Skip to main content

Advertisement

Log in

Analogs of the Cathelicidin-Derived Antimicrobial Peptide PMAP-23 Exhibit Improved Stability and Antibacterial Activity

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) have gained interesting as a new type of antimicrobial agent. The cathelicidin-derived antimicrobial peptide PMAP-23 has broad-spectrum antibacterial activity, and to improve its antimicrobial activity, we used amino acid substitution at position 5 or 19 of PMAP-23 to design three analogs, named PMAP-23R (Leu5--Arg), PMAP-23I (Thr19--Ile), and PMAP-23RI (Leu5--Arg and Thr19--Ile). We found that the analog peptides exhibited higher stability and improved antibacterial activity compared with PMAP-23. Additionally, the analog peptides PMAP-23I and PMAP-23RI inhibited the growth of Shigella flexneri CICC 21534, whereas PMAP-23 and PMAP-23R exhibited no antibacterial activity against S. flexneri CICC 21534. Moreover, the peptide analogs showed negligible hemolysis and cytotoxicity. We also found that PMAP-23RI exerted impressive therapeutic effects on mice infected with Staphylococcus aureus ATCC 25923 and Salmonella enterica serovar Typhimurium SL1344. PMAP-23RI induced a greater reduction in pathological damage and a higher decrease in the bacterial gene copies in the lung and liver tissues and greatly reduced mouse mortality. In conclusion, the peptide analogs PMAP-23R, PMAP-23I, and PMAP-23RI enhanced the stability and antimicrobial activity of PMAP-23, but PMAP-23RI exhibits more promise as a new antimicrobial agent candidate for the treatment of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390. https://doi.org/10.1016/j.jaad.2004.08.026

    Article  PubMed  Google Scholar 

  2. Haney EF, Mansour SC, Hancock REW (2017) Antimicrobial peptides: an introduction. In: Hansen P (ed) Antimicrobial Peptides. Methods in Molecular Biology. Humana Press, New York, pp 3–22

    Chapter  Google Scholar 

  3. Lee JK, Park SC, Hahm KS, Park Y (2013) Antimicrobial HPA3NT3 peptide analogs: placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. Biochim Biophys Acta 1828:443–454. https://doi.org/10.1016/j.bbamem.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  4. Almatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F (2018) Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 128:288–305. https://doi.org/10.1016/j.phrs.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  5. Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R (2018) Human antimicrobial peptides in bodily fluids: current knowledge and therapeutic perspectives in the postantibiotic era. Med Res Rev 38:101–146. https://doi.org/10.1002/med.21435

    Article  PubMed  Google Scholar 

  6. Nuti R, Goud NS, Saraswati AP, Alvala R, Alvala M (2017) Antimicrobial peptides: a promising therapeutic strategy in tackling antimicrobial resistance. Curr Med Chem 24:4303–4314. https://doi.org/10.2174/0929867324666170815102441

    Article  CAS  PubMed  Google Scholar 

  7. Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C (2019) Peptide design principles for antimicrobial applications. J Mol Biol 431:3547–3567. https://doi.org/10.1016/j.jmb.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  8. Zanetti M, Storici P, Tossi A, Scocchi M, Gennaro R (1994) Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells. J Biol Chem 269:7855–7858. https://doi.org/10.1111/j.1467-8268.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  9. Shin SY, Kang JH, Jang SY, Kim KL, Hahm KS (2000) Structure and antibiotic activity of a porcine myeloid antibacterial peptide, PMAP-23 and its analogues. J Biochem Mol Biol 33:49–53

    CAS  Google Scholar 

  10. Veldhuizen EJA, Scheenstra MR, Tjeerdsma-van Bokhoven JLM, Coorens M, Schneider VAF, Bikker FJ, Avan D, Haagsman HP (2017) Antimicrobial and immunomodulatory activity of PMAP-23 derived peptides. Protein Pept Lett 24:609–616. https://doi.org/10.2174/0929866524666170428150925

    Article  CAS  PubMed  Google Scholar 

  11. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 36:49–52. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  CAS  PubMed  Google Scholar 

