Skip to main content
Log in

Metabolomic Analysis of Fermented Tibetan Tea Using Bacillus circulans and Their Biological Activity on Mice via the Intestine–Hepatic Axis

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The use of Bacillus circulans as the sole starter provides better process control compared to natural fermentation. However, the chemical composition of fermented Tibetan tea by B. circulans and its regulatory effects on the intestine–liver axis has not been reported. For this purpose, a high-resolution liquid chromatography tandem mass spectrometry metabolomics approach was performed. The effects of fermented Tibetan tea on the intestine–liver axis of mice were also evaluated. Untargeted metabolomics analysis showed that the contents of catechin derivatives, flavonoids, phenolic acids, and terpenoids increased by 0.3, 2.38, 2.65, and 3.36%, respectively, compared with those before fermentation. Furthermore, 16S ribosomal RNA sequence analysis revealed that the relative abundance of Lactobacillus spp. in the intestine increased after consumption of fermented tea. Additionally, based on histological and quantitative PCR analyses, fermented Tibetan tea also improved intestinal development and intestinal barrier function in mouse, while increasing the antioxidant capacity of mouse liver. Thus, fermented Tibetan tea could provide beneficial health effects through the intestine–liver axis. These findings have facilitated the study of the chemical composition of Tibetan tea and provided theoretical support for its use as a natural beverage with intestinal probiotic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2017) in National Genomics Data Center (Nucleic Acids Res 2021), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under accession number CRA008557 that are publicly accessible at https://bigd.big.ac.cn/gsa.

References

  1. Zheng PC, Qin CY, Liu PP, Feng L, Ling TJ, Ning JM, Zhang L, Wan XC (2021) Untargeted metabolomics combined with bioassay reveals the change in critical bioactive compounds during the processing of Qingzhuan tea. Molecules 26(21):6718. https://doi.org/10.3390/molecules26216718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng L, Wang Y, Zhang J, Zhu J, Liu P, Xu L, Wei K, Zhou H, Peng L, Zhang J, Wei X, Liu Z (2021) Dynamic changes of metabolic profile and taste quality during the long-term aging of Qingzhuan Tea: the impact of storage age. Food Chem 359:129953. https://doi.org/10.1016/j.foodchem.2021.129953

  3. Zhu MZ, Li N, Zhou F, Ouyang J, Lu DM, Xu W, Li J, Lin HY, Zhang Z, Xiao JB, Wang KB, Huang JA, Liu ZH, Wu JL (2020) Microbial bioconversion of the chemical components in dark tea. Food Chem 312:126043. https://doi.org/10.1016/j.foodchem.2019.126043

  4. Zhang L, Zhang ZZ, Zhou YB, Ling TJ, Wan XC (2013) Chinese dark teas: postfermentation, chemistry and biological activities. Int Food Res J 53(2):600–607. https://doi.org/10.1016/j.foodres.2013.01.016

    Article  CAS  Google Scholar 

  5. Fischer C, Kleinschmidt T (2018) Synthesis of galactooligosaccharides in milk and whey: a review. Compr Rev Food Sci Food Saf 17(3):678–697. https://doi.org/10.1111/1541-4337.12344

    Article  CAS  PubMed  Google Scholar 

  6. Suyotha W, Yano S, Wakayama M (2016) α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 32(2):30. https://doi.org/10.1007/s11274-015-1977-0

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Huang W, Zhang C, Li C, Fang Z, Zeng Z, Hu B, Chen H, Wu W, Wang T, Lan X (2022) Targeted and untargeted metabolomic analyses and biological activity of Tibetan tea. Food Chem 384:132517. https://doi.org/10.1016/j.foodchem.2022.132517

  8. Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D (2018) Antioxidant and cytoprotective effects of Tibetan tea and its phenolic components. Molecules 23(2):179. https://doi.org/10.3390/molecules23020179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang N, Wu T, Du D, Mei J, Luo H, Liu Z, Saleemi MK, Zhang R, Chang C, Mehmood MA, Zhu H (2022) Transcriptome and gut microbiota profiling revealed the protective effect of Tibetan tea on ulcerative colitis in mice. Front Microbiol 12:748594. https://doi.org/10.3389/fmicb.2021.748594

