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Abstract
Antibiotic growth promoters have been utilized for long time at subtherapeutic levels as feed supplements in monogastric 
animal rations. Because of their side-effects such as antibiotic resistance, reduction of beneficial bacteria in the gut, and 
dysbiosis, it is necessary to look for non-therapeutic alternatives. Probiotics play an important role as the key substitutes 
to antibacterial agents due to their many beneficial effects on the monogastric animal host. For instance, enhancement of 
the gut microbiota balance can contribute to improvement of feed utilization efficiency, nutrients absorption, growth rate, 
and economic profitability of livestock. Probiotics are defined as “live microorganisms that, when administered in adequate 
amounts, confer a health benefit on the host.” They are available in diverse forms for use as feed supplements. Their utiliza-
tion as feed additives assists in good digestion of feed ingredients and hence, making the nutrients available for promot-
ing growth. Immunity can also be enhanced by supplementing probiotics to monogastrics diets. Moreover, probiotics can 
help in improving major meat quality traits and countering a variety of monogastric animals infectious diseases. A proper 
selection of the probiotic strains is required in order to confer optimal beneficial effects. The present review focuses on the 
general functional, safety, and technological screening criteria for selection of ideal Bacillus probiotics as feed supplements 
as well as their mechanism of action and beneficial effects on monogastric animals for improving production performance 
and health status.
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Introduction

Livestock production is hugely contributing to the economic 
growth of most countries. It has increased considerably dur-
ing last decades so as to provide sufficient food for the grow-
ing world population that is expected to exceed 9 billion by 
2050 [1]. The availability of enough protein sources through 
terrestrial and aquatic animals production is vital for meet-
ing the growing demand for protein, an essential constituent 
of a balanced nutrition [2]. The extensive use of antibacte-
rial agents at sub-therapeutical levels as growth-promoting 

compounds has long been practiced in livestock production 
to enhance feed conversion efficacy and growth performance 
in commercial animal production systems [3]. However, 
increased antibiotic supplementation to animal feed has 
led to antibiotic-resistant pathogenic bacteria that menace 
human health because of the risk of transferring antibiotic 
resistance genes to the human microbiota through consump-
tion of animal-derived products [4, 5]. From the economic 
point of view, emergence of antibiotic resistances has led to 
failure of antibiotic treatments, losses in livestock produc-
tion, and increased risk of zoonotic infections [6]. In view 
of the increasing regulatory agencies pressure and consumer 
demand for safe food, the use of antibiotic growth promoters 
(AGPs) as feed supplements has been banned in majority 
of countries with Sweeden being the first one to ban AGPs 
in 1986 [7]. Thus, to keep current production performance 
indicators in animal industry, several possible alternatives 
including probiotics, feed enzymes, prebiotic oligosaccha-
rides, synbiotics, essential oils, and immunostimulants have 
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received an overwhelming interest during the few last dec-
ades [8]. Among those substitutes, probiotics or direct-fed 
microbials (DFM), have generated major interest in livestock 
production considered as one of the fastest-growing sectors 
in agriculture [9]. They were defined as “non-pathogenic 
live microbial cells feed supplements which exert beneficial 
effects on both health and physiology of the target animal 
host, in addition to the improvement of intestinal microbiota 
balance, stimulation of the immune system, and overall pro-
gression in animal growth and performance”[10].

Bacillus species have a global reputation of being Gener-
ally Recognized As Safe (GRAS) microorganisms. How-
ever, some members of the species B. cereus, B. alvei, B. 
brevis, B. circulans, B. coagulans, B. infantis, B. idriensis, 
B. laterosporus, B. licheniformis, B. macerans, B. pumi-
lus, B. sphaericus, B. subtilis, and B. thuringiensis can be 
pathogenic and have been linked to discomforts and dis-
eases [11]. Bacillus species have the capacity to form spores 
withstanding harsh conditions and recently shown tremen-
dous promise to be used as probiotics [12, 13]. Also, they 
are able to produce antagonistic substances against a wide 
range of bacterial pathogens, provide extracellular digestive 
enzymes (phytase, ß-glucanase, xylanase, amylase, protease, 
ß-mannanase) that enhance feed digestibility and nutrients 
absorption, and regulate the animal host immunity [14, 15]. 
Additionally, Bacillus DFM have proved ability to enhance 
both cellular and humoral immune responses through rising 
the number of solitary lymphoid follicles in the intestinal 
mucosa, controlling the development of the gut-associated 
lymphoid tissue (GALT), stimulating antibody responses 
after vaccination, and enhancing macrophage function [16].
The principal effects of probiotic additives include a remark-
able resistance to pathogenic bacteria colonization and 
improved host mucosa immunity which can be manifested 

by a reduced pathogen load, an improved health status of 
the animal host, and a reduced risk of contamination of ani-
mal products with harmful foodborne pathogens [17]. Also, 
Bacillus strains are forming endospores that can resist harsh 
intestinal conditions, survive extreme temperatures during 
the feed pelleting procedure, and tolerate extreme pH condi-
tions, dehydratation, high pressures, and caustics [18]. All 
these properties as well as their long shelf life render Bacil-
lus DFM strains and their endospores an ideal feed supple-
ment [19].

This review reports the level of general development 
in the impressive Bacillus probiotic scientific research for 
application in monogastrics (terrestrial and aquatic ani-
mals like poultry, pigs, and fish), with a critical assessment 
of principal general functional, safety, and technological 
screening criteria for selection of ideal Bacillus probiot-
ics and their mode of action and beneficial effects on the 
monogastric animals. Furthermore, up-to-date Bacillus 
spore innovation technology entailing nanobiotechnology, 
adsorption, and surface display of proteins for improving 
the feed utilization efficiency is discussed.