  12. Zhou JF, Liu YQ, Shen TF, Chen LL, Zhang C, Cai KR, Liu ZX, Meng XM, Zhang L, Liao CS, Wang C (2019) Enhancing the antibacterial activity of PMAP-37 by increasing its hydrophobicity. Chem Biol Drug Des 94:1986–1999. https://doi.org/10.1111/cbdd.13601

    Article  CAS  PubMed  Google Scholar 

  13. Zhong C, Zhu NY, Zhu YW, Liu TQ, Gou SH, Xie JQ, Yao J, Ni JM (2020) Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 141:105123. https://doi.org/10.1016/j.ejps.2019.105123

    Article  CAS  PubMed  Google Scholar 

  14. Wang M, Lin J, Sun Q, Zheng K, Ma Y, Wang J (2019) Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity. Appl Microbiol Biotechnol 103:1765–1775. https://doi.org/10.1007/s00253-018-09592-z

    Article  CAS  PubMed  Google Scholar 

  15. Hong W, Gao X, Qiu P, Yang J, Qiao MX, Shi H, Zhang DX, Tian CL, Niu SL, Liu MC (2017) Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo. Int J Nanomedicine 12:4691–4708. https://doi.org/10.2147/IJN.S136998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oddo A, Hansen PR (2017) Hemolytic activity of antimicrobial peptides. In: Hansen P (ed) Antimicrobial Peptides. Methods in Molecular Biology. Humana Press, New York, pp 427–435

    Chapter  Google Scholar 

  17. Jia F, Zhang Y, Wang J, Peng J, Zhao P, Zhang L, Yao H, Ni J, Wang K (2019) The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides 112:56–66. https://doi.org/10.1016/j.peptides.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S (2006) Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Vet Immunol Immunopathol 113:169–180. https://doi.org/10.1016/j.vetimm.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Zhou JF, Zhang C, Liu ZX, Liu YQ, Cai KR, Shen TF, Liao CS, Wang C (2018) Adjuvant activity of bursal pentapeptide-(III-V) in mice immunized with the H9N2 avian influenza vaccine. Protein Pept Lett 25:757–766. https://doi.org/10.2174/0929866525666180806110928

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Fu W, Yuan S, Yang X, Song Y, Liu L, Chi Y, Cheng T, Xing M, Zhang Y (2017) Both haemagglutinin-specific antibody and T cell responses induced by a chimpanzee adenoviral vaccine confer protection against influenza H7N9 viral challenge. Sci Rep 7:1854. https://doi.org/10.1038/s41598-017-02019-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang ST, Jeon JH, Kim Y, Shin SY, Hahm KS, Kim JI (2006) Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family. Biochemistry 45:1775–1784. https://doi.org/10.1021/bi051524k

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira A, Bolland MJ, Thomas MG (2016) Meta-analysis of randomised trials comparing a penicillin or cephalosporin with a macrolide or lincosamide in the treatment of cellulitis or erysipelas. Infection 44:607–615. https://doi.org/10.1007/s15010-016-0895-x

    Article  CAS  PubMed  Google Scholar 

  23. Kardos N, Demain AL (2011) Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 92:677–687. https://doi.org/10.1007/s00253-011-3587-6

    Article  CAS  PubMed  Google Scholar 

  24. Peter R, Müntener C, Demuth D, Heim D, Stucki F, Mevissen M, Gerspach C, Kaske M, Steiner A, Meylan M (2018) AntibioticScout.ch: decision support for the prudent use of antimicrobials: application in cattle. Schweiz Arch Tierheilkd 160:219–226. https://doi.org/10.17236/sat00154

    Article  CAS  PubMed  Google Scholar 

  25. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z (2014) Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217. https://doi.org/10.3389/fmicb.2014.00217

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mwangi J, Yin YZ, Wang G, Yang M, Li Y, Zhang ZY, Lai R (2019) The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A 116:26516–26522. https://doi.org/10.1073/pnas.1909585117

    Article  CAS  PubMed Central  Google Scholar 

  27. Carvalho Ade O, Gomes VM (2009) Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020. https://doi.org/10.1016/j.peptides.2009.01.018

