Skip to main content
Log in

The Combined Effects of Propionic Acid and a Mixture of Bacillus spp. Probiotic in a Plant Protein–Rich Diet on Growth, Digestive Enzyme Activities, Antioxidant Capacity, and Immune-Related Genes mRNA Transcript Abundance in Lates calcarifer Fry

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

A 7-week feeding trial was conducted to evaluate the combined effects of propionic acid (PA, 5 or 10 g/kg) and a multi-strain Bacillus spp. (Bacillus subtilis IS02 (accession no. JN856456) and B. licheniformis IBRC-M 11,319) (1.7 × 107 CFU/g) probiotic in a plant protein source (PP)–rich diet (∼70% of dietary protein derived from PP sources) on performance of Asian sea bass (Lates calcarifer) fry (initial body weight 2.97 ± 0.11 g). In this regard, six isoproteic (∼48%) diets were formulated as follows: a control (without supplementation of the additives); probiotic (only contained Bacillus spp. mixture); 5 g PA/kg diet; 10 g PA/kg diet; probiotic + 5 g PA/kg diet, and probiotic + 10 g PA/kg diet. Specific growth rate in fish fed with 10 g PA/kg (2.84 ± 0.1%) and diets contained blends of probiotic and PA (2.76 ± 0.19% in probiotic + 5 g PA, and 2.79 ± 0.04% in probiotic + 10 g PA) was better than in the control (2.45 ± 0.1%) (P < 0.05). Feed conversion ratio in fish fed with 10 g PA/kg (0.92 ± 0.12) and diets contained blends of probiotic and PA (0.94 ± 0.06 in probiotic + 5 g PA and 0.91 ± 0.02 in probiotic + 10 g PA) was better than in the control (1.24 ± 0.08) (P < 0.05). Digestive enzymes including α-amylase, total alkaline proteases, and bile salt dependent lipase activities improved in fish fed diets contained additives. The activity of glutathione-S-transferase and glutathione reductase enhanced in the liver of fish fed diets contained additives. The relative abundance of lysozyme, interleukin 1β, and insulin-like growth factor-1 genes mRNA transcript showed multifold increase in the liver of fish fed with the 10 g PA/kg and diets contained blends of probiotic and PA (P < 0.05). By considering the above mentioned results, supplementing a PP-rich diet with 10 g PA/kg diet or combination of PA and a mixture of Bacillus spp. probiotic recommended for L. calcarifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fao (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en

  2. Naylor RL, Hardy RW, Buschmann AH et al (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563. https://doi.org/10.1038/s41586-021-03308-6

    Article  CAS  PubMed  Google Scholar 

  3. Adorian TJ, Jamali H, Farsani HG et al (2019) Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob. Proteins 11:248–255. https://doi.org/10.1007/s12602-018-9393-z

    Article  CAS  PubMed  Google Scholar 

  4. Henriksson PJG, Belton B, Murshed-E-Jahan K et al (2018) Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proc Natl Acad Sci 115:2958–2963. https://doi.org/10.1073/pnas.1716530115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Encarnação P (2016) Functional feed additives in aquaculture feeds. In: Aquafeed formulation. Academic Press, Oxford, p 217–237. https://doi.org/10.1016/B978-0-12-800873-7.00005-1

  6. Gatlin Iii DM, Barrows FT, Brown P et al (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38:551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x

    Article  CAS  Google Scholar 

  7. Tacon AG, Metian M (2015) Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23:1–10. https://doi.org/10.1080/23308249.2014.987209

    Article  Google Scholar 

  8. Hua K, Cobcroft JM, Cole A et al (2019) The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1:316–329. https://doi.org/10.1016/j.oneear.2019.10.018

    Article  Google Scholar 

  9. Dawood MA, Koshio S, Esteban MÁ (2018) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult. 10:950–974. https://doi.org/10.1111/raq.12209

    Article  Google Scholar 

  10. Romero J, Feijoó CG, Navarrete P (2012) Antibiotics in aquaculture–use, abuse and alternatives. Health Environ Aquac 159

  11. Wang W, Sun J, Liu C et al (2017) Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquacult Res 48:1–23. https://doi.org/10.1111/are.13161

    Article  Google Scholar 

  12. Reverter M, Tapissier-Bontemps N, Sasal P et al. (2017) Use of medicinal plants in aquaculture. In: Austin B, A N-F (eds) Diagnosis and control of diseases of fish and shellfish. John Wiley & Sons, Chichester, UK, p 223–261. https://doi.org/10.1002/9781119152125.ch9

  13. Ringø E, Song S (2016) Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquacult Nutr 22:4–24. https://doi.org/10.1111/anu.12349