Sources, Isolation, Identification Technique, 
and Probiotic Characterization of Strains 
Belonging to the Genus Bacillus

To date, many Gram-positive bacterial species including lac-
tic acid bacteria, Bacillus, and Bifidobacterium have been 
reported as health-promoting probiotics in livestock produc-
tion [20]. However, among these, strains selected from the 
genus Bacillus have more evident intrinsic advantages when 
compared to the other non-sporulating ones [21]. Indeed, 
they can germinate, multiply rapidly, and endure a multi-tude 

Table 1  Sources of Bacillus probiotic strains and identification technique

Source Bacillus strain Identification technique Animal model References

Soil B. subtilis HB2 16S ribosomal RNA gene amplification and sequence 
analysis

Poultry [24]

Soil B. amyloliquefaciens DSM 
25,840 or B. subtilis 
DSM32324

16S ribosomal RNA gene amplification and sequence 
analysis

Piglets [25]

Fermented pickles B. subtilis L10 and G1 16S ribosomal RNA gene amplification and sequence 
analysis

Shrimp [26]

Weaned pig B. subtilis KN-42 16S ribosomal RNA gene amplification and sequence 
analysis

Pig [27]

Gut of fish B. subtilis ANSB060 Phenotypic characters and 16S rRNA gene sequencing Broiler [23]
Digestive tract of 

freshwater fish
B. subtilis KX756706
B. cereus KX756707
B. amyloliquefaciens KX775224

16S ribosomal RNA gene amplification and sequence 
analysis

Fish [28]

Gastrointestinal 
tract of young 
broiler chicks

B. subtilis PRO 16S ribosomal RNA gene amplification and sequence 
analysis

Poultry [29]
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of severe environmental conditions, providing a wide 
range of health benefits on the host. For instance, applica- 
tion of Bacillus probiotics can enhance growth as well as 
immune function of animal host and help in maintaining a 
balanced gut microbiota [22]. Potential Bacillus probiotics 
used for monogastric animals are typically isolated from the 
gastrointestinal tract (GIT) of those animals or from other 
sources such as soil, aquatic environment, plants, and marine 
algae [23]. The majority of characterized Bacillus probiotic 
strains are members of the subtilis species or closely related 
ones [14]. Table 1 provides examples of sources of Bacillus 
strains used in different monogastric animal models along 
with their principal identification technique.

Functional Criteria for Desirable Bacillus 
Probiotic Properties

Bacillus species, which enjoy GRAS status from the US 
Food and Drug Administration (FDA) and are included 
in the Qualified Presumption of Safety (QPS) list of the 

European Food Safety Authority (EFSA), have recently 
shown tremendous promise as probiotics [23]. Functional, 
safety, and technological characteristics must be considered 
in the selection process of probiotic Bacillus destined to 
monogastric animals as illustrated in Fig. 1. The probiotic 
strain must fulfill several functional aspects. For instance, 
it is preferred that probiotic candidate is a GRAS normal 
resident of the targeted monogastric gut, and capable of 
persisting in the GIT of that animal [30]. Also, survival to 
the digestive stresses, exhibition of antagonistic and anti-
mutagenic properties, efficiency in immunomodulation and 
competitive exclusion (CE) are prerequisite [30].

To provide the expected positive effects on the monogas-
tric animal host, probiotic Bacillus must have the ability to 
survive, colonize, and persist, at least transitorily, in the host 
GIT [31]. Several Bacillus strains have been screened using 
in vitro as well as in vivo models for their potential probiotic  
functional properties [32]. Bacillus spores can withstand 
harsh environmental stresses like the extreme acidic pH of 
the stomach, and tolerate bile salts along with other adverse 
conditions within the animal GIT [32]. Besides, bacilli are 

Fig. 1  Diagram providing the different criteria required for the selection of Bacillus strains as promising probiotics
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more stable during handling and storage of food and phar-
maceutical products, an advantageous property that make 
them pretty ingredients in formulating preparations with 
health promoting potential [32].

Bacillus Probiotics Induce Gut Microbiota 
Modulation

Ability to adhere to the intestinal mucosa is among the 
principal selection criteria for novel and existing probiotic 
strains. The property of Bacillus spore adhesion is essen-
tial for colonization, leading to the interaction between the 
probiotic and targeted host that is also linked to the abil-
ity of the strain to modulate the immune function [8]. Sup-
plementation of Bacillus as DFM can positively influence 
host gut microbiota composition by reducing the competi-
tion for nutrients which contributes to increasing beneficial 
bacteria and improving GIT health [8]. Also, probiotics that 
belong to the genus Bacillus as well as the Lactobacillus 
and Saccharomyces genera, are among the most common 
supplements with proven ability to lower Firmicutes/Bac-
teroidetes ratio and prevent obesity [33]. Wang et al. (2017) 
suggested that Bacillus amyloliquefaciens SC06 can help to 
prevent obesity and its related liver damage by modifying 
the antioxidant capacity of swine intestinal epithelial cells 
and host gut microbiota [34]. In chickens, microbial coloni-
zation of the GIT starts at hatch and quickly increases [35]. 
Within 24 h, the microbial count in the proximal and distal 
intestine can attain  108 and  1010 cells/g, respectively [35]. 
Early supplementation with Bacillus spp. as a DFM is vital 
to maintain a durable presence within the animal’s gut com-
munity [9]. Previous studies have proved that application of 
Bacillus spp. as a DFM improves in general the intestinal 
health and growth performance in chickens, but once more, 
the exact involved mechanisms are still unknown [9]. The 
literature reports that Bacillus spores are not reactive before 
ingestion [36]. But, they have the ability to quickly germinate 
once becoming within the chickens’ GIT environment. The 
vegetative cells can develop from spores within 20 h after 
oral administration and could be detected all along the small 
intestine segments, ceca, and colon [37]. Bacillus DFM could 
influence the distribution and colonization of the intrinsic 
microbiota along the GIT and stimulate the growth and pro-
liferation of other beneficial health-promoting bacteria [9]. 
One presented theory speculates that the growth-promoting 
effects of DFM in poultry production are principally linked 
to reduced numbering and diversity of the innate microbiota, 
which allows for increased nutrients absorption by the host 
intestinal epithelial cells and reduced detrimental effects of 
the microbial-derived metabolites [3].

