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Abstract
Oceanic fronts play a significant role in marine ecosystems by enhancing vertical exchange, promoting the aggregation of 
plankton, and drawdown of organic carbon. Anthropogenic emission of carbon dioxide and other greenhouse gases in the 
twentieth century has driven global warming, leading to rising ocean temperatures. Specific regions warming faster than 
the global average—known as ‘ocean warming hotspots’—have been identified, impacting geophysical and biogeochemical 
dynamics of local ecosystems. Here, we aim to characterize the variability of sea surface temperature (SST) fronts in the 
southeast and southwest Australia hotspots. Using a histogram frontal detection method, we derived fronts from AVHRR-only 
and Multi-sensor 6-day SST composites on a 0.02 × 0.02 grid between January 1993 and December 2019. Our results indicate 
that frontal frequency and frontal density have increased in both regions in the past three decades, by around 0.2–0.3%. In 
addition, both regions exhibit higher frequency and density of fronts in austral winter and fewer in austral summer. Our cal-
culations show that changes in frontal frequency/density show some relationship to El Niño-Southern Oscillation and Indian 
Ocean Dipole. Changes in frontal activity could strongly impact local ocean biogeochemistry and marine ecosystems. A 
better understanding changing fronts in hotspots will help predict and manage future changes in regional oceans to warming.

Keywords Oceanic fronts · Satellite imagery · Remote sensing · Southeast Australia (25°–43° S, 146°–161° E) · Southwest 
Australia (21°–43° S, 88°–116° E)

Abbreviations
Fd  Frontal density
Ff  Frontal frequency

1 Introduction

Two contiguous masses of water separated by a front typi-
cally have distinct physical, biological, and visual properties. 
At fronts, convection occurs, mixing intensifies, and turbu-
lence increases. Numerous factors, including bathymetry 
(Wolanski and Hamner 1988) and various atmospheric and 
oceanic conditions, influence the variability of fronts (Belkin 
et al. 2009). Consequently, several mechanisms, including 
eddy fields, boundary currents, and upwelling, contribute to 
front formation (Belkin 2021) leading to fronts that vary in 
size from a few kilometres to tens of thousands of kilometres 
and can be transient or seasonal events across a variety of 
time scales (Joseph 2014, 2017).

Near fronts, water masses are mixed through the process 
of convergence or divergence. Water movement and mixing 
may increase biological activity along fronts by transfer-
ring nutrients (Sato et al. 2018). The increase in biological 
activity has further effects on marine ecosystems (Brandini 
et al. 2018), altering the composition of plankton commu-
nities and the related biogeochemical fluxes (Landry et al. 
2012; Stukel et al. 2017). Additionally, fronts also influence 
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ecosystem productivity and species distributions (Woodson 
and Litvin 2015), such as the Atlantic bluefin tuna (Thunnus 
thynnus; Royer et al. 2004) and the Pacific albacore tuna 
(Thunnus alalunga; Xu et al. 2017). By directing nutrients 
via alternate trophic pathways, fronts may increase ecosys-
tem biomass and fisheries yield (Woodson and Litvin 2015). 
Oceanic fronts are prevalent in upwelling systems (Mauzole 
et al. 2020) and play a significant role in predator–prey inter-
actions and energy transmission throughout food webs (Sato 
et al. 2018), hence increasing the quantity of forage fish and 
top predators (Snyder et al. 2017). Fronts have a substan-
tial influence on exchanges between the ocean, atmosphere, 
and cryosphere and are of basic importance to the climate 
system (Chapman et al. 2020; Sallée et al. 2008; Williams 
et al. 2007).

In recent decades, it has become more evident that cli-
mate change may have an impact on the frontogenesis or 
the formation of fronts. Kahru et al. (2012) analysed frontal 
trends in the California Current System and determined that 
frontal frequency has increased over time. In addition, Kahru 
et al. (2018) focused on the impact of warm anomalies in the 
North–East Pacific from 2014 and 2016. It was suggested 
that warm anomalies considerably reduced the frequency of 
fronts (Kahru et al. 2018). Also, along the Central Chilean 
coast, Oerder et al. (2018), observed an increasing trend in 
frontal frequency. In addition, a global analysis of fronts 
revealed a long-term increase in front probability, although 
this trend was not uniform across the entire ocean (Obenour 
2013).

Hobday and Pecl (2014) identified 24 ocean warming 
hotspots, regions that are warming faster than 90 percent 
of the global ocean. The consequences of ocean warming 
on ecosystems will likely be noticed early in these hotspots. 
For instance, García‐Reyes and Largier (2010) confirmed 
the hypothesis of Bakun (1990) that global warming will 

exacerbate coastal upwelling circulation by amplifying 
alongshore winds because of greater onshore–offshore 
atmospheric-pressure gradients. This could have led to the 
enhanced front probability observed by Obenour (2013) and 
is more likely to be observed in ocean warming hotspots. 
A recent study highlighted general trends in frontal activ-
ity across various hotspots in the global ocean (Yang et al. 
2023). However, a focused investigation into specific regions 
is crucial for understanding the local environment and its 
impact on the economy.