  10. Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, Zopf Y (2018) Gut-liver axis: how do gut bacteria influence the liver? Med Sci (Basel) 6(3):79. https://doi.org/10.3390/medsci6030079

    Article  CAS  PubMed  Google Scholar 

  11. Jiang Z, Zhuo LB, He Y, Fu Y, Shen L, Xu F, Gou W, Miao Z, Shuai M, Liang Y, Xiao C, Liang X, Tian Y, Wang J, Tang J, Deng K, Zhou H, Chen YM, Zheng JS (2022) The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 13(1):3002. https://doi.org/10.1038/s41467-022-30712-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen T, Li R, Chen P (2021) Gut microbiota and chemical-induced acute liver injury. Front Physiol 12:688780. https://doi.org/10.3389/fphys.2021.688780

  13. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15(7):397–411. https://doi.org/10.1038/s41575-018-0011-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Chen C, Yang H, Yang X (2021) Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice. Food Res Int 141:110153. https://doi.org/10.1016/j.foodres.2021.110153

  15. Li W, Liu Y, Ye Y, Che Z, Wu T (2021) Chemical profiling and metabolic mechanism of Pixian doubanjiang, a famous condiment in Chinese cuisine. LWT 145:111274. https://doi.org/10.1016/j.lwt.2021.111274

  16. Li Q, Chai S, Li Y, Huang J, Luo Y, Xiao L, Liu Z (2018) Biochemical components associated with microbial community shift during the pile-fermentation of primary dark tea. Front Microbiol 9:1509. https://doi.org/10.3389/fmicb.2018.01509

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xiao Y, Li M, Liu Y, Xu S, Zhong K, Wu Y, Gao H (2021) The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea. Food Chem 358:129848. https://doi.org/10.1016/j.foodchem.2021.129848

  18. Deng X, Hou Y, Zhou H, Li Y, Xue Z, Xue X, Huang G, Huang K, He X, Xu W (2021) Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci Nutr 9(2):1160–1170. https://doi.org/10.1002/fsn3.2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bond T, Derbyshire E (2019) Tea compounds and the gut microbiome: findings from trials and mechanistic studies. Nutrients 11(10):2364. https://doi.org/10.3390/nu11102364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu JY, He D, Xing YF, Zeng W, Ren K, Zhang C, Lu Y, Yang S, Ou SJ, Wang Y, Xing XH (2021) Effects of bioactive components of Pu-erh tea on gut microbiomes and health: a review. Food Chem 353:129439. https://doi.org/10.1016/j.foodchem.2021.129439

  21. Heeney DD, Gareau MG, Marco ML (2018) Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 49:140–147. https://doi.org/10.1016/j.copbio.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  22. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312(3):G171–G193. https://doi.org/10.1152/ajpgi.00048.2015

    Article  PubMed  Google Scholar 

  23. Bienenstock J, Gibson G, Klaenhammer TR, Walker A, Neish AS (2013) New insights into probiotic mechanisms: a harvest from functional and metagenomic studies. Gut Microbes 4(2):94–100. https://doi.org/10.4161/gmic.23283

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dempsey E, Corr SC (2022) Lactobacillus spp. for gastrointestinal health: current and future perspectives. Front Immunol 13:840245. https://doi.org/10.3389/fimmu.2022.840245

  25. Qi H, Li Y, Yun H, Zhang T, Huang Y, Zhou J, Yan H, Wei J, Liu Y, Zhang Z, Gao Y, Che Y, Su X, Zhu D, Zhang Y, Zhong J, Yang R (2019) Lactobacillus maintains healthy gut mucosa by producing L-Ornithine. Commun Biol 2:171. https://doi.org/10.1038/s42003-019-0424-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang T, Teng K, Liu G, Liu Y, Zhang J, Zhang X, Zhang M, Tao Y, Zhong J (2018) Lactobacillus reuteri HCM2 protects mice against Enterotoxigenic Escherichia coli through modulation of gut microbiota. Sci Rep 8(1):17485. https://doi.org/10.1038/s41598-018-35702-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu Z, Li Y, Niu Y, Tang Q, Wu J (2021) Milk fat globule membrane enhances colonic-mucus-barrier function in a rat model of short-bowel syndrome. JPEN J Parenter Enteral Nutr 45(5):916–925. https://doi.org/10.1002/jpen.1956