Bacillus Probiotics Induce Gut Morphological 
and Immunological Changes

The probiotic-derived metabolites, DNA, and components 
of cell wall can contribute to the stimulation of the host 
immune system. This can be achieved throughout interaction 
with epithelial cells and effectors/regulators of the innate and 
adaptive immune responses like monocytes, macrophages, 
and dendritic cells. The immune response mechanisms might 
be local and restricted to the stimulation of host gut immu-
nity such as stimulation of the production of secretory IgA 
(sIgA) or systemic immunity [38]. The bacterial adherence 
to intestinal enterocytes is not only helpful for gut coloniza-
tion, but can as well boost the gut-specific lymphoid tissue 
immune cells [39]. Previous reports strongly suggest that 
spores of B. subtilis are able to translocate through microfold 
cells that are located in the epithelium covering mucosa-
associated lymphoid tissues like the Peyer’s patches (PPs) of 
the small intestine prior to be transported to efferent lymph 
nodes [40]. These PPs are rich in antigen-presenting cells 
including dendritic cells and macrophages, that are widely 
contributing to antigens processing and presentation to B 
cells allowing the production of sIgA [41]. Stimulation of 
sIgA production as the principal antibody class in mucosal 
secretions is crucial for neutralization of pathogenic micro-
organisms [41].

On the other hand, various studies have revealed that 
spores of Bacillus can similarly stimulate phagocytosis 
mediated by macrophages that are a cornerstone of the 
innate immune system [42]. It is well documented that the 
immune function modulation or the host immune systems 
stimulation are vital characteristics of possible probiotic can-
didates and are linked to their antagonism potential [32]. 
These antagonistic effects of probiotics are indispensable 
to stop or lower pathogenic infection [32]. Bacillus DFM 
can interact directly with the host to generate a beneficial 
immune response against harmful pathogens at the intes-
tinal epithelium of chickens [9]. Good gut health plays a 
key role in enhancing effectiveness of poultry production as 
it directly correlates with improved growth and production 
performances [9]. Many factors linked to disease and stress 
are able to cause disruption of intestinal epithelial integrity 
that consequently reduces nutrients absorption efficiency 
and increases the risk of pathogenic invasion and inflam-
matory diseases development. Thus, a notable reduction in 
growth performance is expected [43]. Animal’s gut barrier 
function should be preserved in order to protect the host 
from dangerous biological or chemical invading agents [44]. 
This can be achieved by two major mechanisms including 
the epithelial goblet cells-mediated secretion of the protec-
tive mucus blanket [45]. The mucus is composed mainly of 
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mucin glycoproteins responsible for the viscous properties, 
water, salts, lipids, and several proteins exhibiting protec-
tive functions [46]. DFM, such as those belonging to the 
genus Bacillus, can induce the expression of MUC2 gene 
responsible for mucin production, to neutralize the inflam-
mation triggered by pathogenic germs [46]. When inducing 
an inflammatory response in chickens by intraperitoneal 
injection of lipopolysaccharide (LPS) from Escherichia coli 
[47], the group which was fed with the probiotic B. subtilis 
1781 strain showed significant increase in the ileum MUC2 
expression levels [48]. This up-regulation corroborated 
with remarkable reduce in inflammation signs as observed 
by decreased α-1-acid glycoprotein (α-1-AGP) expression, 
that is frequently associated with severe colitis [48]. In addi-
tion, the up-regulation of MUC2 expression was found to 
be also probably induced in response to the LPS circulating 
in chicken blood, and not exclusively just as a result of the 
direct contact with intestinal epithelium [48].

Metabolic Features of the Genus Bacillus

The antagonistic activities are of major importance in the 
procedure of potential probiotics screening [49]. These 
activities are tightly associated with the ability to release 
antimicrobial agents supporting CE of pathogens [20]. The 
term “CE” is defined as the aptitude of desirable probiotic 
bacteria to enter in competition with undesirable gastroin-
testinal pathogens for adhesion to intestinal surfaces [50]. 
For instance, among the desirable probiotic properties of 
B. subtilis KMP-N004 is the inhibition of pathogens adhe-
sion to porcine enterocytes [51]. Bacillus strains are known 
as potent producers of a wide variety of antimicrobial sub-
stances among them, lipopeptides like surfactin, iturin, and 
fengycin; bacteriocins; and bacteriocin-like inhibitory sub-
stances [52, 53]. In general, these antimicrobial compounds 
are principally efficient against Gram-positive bacterial 
pathogens, but few of them also show antagonistic potential 
toward some pathogenic Gram-negative bacteria and fungi 
[54].

On another hand, it is well documented that the recent tre-
mendous potential of Bacillus species as probiotics is tightly 
linked to their inherent capacity to produce spores from ini-
tial vegetative cells [55]. They possess several advantages 
over other non-spore formers such as members of the genus 
Lactobacillus [55]. Indeed, Bacillus spores are naturally 
stable and able to resist harsh environmental stressful con-
ditions and transitions during storage and handling with-
out any loss in their vital potential [56]. This includes high 
temperatures of the feed pelletization procedure (around 
80 °C), extreme pH, dehydration, and high pressures [57]. 
In addition, vitality of Bacillus spores is often not compro-
mised by bile and acidic pH values encountered in the GIT 

of monogastrics compared to vegetative cells [58]. Several 
reports have claimed that ingested Bacillus spores are able to 
germinate in the intestinal compartment and may exert their 
expected beneficial effects on the monogastric animal host 
through the production of wide range of bioactive metabo-
lites, including the release of antimicrobial compounds 
supporting CE of pathogenic bacteria [23]. The adhesion 
to intestinal epithelial cells of the host is among the key 
advantageous properties examined during the procedure of 
probiotic candidates screening [59]. Generally, the spores of 
Bacillus are characterized by a higher hydrophobicity and 
superior adhesion ability when compared to the vegetative 
cells living form [60]. A correlation between surface hydro-
phobicity and good adhesion capacity of Bacillus isolates 
has also been reported [61]. The superior hydrophobicity of 
spores is most likely attributable to the existence of surface-
associated proteins that probably play key role in the adhe-
sion property of probiotic strains to the GIT [23].