    Article  CAS  PubMed  Google Scholar 

  28. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279:55042–55050. https://doi.org/10.1074/jbc.M408881200

    Article  CAS  PubMed  Google Scholar 

  29. Wiradharma N, Sng MYS, Khan M, Ong ZY, Yang YY (2013) Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromol Rapid Commun 34:74–80. https://doi.org/10.1002/marc.201200534

    Article  CAS  PubMed  Google Scholar 

  30. Abou Alaiwa MH, Reznikov LR, Gansemer ND, Sheets KA, Horswill AR, Stoltz DA, Zabner J, Welsh MJ (2014) PH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Natl Acad Sci U S A 111:18703–18708. https://doi.org/10.1073/pnas.1422091112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andreev K, Martynowycz MW, Huang ML, Kuzmenko I, Bu W, Kirshenbaum K, Gidalevitz D (2018) Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim Biophys Acta Biomembr 1860:1414–1423. https://doi.org/10.1016/j.bbamem.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  32. Criswell AR, Bae E, Stec B, Konisky J, Phillips GN Jr (2003) Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 330:1087–1099. https://doi.org/10.1016/S0022-2836(03)00655-7

    Article  CAS  PubMed  Google Scholar 

  33. Prell JS, O'Brien JT, Steill JD, Oomens J, Williams ER (2009) Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges. J Am Chem Soc 131:11442–11449. https://doi.org/10.1021/ja901870d

    Article  CAS  PubMed  Google Scholar 

  34. Ausili A, Pennacchio A, Staiano M, Dattelbaum JD, Fessas D, Schiraldi A, D’Auria S (2013) Amino acid transport in thermophiles: characterization of an arginine-binding protein from Thermotoga maritima. 3. Conformational dynamics and stability. J Photochem Photobiol B 118:66–73. https://doi.org/10.1016/j.jphotobiol.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  35. Morris SM (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930. https://doi.org/10.1111/j.1476-5381.2009.00278.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin S, Desai K (2020) The effects of oral arginine on its metabolic pathways in Sprague Dawley rats. Br J Nutr 123:135–148. https://doi.org/10.1017/S0007114519002691

    Article  CAS  PubMed  Google Scholar 

  37. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067–2475068. https://doi.org/10.1155/2016/2475067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsolis RM, Adams LG, Ficht TA, Bäumler AJ (1999) Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67:4879–4885. https://doi.org/10.1111/j.1574-695X.1999.tb01365.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang R, Wu F, Wu L, Tian Y, Zhou B, Zhang X, Huang R, Yu C, He G, Yang L (2018) Novel self-assembled micelles based on cholesterol-modified antimicrobial peptide (DP7) for safe and effective systemic administration in animal models of bacterial infection. Antimicrob Agents Chemother 62:e00368–e00318. https://doi.org/10.1128/AAC.00368-18

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77:451–459. https://doi.org/10.1189/jlb.0704380

    Article  CAS  PubMed  Google Scholar 

  41. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196. https://doi.org/10.1016/j.expneurol.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  42. Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta 1788:1523–1533. https://doi.org/10.1016/j.bbamem.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  43. Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L (2014) How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol 9:2003–2007. https://doi.org/10.1021/cb500426r

    Article  CAS  PubMed  Google Scholar 

  44. Baumann A, Démoulins T, Python S, Summerfield A (2014) Porcine cathelicidins efficiently complex and deliver nucleic acids to plasmacytoid dendritic cells and can thereby mediate bacteria-induced IFN-α responses. J Immunol 193:364–371. https://doi.org/10.4049/jimmunol.1303219

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [31101792], the Natural Science Foundation of Henan Province [182300410030], and the Programs for Science and Technology Development of Henan Province [182102110208].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All procedures involving animals that were performed in this study were in accordance with the Animal Experiment Committee of Henan University of Science and Technology (No. 20180301001).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shen, T., Chen, L. et al. Analogs of the Cathelicidin-Derived Antimicrobial Peptide PMAP-23 Exhibit Improved Stability and Antibacterial Activity. Probiotics & Antimicro. Prot. 13, 273–286 (2021). https://doi.org/10.1007/s12602-020-09686-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09686-z

Keywords

Navigation