    Article  CAS  PubMed  Google Scholar 

  28. Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC (2019) Probiotic Lactobacillus casei: effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers. Nutrients 11(5):1150. https://doi.org/10.3390/nu11051150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh NS, Lee JY, Kim YT, Kim SH, Lee JH (2020) Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut Microbes 12(1):1785803. https://doi.org/10.1080/19490976.2020.1785803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu F, Li Y, Wang X, Hu X, Liao X, Zhang Y (2021) Early-life polyphenol intake promotes Akkermansia growth and increase of host goblet cells in association with the potential synergistic effect of Lactobacillus. Food Res Int 149:110648. https://doi.org/10.1016/j.foodres.2021.110648

  31. Cheng P, Wu J, Zong G, Wang F, Deng R, Tao R, Lu Y (2023) Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacological Research 106643. https://doi.org/10.1016/j.phrs.2022.106643

  32. Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N, Russo E, Amedei A (2019) Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci 20(2):395. https://doi.org/10.3390/ijms20020395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Zhong X, Liu X, Wang X, Gao X (2021) Therapeutic and improving function of lactobacilli in the prevention and treatment of cardiovascular-related diseases: a novel perspective from gut microbiota. Front Nutr 8, 693412. https://doi.org/10.3389/fnut.2021.693412

  34. Wu Y, Sun H, Yi R, Tan F, Zhao X (2021) Anti-obesity effect of Liupao tea extract by modulating lipid metabolism and oxidative stress in high-fat-diet-induced obese mice. J Food Sci 86(1):215–227. https://doi.org/10.1111/1750-3841.15551

    Article  CAS  PubMed  Google Scholar 

  35. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. https://doi.org/10.3389/fimmu.2018.00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim HG, Lee SY, Kim NR, Lee HY, Ko MY, Jung BJ, Kim CM, Lee JM, Park JH, Han SH, Chung DK (2011) Lactobacillus plantarum lipoteichoic acid down-regulated Shigella flexneri peptidoglycan-induced inflammation. Mol Immunol 48(4):382–391. https://doi.org/10.1016/j.molimm.2010.07.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Department of Sichuan Province, grant number 2020YFH0130; the Talent Introduction Project of Sichuan University of Science & Engineering, grant number 2019RC29; the Academician (Expert) Workstation Project of Sichuan University of Science &Engineering, grant number 2018YSCZZ01; and the Innovation and Entrepreneurship Program for College Students, grant numbers cx2021140, S202210622023, and cx2022132.

Author information

Authors and Affiliations

Authors

Contributions

Ning Wang, Hui Zhu, and Muhammad Aamer Mehmood conceived the study. Shan Mo designed the study and wrote the first version of the manuscript. Muhammad Aamer Mehmood participated in its design and coordination and performed the statistical analysis. Haiyan Sun, Yongqing Tang, and Jie Mei conceived of the study and collected the experimental material. Jie Mei, Yuan Mei, Wen Fang, and Hui Zhu collected and analyzed the raw data. Ning Wang and Tao Wu revised the manuscript. Hui Zhu was responsible for this study, participated in its design and coordination, and helped draft the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hui Zhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Mo, S., Wu, T. et al. Metabolomic Analysis of Fermented Tibetan Tea Using Bacillus circulans and Their Biological Activity on Mice via the Intestine–Hepatic Axis. Probiotics & Antimicro. Prot. 15, 1653–1664 (2023). https://doi.org/10.1007/s12602-023-10049-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10049-7

Keywords

Navigation