In addition to spores formation ability and production of 
antimicrobial compounds, several Bacillus probiotic strains 
are able to liberate directly in the lumen of the host digestive 
tract, a variety of extracellular digestive enzymes including 
phytase, xylanase, β-glucanase, β-mannanase, amylase, pro-
tease, and lipase [56]. These enzymes can improve feed con-
version ratio (FCR) by reduction of anti-nutritional factors 
in plant-derived feedstuffs like non-starch polysaccharides 
(NSP), enhancement of feed ingredients digestibility, and 
absorption of nutrients [62]. While the principal interest of 
using these enzymes is the improvement of digestion, some 
of them can also be implicated in the lysing of the cell wall 
components of pathogenic microbes which in turn causes the 
global resistance of the animal host against these pathogens 
[63]. It is well known that the abundance of NSP in diets 
increases the host intestinal viscosity and affects negatively 
the digestibility, the nutrients absorption, and growth per-
formance [64]. Neutralizing the adverse effects generated by 
NSP can be achieved by supplementation of animal diet with 
the corresponding microbial enzymes or a multi-enzymes 
producing DFM [65].

Safety Criteria for Selection of Promising 
Bacillus Probiotic Strains

Safety aspects that probiotic candidates must meet include 
specifications like origin (healthy relevant animals’ GIT) 
as well as lack of any traits of pathogenicity, nondigestive 
discomforts, and heritable antibiotic resistance genes [58]. 
The identity of microorganisms is usually ascertained pri-
marily before evaluating them for their probiotic attributes 
[66]. Microbes are subjected to a battery of morphological, 
biochemical, and molecular tests to assign them to the corre-
sponding genus and species [67]. In general, the 16S rDNA 
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gene sequencing proved to be insufficient to easily distin-
guish between Bacillus species that are closely related [68]. 
Analysis of additional molecular markers like gyrA or gyrB 
genes can be helpful [68]. Closely related bacterial isolates 
from the same species are further differentiated to sub spe-
cies and strain level using newer and established techniques, 
such as DNA fingerprinting, sequencing of selected genes, 
oligonucleotide probes, pulse-field gel electrophoresis etc. 
[69]. Other molecular techniques, including denaturing/
temperature gradient gel electrophoresis and fluorescence 
in situ hybridization, are utilized to identify and characterize 
probiotic strains [70]. Recent development in whole genome 
sequencing technologies allows precise taxonomic identifi-
cation of potential Bacillus probiotic candidates and espe-
cially provides information about the presence of antibiotic 
resistance genes and virulence factors as well as the possible 
pathogenicity toward monogastric host [71].

To confirm that probiotic products are safe to consume 
and safeguarding health, regulatory quality control, and 
strict rules are required [71]. Among these, the disadvantage 
of toxin production that can be detected in some Bacillus 
strains is a main safety problem for their administration to 
animal hosts [32]. B. cereus is one of the more important 
causes of food poisoning. It produces one emetic toxin and 
different enterotoxins [72]. The diarrheal syndrome is caused 
by the production of three different heat-labile enterotox-
ins all through vegetative growth of B. cereus in the small 
intestine [72], whereas the emetic-type illness is caused by 
a heat-stable emetic toxin called cereulide, produced under 
various conditions during the growth of B. cereus in the food 
itself [73]. B. cereus also has the ability to release various 
other kinds of toxins such as enterotoxin T, enterotoxin FM, 
and cytotoxin K [72]. In addition to the well-documented 
previously cited toxins, many other virulence factors includ-
ing hemolysins and cerolysins are also involved in the toxic 
activity of enterotoxins from B. cereus strains [74]. Besides 
the well-known pathogenic B. cereus, sporadically other spe-
cies from the Bacillus genus showed the ability to release 
metabolites exhibiting significant toxicity towards mamma-
lian cells, such as the heat-stable toxin amylosin, that can be 
liberated by bacilli associated with food poisoning like B. 
subtilis, B. amyloliquefaciens, and B. mojavensis [75]. Dur-
ing the screening strategy, strains showing cytotoxicity are 
not endorsed for use as probiotic candidates [76].

Another threat that should be seriously considered is 
the capacity of some Bacillus isolates to hold transmissi-
ble antibiotic resistance determinants, especially resistance 
genes that are carried by plasmids as well as mobile genetic 
elements such as transposons and insertion sequences 
[77]. Horizontal gene transfer within the host GIT might 
occur between probiotic and opportunistic or pathogenic 

bacterial strains. For instance, aminoglycosides, macrolides, 
β-lactams, and chloramphenicol resistance genes have been 
detected in B. clausii DSM8716 probiotic strain [78, 79]. 
The tetracycline resistance gene tet M that belongs to the B. 
cereus group, was found to be carried by Tn916-like trans-
poson that could be transmitted to B. subtilis, Staphylococ-
cus aureus, and enterococci [23]. Besides, the tet K gene 
conferring resistance to chlortetracycline in B. subtilis was 
carried by a plasmid which could be received by E. coli 
via conjugative transfer [80]. Transfer of genes conferring 
resistance to antibiotics between bacteria contributes to the 
development of acquired antibiotic resistances which result 
in the failure of treating certain infections and economic 
losses in animal production systems [81]. For this reason, the 
EFSA has recommended that the Bacillus-based products 
intended for use as feed supplements should be checked for 
sensitivity to antibiotics commonly used in human and vet-
erinary medicine to avoid any resistance spreading [82]. The 
antimicrobial resistances that should be checked in Bacil-
lus species include for example, vancomycin, tetracycline, 
chloramphenicol, gentamicin, kanamycin, streptomycin, 
erythromycin, and clindamycin [82].