    Article  CAS  Google Scholar 

  14. Akhter N, Wu B, Memon AM et al (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45:733–741. https://doi.org/10.1016/j.fsi.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  15. Dawood MA, Koshio S, Abdel-Daim MM et al (2019) Probiotic application for sustainable aquaculture. Rev. Aquacult. 11:907–924. https://doi.org/10.1111/raq.12272

    Article  Google Scholar 

  16. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174. https://doi.org/10.1159/000342079

    Article  CAS  PubMed  Google Scholar 

  17. Priya PS, Ashwitha A, Thamizharasan K et al (2021) Synergistic effect of durian fruit rind polysaccharide gel encapsulated prebiotic and probiotic dietary supplements on growth performance, immune-related gene expression, and disease resistance in Zebrafish (Danio rerio). Heliyon 7:e06669

    Article  Google Scholar 

  18. El-Kady AA, Magouz FI, Mahmoud SA et al (2022) The effects of some commercial probiotics as water additive on water quality, fish performance, blood biochemical parameters, expression of growth and immune-related genes, and histology of Nile tilapia (Oreochromis niloticus). Aquaculture 546:737249

    Article  CAS  Google Scholar 

  19. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  PubMed  Google Scholar 

  20. Bairagi A, Sarkar Ghosh K, Sen S et al (2004) Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquacult Res 35:436–446. https://doi.org/10.1111/j.1365-2109.2004.01028.x

    Article  Google Scholar 

  21. Wuertz S, Schroeder A, Wanka KM (2021) Probiotics in fish nutrition—long-standing household remedy or native nutraceuticals? Water 13:1348. https://doi.org/10.3390/w13101348

    Article  Google Scholar 

  22. Thurlow CM, Williams MA, Carrias A et al (2019) Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051

    Article  Google Scholar 

  23. Zhou S, Song D, Zhou X et al (2019) Characterization of Bacillus subtilis from gastrointestinal tract of hybrid Hulong grouper (Epinephelus fuscoguttatus× E. lanceolatus) and its effects as probiotic additives. Fish Shellfish Immunol 84:1115–1124. https://doi.org/10.1016/j.fsi.2018.10.058

    Article  CAS  PubMed  Google Scholar 

  24. Kuebutornye FK, Abarike ED, Lu Y et al (2020) Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiol Biochem 1–23. https://doi.org/10.1007/s10695-019-00754-y

  25. Cha J-H, Rahimnejad S, Yang S-Y et al (2013) Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402:50–57. https://doi.org/10.1016/j.aquaculture.2013.03.030

    Article  CAS  Google Scholar 

  26. Abarike ED, Cai J, Lu Y et al (2018) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 82:229–238. https://doi.org/10.1016/j.fsi.2018.08.03

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Yang Y, Song L et al (2021) Effects of dietary supplementation of Lactobacillus plantarum and Bacillus subtilis on growth performance, survival, immune response, antioxidant capacity and digestive enzyme activity in olive flounder (Paralichthys olivaceus). Aquacult. Fish. 6:283–288. https://doi.org/10.1016/j.aaf.2020.10.006

    Article  Google Scholar 

  28. Elsabagh M, Mohamed R, Moustafa EM et al (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquacult Nutr 24:1613–1622. https://doi.org/10.1111/anu.12797

    Article  CAS  Google Scholar 

  29. Niu K-M, Khosravi S, Kothari D et al (2019) Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 93:258–268. https://doi.org/10.1016/j.fsi.2019.07.056

    Article  CAS  PubMed  Google Scholar 

  30. Hoseinifar SH, Sun YZ, Caipang CM (2017) Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquacult Res 48:1380–1391. https://doi.org/10.1111/are.13239

    Article  CAS  Google Scholar 

  31. Ng WK, Koh CB (2017) The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquacult. 9:342–368. https://doi.org/10.1111/raq.12141

    Article  Google Scholar 

  32. Tran NT, Li Z, Wang S et al (2018) Progress and perspectives of short-chain fatty acids in aquaculture. Rev. Aquacult. 12:283–298. https://doi.org/10.1111/raq.12317

    Article  Google Scholar 

  33. Defoirdt T, Boon N, Sorgeloos P et al (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685. https://doi.org/10.1016/j.biotechadv.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  34. Castillo S, Rosales M, Pohlenz C et al (2014) Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture 433:6–12. https://doi.org/10.1016/j.aquaculture.2014.05.038

    Article  CAS  Google Scholar 

  35. Harada E, Kiriyama H, Kobayashi E et al (1988) Postnatal development of biliary and pancreatic exocrine secretion in piglets. Comp Biochem Physiol A: Physiol 91:43–51. https://doi.org/10.1016/0300-9629(88)91590-3

    Article  CAS  Google Scholar 

  36. Ray A, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquacult Nutr 18:465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x

