
and should be tested in targeted animal experiments.

In our study, from the rich primary collection of isolates 
from different gut contents of wild boars, 56 strains were 
selected for detailed analyses. The majority of the strains 
possessed antibacterial activity against four different com-
mon bacteria, including pathogenic ones, and were highly 
tolerant to stress factors, characteristic for gut environ-
ment, such as low pH and high bile concentration. None 
of the strains had hemolytic activity, and there was no sign 

of having any transmissible antibiotic resistance genes as 
well. It is still not clear whether high BSH activity will be a 
desirable attribute for the final probiotic development, but by 
having the full spectrum (strong, medium and weak activity 
in L. mucosae strains and no activity in L. suionicum strains) 
available, it gives us the opportunity to select strains with the 
desired characteristics. Further assessment in the course of 
in vivo feeding experiments is necessary to prove the useful-
ness of probiotic strains in pig farming.
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