Technological Requirements to Assess 
Probiotic Strain Viability and Stability

In addition to the functional and safety aspects, probiotic 
bacteria must also meet the technological criteria linked 
to the production and processing of animal feed. Moreo-
ver, resistance to in vitro as well as in vivo conditions after 
administration of the probiotic is important [83]. For exam-
ple, the probiotic microorganism should not be killed by the 
host’s defense mechanisms and able to withstand the specific 
conditions occurring during the transit in the monogastric 
host [83]. A major quality criterion that must be met in the 
manufacture, regulation, and marketing of DFM is the pre-
cise definition of the number of viable cells in the feed addi-
tive product in accordance with the label [84]. A variety of 
methods can be used to determine the bacterial concentra-
tion in commercial preparations. These include traditional 
plating assays, optical density measurements (turbidity), 
direct counting methods like flow cytometry, quantitative 
polymerase chain reaction, cell mass determination, and 
measurements of cellular activity [85]. Depending on the 
precise product matrix, one assay technique can be chosen 
for better precision and reproducibility [86]. On the other 
hand, economical evaluation of probiotic preparation and 
endorsement by an official certification service must be done 
prior to large scale production and commercialization. A 
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diagram that summarizes the diverse criteria that Bacillus 
probiotic strains must meet in order to be considered benefi-
cial feed supplements is shown in Fig. 1.

Modes of Action and Beneficial Effects 
of Bacillus for Monogastric Animals

Probiotic bacteria from the genus Bacillus are expected to 
balance the gut microbiota generating beneficial activities to 
the animal host. We classified the modes of action of these 
DFM in the following:

Competition for Adhesion to Epithelial Layer

The mechanism by which probiotic bacteria compete for 
intestinal adhesion sites is designated as “CE.” Among the 
main properties required for selection of adequate Bacillus 
DFM candidates are the strain ability to adhere to the epi-
thelial surface, colonize the monogastric host gut, and sub-
sequently form a barrier on the intestinal surface to prevent 
the adhesion of pathogenic microorganisms [87]. A recent 
study has demonstrated that B. subtilis C-3102 supplemen-
tation over a period of 3 weeks accelerates exclusion of the 
pathogen Salmonella enterica from the cecum, liver, and 
spleen of the chickens in a dose-dependent manner [88]. 
Many Bacillus probiotic candidates have shown excellent 
in vitro adhesion efficacy. For instance, the B. amylolique-
faciens US573 was found to exhibit good adhesion effi-
cacy to chicken enterocytes collected from the duodenum, 
jejunum, and ileum [89]. In addition, Gu et al. (2015) have 
observed that the B. coagulans CGMCC 9951 strain exhib-
ited stronger adhesion to pig intestinal mucus than that of 
B. subtilis JT143 and L. acidophilus LY24 strains isolated 
from two commercial probiotic preparations [90]. High 
in vitro adhesion to mucus was also shown for the Bacil-
lus amyloliquefaciens COFCAU_P1 strain isolated from the 
digestive tract of a freshwater teleost rohu (Labeo rohita) 
[91]. Mucus-binding and surface-associated proteins are 
among the principal determinants involved in the adhesion 
as revealed by genome sequencing of many Bacillus probi-
otic strains [90].

Production of Inhibitory Substances

Many Bacillus species are renowned producers of antimi-
crobial peptides, especially bacteriocins which are small 
ribosomally synthesized peptides released for bacterial  
antagonism in a given natural ecosystem [92]. These Bacil- 
lus-derived bacteriocins affect principally Gram-positive 

bacteria by binding onto their outer membranes for disrup-
tion of the membrane biosynthesis [93]. Bacteriocins can 
serve as colonizing peptides by facilitating the installation 
of probiotic strain into an already occupied niche on the 
intestinal epithelium. The competitive advantage confer to 
the probiotic Bacillus the capacity to invade host intestine 
surfaces [94]. Generally, bacteriocins produced by strains 
that are members of the genus Bacillus have the reputation to 
exhibit a wide antibacterial spectrum and to be active under 
extreme temperature and pH conditions [95]. For instance, 
B. amyloliquefaciens ZJHD3-06 strain isolated from the 
marine fish Epinephelus areolatus produces a novel bacteri-
ocin namely “CAMT2” that has antagonistic activity against 
Listeria monocytogenes, Staphylococcus aureus, Escheri-
chia coli, and Vibrio parahaemolyticus [96].

Immune System Modulation

Modulation of immune system is one of the most common 
benefits linked to dietary probiotic inclusion. The observed 
positive effects are depending on the monogastric animal, 
host immune system, probiotic strains used, and conditions 
of application [97]. For example, improvement in immune 
function reflected by serum IgA and IgM increases was 
noted in chickens fed with diets containing a mixture of B. 
subtilis BYS2 and BG5 [98]. Similarly, administration of B. 
subtilis promoted the increase in IgA concentrations in pigs 
[99]. Reduce or prevention of intestinal inflammatory reac-
tions has been also observed in poultry following the admin-
istration of B. subtilis-based probiotics [100]. Regarding fish 
species, increase in lysozyme activity is among the noted 
beneficial effects of probiotic supplementation on immune 
system modulation. Lysozyme is an important defense pro-
tein (non-specific immunity). It has the ability to lyse the 
cell walls of Gram-positive bacteria and plays a key role 
in combating infection in fish. Many studies have shown 
that inclusion of different Bacillus subtilis strains in diets of 
various fish species increases mucus lysozyme activity. For 
instance, hybrid grouper fed with B. subtilis 6–3-1 strain 
exhibited significantly higher lysozyme activity level than 
fish fed with a control diet without probiotic supplementa-
tion [101].