    Article  CAS  Google Scholar 

  37. Kalantarian S, Mirzargar S, Rahmati-Holasoo H et al (2020) Effects of oral administration of acidifier and probiotic on growth performance, digestive enzymes activities and intestinal histomorphology in Salmo trutta caspius (Kessler, 1877). Iran J Fish Sci 19:1532–1555. https://doi.org/10.22092/IJFS.2019.119077

  38. Mathew G (2009) Taxonomy, identification and biology of seabass (Lates calcarifer). In: Imelda J, Edwin JV, V S (eds) Course Manual: National Training on Cage Culture of Seabass. CMFRI & NFDB, Kochi, p 38–43

  39. Reyshari A, Mohammadiazarm H, Mohammadian T et al (2019) Effects of sodium diformate on growth performance, gut microflora, digestive enzymes and innate immunological parameters of Asian sea bass (Lates calcarifer) juveniles. Aquacult Nutr 25:1135–1144. https://doi.org/10.1111/anu.12929

    Article  CAS  Google Scholar 

  40. Aalamifar H, Soltanian S, Vazirzadeh A et al (2020) Dietary butyric acid improved growth, digestive enzyme activities and humoral immune parameters in Barramundi (Lates calcarifer). Aquacult Nutr 26:156–164. https://doi.org/10.1111/anu.12977

    Article  CAS  Google Scholar 

  41. De D, Ghoshal T, Ananda Raja R et al (2015) Growth performance, nutrient digestibility and digestive enzyme activity in Asian seabass, Lates calcarifer juveniles fed diets supplemented with cellulolytic and amylolytic gut bacteria isolated from brackishwater fish. Aquacult Res 46:1688–1698. https://doi.org/10.1111/are.12325

    Article  CAS  Google Scholar 

  42. Mobasher M, Aramesh K, Aldavoud S et al (2008) Proposing a national ethical framework for animal research in Iran. Iran J Public Health 37:39–46

    Google Scholar 

  43. Aoac (2000) Official Methods of Analysis of AOAC International. Gaithersburg Maryland, USA

    Google Scholar 

  44. Gisbert E, Mozanzadeh MT, Kotzamanis Y et al (2016) Weaning wild flathead grey mullet(Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 462:92–100. https://doi.org/10.1016/j.aquaculture.2016.04

    Article  CAS  Google Scholar 

  45. Metais P, Bieth J (1968) Détermination de l’α-amylase (determination of α-amylase). Ann Biol Clin 26:133–142

    CAS  Google Scholar 

  46. Garcia-Carreno F, Haard N (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J Food Biochem 17:97–113. https://doi.org/10.1111/j.1745-4514.1993.tb00864.x

    Article  CAS  Google Scholar 

  47. Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18:59–69. https://doi.org/10.1023/A:1007725513389

    Article  CAS  Google Scholar 

  48. Aebi H (1974) Catalase. In: Methods of enzymatic analysis. Elsevier, p 673–684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3

  49. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480. https://doi.org/10.1016/S0021-9258(19)41206-4

    Article  CAS  PubMed  Google Scholar 

  50. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  CAS  PubMed  Google Scholar 

  51. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  52. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S., S.A. K (eds) Bioinformatics methods and protocols. Springer, Totowa, NJ. p 365–386. https://doi.org/10.1385/1-59259-192-2:365

  53. Mohd-Shaharuddin N, Mohd-Adnan A, Kua B-C et al (2013) Expression profile of immune-related genes in Lates calcarifer infected by Cryptocaryon irritans. Fish Shellfish Immunol 34:762–769. https://doi.org/10.1016/j.fsi.2012.11.052

    Article  CAS  PubMed  Google Scholar 

  54. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  55. Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Feed and feeding practices in aquaculture: 203–233. https://doi.org/10.1016/B978-0-08-100506-4.00008-8

  56. Rasidi R, Jusadi D, Setiawati M et al (2021) Dietary supplementation of humic acid in the feed of juvenile asian seabass, Lates calcarifer to counteract possible negative effects of cadmium accumulation on growth and fish well-being when green mussel (Perna viridis) is used as a feed ingredient. Aquacult Res 52:2550–2568. https://doi.org/10.1111/are.15104

    Article  CAS  Google Scholar 

  57. Carnevali O, De Vivo L, Sulpizio R et al (2006) Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture 258:430–438. https://doi.org/10.1016/j.aquaculture.2006.04.025

    Article  CAS  Google Scholar 

  58. Fuchs V, Schmidt J, Slater M et al (2015) The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 437:243–251. https://doi.org/10.1016/j.aquaculture.2014.12.007

    Article  CAS  Google Scholar 

  59. Lara-Flores M, Olvera-Novoa MA, Guzmán-Méndez BE et al (2003) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216:193–201. https://doi.org/10.1016/S0044-8486(02)00277-6