Production of Extracellular Hydrolytic Enzymes

Currently, members of the spore-forming Bacillus genus are 
considered among the main sources of DFM destined for 
monogastric animals [102]. They have the ability to produce 
a wide range of extracellular enzymes that actively contrib-
ute to enhancement of digestion (carbohydrates hydrolases 
and proteolytic enzymes) and nutrients absorption [103]. A 
previous study reported that the selection of Bacillus DFM 
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was depending on in vitro enzyme secretion profiles, which 
associated with reduce in supernatant viscosity and prolif-
eration of Clostridium perfringens [62]. It was suggested 
that the extracellular enzymes which are secreted by the 
DFM could reduce the quantity of available nutrients that 
are required for growth of C. perfringens, stimulating the 
rate of transit of the digesta through the GIT and improving 
the intestinal microbial environment [104]. Cereal grains 
are among the regularly used ingredients in livestock animal 
feed. They are rich in anti-nutrional factors including NSP, 
resistant starch, and non-digestible proteins that are weakly 
digested by monogastrics. Additionally, the NSP can also 
exert anti-nutritive effects by chelating vital minerals like 
calcium, iron, and magnesium, reducing nutrients absorp-
tion as a result of increased ileal viscosity, and altering the 
host gut microbiota. Digestive enzymes such as xylanases, 
amylases, and proteases are regularly supplemented to ani-
mal feed to improve growth performance by enhancement 
of digestibility and alleviation of the anti-nutritive effects 
of poorly digested feed ingredients [105]. Additionally, the 
hydrolysis products of animal feedstuffs generated by exog-
enous enzymes used as feed supplements can contain sub-
stances like oligosaccharides that may promote the growth 
or metabolic activities of beneficial bacteria. Altogether, 
these observations suggest that the administration of par-
ticular enzyme blends can confer an additional advantage 
when combined with suitable DFM. Table 2 shows the main 
involved enzymes and their functions.

Application of Probiotics in Livestock

In Poultry

Bacillus probiotics are commonly utilized in the poultry sec-
tor. They can improve the growth and production efficiency 

of poultry birds, protect against pathogenic microbes, 
enhance the immune system responses, strengthen bones, and 
assist in fighting off parasite infections. Infection of chickens 
with some pathogenic bacteria including Salmonella spp., 
Clostridium perfringens and Campylobacter jejuni increases 
the risk of contamination at the different stages along the 
food chain resulting in a dangerous condition simultaneously 
for poultry and human. Therefore, probiotics can act as a  
natural alternative against of Campylobacter, Salmonella, and 
Escherichia coli in the preharvest stages [58]. For instance, 
the number of Enterobacteriaceae in the excreta decreased 
following B. subtilis C-3102 strain administration [112]. 
Feeding of broilers with this B. subtilis strain also causes 
a decrease in shedding of Campylobacter [113]. As well, 
dietary supplementation with either B. subtilis DSM17299 
or B. cereus var. leads to significantly reduced Salmonella 
colonization [23]. Furthermore, B. subtilis PB6 addition to 
broilers causes a decreased number of C. perfringens in the 
intestine [114]. In addition to preventing gut colonization by 
the pathogen, feeding the poultry with Bacillus probiotic can 
enhance the FCR and improve weight gain. Other benefits for 
Bacillus as probiotic include the effects on broilers intestine 
histology and morphology, as the increase in the villus height 
as well as the villus height to crypt dept ratio. These effects, 
contribute to improving digestibility and increasing intes-
tinal nutrients absorption capacity [115]. Broilers fed diets 
supplemented with Bacillus enzyme-producing probiotics 
showed decreased digesta viscosity that is caused by soluble 
NSP, which are known by their negative impact on availabil-
ity and absorption of nutrients [116]. Besides enhancing the 
growth performances and promoting health of poultry, feed 
supplementation with Bacillus could also improve the meat 
quality (increase in meat lightness, redness and yellowness) 
[117] and eggs (increase in eggshell strength and thickness, 
yolk color score, Haugh unit, and decrease in cholesterol con-
tent of yolk) [118]. Bacillus can limit influence from toxin 

Table 2  Main enzymes secreted by Bacillus strains and their functions in monogastric animals

Enzyme Producer strain Substrate Function Reference

Protease Bacillus cereus AT Proteins Contributes to proteins digestion and improves FCR and weight gain [106]
Lipase Bacillus methylotrophicus PS3 Lipids Digests lipids [107]
Cellulase Bacillus subtilis BY-3 Cellulose Hydrolyzes cellulose, and enhances fiber degradation [108]
Xylanase Bacillus subtilis E44 Xylans Contributes to degradation of NSP as well as release of nutrients and 

decreases intestinal chyme viscosity increasing animal production 
efficiency

[106]

Phytase Bacillus subtilis US417 Phytic acid Releases phosphorus (P) from phytates contributing to better  
bioavailability of P and vital minerals and enhancement of growth  
performance and health of animals along with environment protection

[109]

Keratinase Bacillus subtilis S14 Keratin Degrades keratin and improve digestion [110]
Mannanase Bacillus amyloliquefaciens 10A1 Mannans Contributes to degradation of NSP and decreases intestinal chyme 

viscosity increasing animal production performance
[111]
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in contaminated broilers feed and decrease emission of  NH3 
from poultry manure [23]. The increase in gut permeability 
caused by several enteric pathogens such as Salmonella spp 
results damage in the intestinal tight junction that referred as 
“'leaky gut”' [119]. With inflammation, the leakage of serum 
fluorescein isothiocyanate dextran (FITC-d) increases which 
is judged as indicator to estimate enteric inflammation pro-
duced with gut permeability in broiler chickens [120]. During 
therapeutic study, the observed significant decrease (p < 0.05) 
of serum FITC-d level by DFM administration as compared 
to the untreated control group resulted in the reduction of 
negative effects of S. Enteritidis by increasing the tight junc-
tion proteins organization [121]. The vital role of antioxidant 
enzymes like super oxide dismutase (SOD) includes the deg-
radation of reactive oxygen species (ROS) such as hydrogen 
peroxide and superoxide anions that are produced during the 
inflammatory process [122]. A significant (p < 0.05) increase 
of SOD activity was observed in the control group of the pro-
phylactic and therapeutic study, when compared to the group 
fed with the DFM [121]. The increase in SOD activity in the 
control group could be linked to the reaction to increased oxi-
dative stress attributable to severe intestinal damage caused 
by S. Enteritidis [121]. Also, the large increase in the amount 
of IgA (p < 0.05) observed in both in vivo studies may be 
related with disruption of the intestinal epithelium, as intesti-
nal IgA secretion acts as the first line of defense in protecting 
the intestinal epithelium from enteric toxins and pathogenic 
microorganisms, counteracting inflammatory processes and 
boosting the mechanism of non-specific defense [123]. On 
the other hand, as a consequence of DFM administration, the 
decrease in SOD activity as well as IgA level may be attrib-
uted to its anti-inflammatory and immune modulating proper-
ties to reduce the harmful effects of S. Enteritidis. This can 
minimize the intestinal morphological and immunological 
changes by cytoprotective proteins and modulation/regulation 
of cytokines expression. In addition, with implied health ben-
efits for birds, the DFM was able to sustain bacterial species 
in the intestine while reducing potentially harmful popula-
tions. Hernandez-Patlan et al. (2019) showed that the addi-
tion of B. subtilis DSM 32,315 in broilers feed may stabilize 
the microbiome and prevent opportunistic pathogens like 
Campylobacter jejuni, E. coli, and various Salmonella spp. 
from other intestinal disorders [104]. The possible impacts 
of feeding with B. subtilis DSM32315 strain on physiological 
improvements and GIT function and immune system should 
be investigated to explain other potential actions of the pro-
biotic that may have involvement in promoting health and 
increasing growth performance of poultry [104].

In Pigs

Similar to poultry, newborn pigs possess a sterile gut and 
gradually develop their typical microbiota through contact 
with their mother and the surrounding environment. The 
cycles after birth and post-weaning are the most susceptible 
times in the pig’s life in which the removal of in-feed anti-
microbial agents could have an effect on mortality [124]. 
Pigs are particularly sensitive to gut invasion by bacterial 
pathogens responsible for growth decrease and diarrhea dur- 
ing those cycles [125]. Furthermore, weaning exposes the 
piglets to a biological stress that can lead to dysfunctions of 
the intestinal and immune systems and can lead to decreased 
feed intake and growth along with altered pig health, par-
ticularly in the first week after weaning [126]. It has been 
claimed that during the first week after weaning, the micro-
biota in the pig gut fluctuates, and a duration of 2–3 weeks 
post-weaning is needed to stabilize gut microbes and com-
pletely improve their fermentation ability [127]. During 
these life stages, the piglet must be exposed to a shielding 
gut microbiota that would defend towards environmentally 
acquired pathogenic germs by both direct and indirect means 
(stimulation of host immune system), with the additional 
benefit of increasing the digestibility and absorption of nutri-
ents [128]. Probiotic administration has been reported to 
influence in a positive way the feed intake and average live 
weight with greater neonatal piglet size and vitality at the 
same time [58]. Supplementation of pigs feed with probiot-
ics can result in an improvement in meat quality attributes 
like color, marbling, tenderness, juiciness, and flavor [58]. In 
addition, pathogenic bacteria (E. coli, Salmonella, Clostrid-
ium difficile, Clostridium perfringens, Listeria), parasites 
(Isospora, Cryptosporidium), or viruses (Coronavirus, Rota-
virus), which are triggering growth reduction and diarrhea, 
are more susceptible to intestinal colonization from birth to 
post-weaning piglets [127]. Many studies have assessed the 
effectiveness of probiotics during this episode and recom-
mended the use of probiotics in this period [58]. Bacillus 
probiotic strains have been widely used in pigs. They can 
help to improve host gut health and immunity and reduce 
environmental pollutants like odor gas emissions from pig 
manure. For instance, inclusion of Bacillus subtilis H4 strain 
as feed additive resulted in a decrease in scouring in weaned 
pigs challenged with enterotoxigenic E. coli K88. Also, sup- 
plementation of basal diets for growing-finishing pigs with 
BioPlus 2B (B. licheniformis and B. subtilis) resulted in a  
decrease in morbidity and mortality, increase in fattening  
pig performance parameters and improve of carcass con- 
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sistency [23]. In addition, this combination of B. subtilis  
and B. licheniformis spores decreased body weight of gestat-
ing sows, reduced prevalence of diarrhea and mortality in 
piglets, increased weaning litter weight and growth rate of 
young piglets [58]. Moreover, the use of B. cereus as probi-
otic conferred not just a lower incidence of diarrhea in pigs, 
but also a better FCR [58].

In Fish

In aquaculture, dietary supplementation of probiotics offers 
an environmentally friendly preventive prophylactic measure 
in terms of fish growth performance and health [129]. Pro-
biotic strains that belong to the genus Bacillus are thought 
to be important tools for promoting sustainable aquaculture 
owing to their significant beneficial effects for aquaculture 
industry. They exert positive effects through multiple mecha-
nisms like promotion of growth performance by production 
of enzymes increasing efficiency of feed utilization, sup-
pression of disease invasion by stimulation of immunity, 
and improvement of aquatic ecosystems for growth and 
reproduction of fishes [8]. For instance, optimum supple-
mentation of probiotic Bacillus species to Oreochromis 
mossambicus and Lates calcarifer can increase the specific 
growth rate and decrease the FCR. Bacillus can contribute 
to increasing the fecundity, survival rate, number of red and 
white blood cells in blood, stress, and disease resistance. 
Also, administration of Bacillus probiotics can stimulate 
the activity of intestinal enzymes contributing to efficient 
digestion in fish [129]. On the other hand, by secretion of 
enzymes or release of auto-inducer antagonists, certain pro-
biotic bacteria including B. cereus strains permit degradation 
of pathogen signaling molecules (quorum quenching) [130].