    Article  Google Scholar 

  60. Suzer C, Çoban D, Kamaci HO et al (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280:140–145. https://doi.org/10.1016/j.aquaculture.2008.04.020

    Article  CAS  Google Scholar 

  61. Park Y, Kim H, Won S et al (2020) Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese eel, Anguilla japonica. Aquacult Nutr 26:316–327. https://doi.org/10.1111/anu.12993

    Article  CAS  Google Scholar 

  62. Sangari M, Sotoudeh E, Bagheri D et al (2021) Growth, body composition, and hematology of yellowfin seabream (Acanthopagrus latus) given feeds supplemented with organic acid salts (sodium acetate and sodium propionate). Aquacult Int 29:261–273. https://doi.org/10.1007/s10499-020-00625-x

    Article  CAS  Google Scholar 

  63. Márquez L, Robles R, Morales GA et al (2012) Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata). Fish Physiol Biochem 38:859–869. https://doi.org/10.1007/s10695-011-9573-1

    Article  CAS  PubMed  Google Scholar 

  64. Thaela M, Jensen M, Pierzynowski S et al (1998) Effect of lactic acid supplementation on pancreatic secretion in pigs after weaning. J Anim Feed Sci 7:181–183. https://doi.org/10.22358/jafs/69972/1998

  65. Luckstadt C (2008) The use of acidifiers in fish nutrition. Nutr Nat Resour 3:1–8

    Google Scholar 

  66. Sotoudeh E, Sangari M, Bagheri D et al (2020) Dietary organic acid salts mitigate plant protein induced inflammatory response and improve humoral immunity, antioxidative status and digestive enzyme activities in yellowfin seabream, Acanthopagrus latus. Aquacult Nutr 26:1669–1680. https://doi.org/10.1111/anu.13112

    Article  CAS  Google Scholar 

  67. Wang Y-B (2007) Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture 269:259–264. https://doi.org/10.1016/j.aquaculture.2007.05.035

    Article  CAS  Google Scholar 

  68. Wang Y, Zirong X (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127:283–292. https://doi.org/10.1016/j.anifeedsci.2005.09.003

    Article  CAS  Google Scholar 

  69. Ashouri G, Soofiani NM, Hoseinifar SH et al (2020) Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles. Aquaculture 518:734638. https://doi.org/10.1016/j.aquaculture.2019.734638

    Article  CAS  Google Scholar 

  70. Ghanei-Motlagh R, Gharibi D, Mohammadian T et al (2021) Feed supplementation with quorum quenching probiotics with anti-virulence potential improved innate immune responses, antioxidant capacity and disease resistance in Asian seabass (Lates calcarifer). Aquaculture 535:736345. https://doi.org/10.1016/j.aquaculture.2021.736345

    Article  CAS  Google Scholar 

  71. Martin SA, Król E (2017) Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol 75:86–98. https://doi.org/10.1016/j.dci.2017.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoseinifar SH, Safari R, Dadar M (2017) Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: insights from zebrafish model. Gen Comp Endocrinol 243:78–83. https://doi.org/10.1016/j.ygcen.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  73. Safari R, Hoseinifar SH, Kavandi M (2016) Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiol Biochem 42:1733–1739. https://doi.org/10.1007/s10695-016-0253-z

    Article  CAS  PubMed  Google Scholar 

  74. Safari R, Hoseinifar SH, Nejadmoghadam S et al (2017) Non-specific immune parameters, immune, antioxidant and growth-related genes expression of common carp (Cyprinus carpio L.) fed sodium propionate. Aquacult Res 48:4470–4478. https://doi.org/10.1111/are.13272

    Article  CAS  Google Scholar 

Download references

Funding

This research has been financially supported by Persian Gulf University, Bushehr, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mostafa Salehi: fish husbandry; Dara Bagheri: experimental design, interpretation of results, digestive and antioxidant enzyme assessments, review, and editing; Ebrahim Sotoudeh: experimental design and feed formulation; Ahmad Ghasemi: gene expression; Mansour Torfi Mozanzadeh: interpretation of results and writing the manuscript.

Corresponding author

Correspondence to Dara Bagheri.

Ethics declarations

Consent to Participate

The authors of the manuscript voluntarily agreed to participate in this research study.

Consent for Publication

The authors voluntarily agreed to publish the manuscript in the journal of Probiotics and Antimicrobial proteins.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Bagheri, D., Sotoudeh, E. et al. The Combined Effects of Propionic Acid and a Mixture of Bacillus spp. Probiotic in a Plant Protein–Rich Diet on Growth, Digestive Enzyme Activities, Antioxidant Capacity, and Immune-Related Genes mRNA Transcript Abundance in Lates calcarifer Fry. Probiotics & Antimicro. Prot. 15, 655–667 (2023). https://doi.org/10.1007/s12602-021-09902-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09902-4

Keywords

Navigation