In aquaculture, the administration of Bacillus probiotic 
strains can enhance the disease resistance against several 
bacterial pathogens. Obviously, following diet supple-
mentation with Bacillus, an increased resistance against 
Streptococcus iniae [131], Aeromonas hydrophila [132], 
Acinetobacter sp. and Acinetobacter tandoii [28], and Aer-
omonas salmonicida, Streptococcus agalactiae, Lactococ-
cus garvieae, and Vibrio parahemolyticus [133] has been 
recorded. The improvement in health status and disease 
resistance by dietary administration of B. subtilis probiotic 
strains has also been observed in different aquatic species 
including rainbow trout [134] and tilapia [135]. Administra-
tion of Bacillus strain TC22 (at  109 CFU  g−1 of feed) alone 
or in combination with prebiotic fructo-oligosaccharide at 
0.5%, resulted in increased phagocytosis, respiratory burst, 
and phenoloxidase activity of sea cucumber Apostichopus 
japonicas and disease resistance against Vibrio splendidus 
infection [136]. Bacillus sp. (PM4) and B. subtilis from 
a commercial product that demonstrated high inhibitory 
activity towards V. mimicus and V. cholera non-01, while 

B. mycoides, isolated from marron inhibited just V. mimicus 
[137]. Recently, B. subtilis WS1A strain originating from a 
Bay of Bengal sponge demonstrated antagonistic activity on 
fish bacterial pathogens [138].

Probiotic bacilli have been reported to greatly improve 
the quality of water by preserving the equilibrium of several 
physicochemical parameters, regulating of the composition 
and abundance of microbial species by antagonism, decom-
posing various organic waste, and keeping the ecosystem 
safe for aquaculture [139]. It is evident that Bacillus has 
a huge potential to contribute to the sustainability of fish 
farming by improving water quality and preserving the total 
welding of cultivated fish such as growth improvement, feed 
usage, immune system responses, and defense against infec-
tious diseases, especially infection by pathogenic bacteria 
[8]. The current state of Bacillus probiotics use in aquacul-
ture needs intensive further research and vigilant application.

Bacillus Spore Innovation Entailing 
Nanobiotechnology, Adsorption, 
and Surface Display of Proteins 
for Improving Feed Utilization Efficiency

Bacillus subtilis has the ability to adapt to severe nutrients 
scarcity by entering in a complex differentiation process, 
resulting in the development of highly resistant spores. The 
spore consists of a central core compartment containing a 
clone of the chromosome and is enveloped by a dense layer 
known as the cortex, a transformed type of peptidoglycan. A 
multilayered protein coat covered the cortex. It is formed by 
an inner layer attached to the cortex in addition to an outer 
layer of a protein structure that protects the spore from toxic 
chemicals, lytic enzymes, and protozoan phagocytic predation 
[140]. The characteristics of coat layers of Bacillus spores 
have recently qualified them as emerging nanostructure that 
provides a fresh and fascinating surface to display several bio-
molecules [141]. Since B. subtilis has a clear safety record 
(GRAS) as an additive in human as well as animal prepara-
tions, display of functional molecules like enzymes on spore 
coat has great potential of application in the field of probiot-
ics [142]. The display of feed enzymes on the Bacillus spore 
surface can guarantee effective implementation of enzymatic 
action in situ at a reasonable expense. Xylanase, hemicellu-
lase, cellulase, protease, glycanase, or phytase are examples 
of feed enzymes that are candidates for display [140]. Bacillus 
strains are not only important as probiotics for animal farm-
ing, but may also be of use as a vehicle system for a number  
of molecules in so-called nanobiotechnology [23]. Recently, 
the extensive developments in molecular biology as well as 
cell biology have contributed to the identification of a wide 
range of large bacterial and viral antigens [143]. However, 
the translation of such antigens into efficient vaccines is con- 
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ditioned by a delivery mechanism that is able to avoid loss 
of biological activity that sometimes impairs the potency of 
antigen [143]. Recently, Bacillus spp. spores have proven 
their ability to be used to design vaccines for the next genera-
tion [144]. The bacterial spore is a cell form that provides a 
potentially useful method for delivering antigens to mucosal 
surfaces [143]. Spore has unusual properties of resilience and 
can withstand high temperatures, dehydratation, and expo-
sure to solvents and additional toxic chemicals [143]. These 
special features make the Bacillus spore an attractive vehicle 
for the delivery of heterologous proteins, enzymes, antigens, 
and other bioactive molecules to targeted niches, such as the 
GIT [145]. Besides, the spores of recombinant B. subtilis 
have been described as a possible bioremediation device for 
adsorption of ions like nickel [146]. The CotB spore surface 
protein was developed to express eighteen residues of histi-
dine inside the spore coat [146]. When tested to determine 
their efficacy in adsorbing nickel ions, recombinant spores 
proved to be slightly more successful in metal-binding than 
wild type ones [146]. The simple purification process, high 
robustness, and remarkable efficacy of B. subtilis spores in 
nickel binding render the recombinant spore an innovative and 
effective instrument with promising potential for the bioreme-
diation of polluted environments [146].

Conclusion

The aim of the present study was to determine the beneficial 
effects of Bacillus probiotics administration in monogas-
tric animals. The use of Bacillus DFM in these animals is 
increasingly growing, as seen by the increase in research 
studies investigating the regulation of gut microbiome and 
immune activation in these hosts. The ability of Bacillus 
species to survive feed processing and provide the host gut 
with their benefits is an advantage over several other widely 
studied non-Bacillus-based DFM, in addition to their com-
mercial availability for large-scale use. There is an evidence 
that through decreasing the excessive growth of bacteria in 
the small intestine via the development of antimicrobial 
peptides, Bacillus DFM decrease competition for nutrients, 
encourage the proliferation of beneficial bacteria and pro-
duction of bioactive metabolites, and change the immune 
system response to the host's advantage. All these are exam-
ples of modes of action that culminate in promoting the 
animal growth. Although the beneficial effects of various 
Bacillus bacteria are not identical, the next mechanisms of 
action elucidation steps may comprise the identification of 
global metabolites developed to understand the relationship 
between supplemented probiotic and host bacteria in the 
presence of well performing Bacillus DFM.
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