Given the conflicting results of previous studies (e.g., 
Kahru et al. 2012, 2018) and the variability of changes to 
frontal frequency across the globe, it is increasingly impor-
tant to examine trends of frontal frequency within the con-
text of a changing (warming) ocean. Changes to regional 
productivity due to changes in frontal frequency are likely 
to have impacts on ecosystem productivity and as a result, 
local economies. Given that temperate Australia is expe-
riencing ocean warming two to four times faster than the 
global average (Lough and Hobday 2011; Pearce and Feng 
2007), we focused on the two ocean warming hotspots near 
Australia. In this study, we aim to characterize changes of 
frontal activity (including long-term trends, seasonal vari-
ability, and temporal spatial distribution of frontal trends) 
within the two hotspots.

2  Data and Methods

2.1  Study Area

The study areas are located in southeast Australia (hereafter 
referred to as SEA; 25°–43° S, 146°–161° E) and south-
west Australia (hereafter referred to as SWA; 21°–43° S, 
88°–116° E; blue areas in Fig. 1). These areas are selected 

Fig. 1  Study areas: southwest Australia (SWA; 21°–43° S, 88°–116° E) and southeast Australia (SEA; 25°–43° S, 146°–161° E) regions, marked 
by solid blue lines. Dotted red lines highlight the two ocean warming hotspots near Australia, according to Hobday and Pecl (2014)
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for covering two ocean warming hotspots defined by Hobday 
and Pecl (2014; red areas in Fig. 1). According to previous 
studies (Hobday and Pecl 2014; Ridgway 2007), the SEA 
hotspot is warming up to four times faster than the global 
average. The SEA region is strongly influenced by the East 
Australian Current (EAC), which flows south along the east-
ern seaboard. The EAC carries tropical water south and ret-
roflects towards the east. The retroflection of the EAC forms 
the Tasman Front, south of which are cool, sub-Antarctic 
waters. The diverse ecology and biology are also one of 
the features of the southeast Australia (Curley et al. 2013). 
Warming in this hotspot is partly caused by the strengthen-
ing and poleward shift of the EAC (Hill et al. 2008; Ridg-
way 2007; Ridgway and Dunn 2003). The poleward shift of 
several dozen marine species was found to be related to the 
variations of the EAC (Johnson et al. 2011; Last et al. 2011). 
This kind of species invasion could have negative effects on 
the structure and function of the ecosystems of areas in the 
south, such as coastal Tasmania (Marzloff et al. 2016).

The SWA study area covers the southwest Australia conti-
nental shelf and part of the southeast Indian Ocean (Fig. 1). 
This area is strongly influenced by the Leeuwin Current 
(LC). The LC is an eastern boundary current of the southern 
Indian Ocean that flows southward off the western seaboard 
of Australia. Along the coast of Western Australia, the west-
ern rock lobster is the basis of Australia’s most valuable fish-
ery. The local western rock lobster fishery is influenced by 
the strength of the LC, water temperatures, and the westerly 
winds (Caputi et al. 2003).

2.2  Satellite SST Data

We used a 6-day composite SST product in this study to 
detect fronts. The 6-day night-time L3S SST product with 
a high spatial resolution (0.02° × 0.02°) was obtained from 
the Australian Ocean Data Network (AODN) Thredds server 
http:// thred ds. aodn. org. au/ thred ds/ catal og/ IMOS/ SRS/ SST/ 
ghrsst/ catal og. html. The diurnal warming can enhance SST 
by more than 3 degrees under the calm and clear conditions 
and can produce noise to the daily SST observations (Kawai 
and Kawamura 2002; Wirasatriya et al. 2020). To avoid the 
issue of potential diurnal warming during the daytime, only 
night-time SSTs are used. The 6-day night L3S SST is the 
6-night average of all the highest quality retrieved “skin” 
SSTs of the ocean at approximately 10–20 μm depth, based 
on all contributing pixels to the cell, weighted by the area 
of overlap. For the period of 1st January 1993–31st Decem-
ber 2011, AVHRR-only 6-day L3S product was used. The 
6-day Multi-sensor L3S SST product was used to obtain 
more high-quality and accurate data from 1 January 2012 to 
31 December 2019. Both datasets are SST skin products and 
provide 0.02° × 0.02° spatial resolution. To ensure the best 
quality and highest accuracy, we subtracted sses_bias from 

each SST value and only used quality level 4 and 5 data, fol-
lowing guidelines of GHRSST file conventions (GHRSST 
Science Team 2010).

2.3  Detection of Oceanic Fronts

Remotely sensed imagery is widely used for detecting oce-
anic fronts. Sea surface temperature (SST) derived from 
satellite radiance values determine gradients in sea surface 
temperature from which frontal locations can be derived. 
Several methods have been proposed to extract frontal 
information from satellite imagery, including various edge 
detection algorithms. These algorithms range from simple 
edge operators for characterizing horizontal gradients of a 
field (Canny 1986) to more sophisticated algorithms such 
as cluster-shade analysis (Holyer and Peckinpaugh 1989), 
histogram analysis (Cayula and Cornillon 1992; Saraceno 
et al. 2005), entropy analysis based on the Jensen-Shannon 
divergence (Vázquez et al. 1999), and semivariogram analy-
sis (Diehl et al. 2002).

In this study, oceanic fronts were detected using the Cay-
ula and Cornillon algorithm (Cayula and Cornillon 1992, 
1995). This algorithm was initially developed for SST 
imagery and has gained wide popularity. Numerous studies 
have used it to map SST fronts globally and locally (Belkin 
et al. 2009; Kahru et al. 2012; Sarkar et al. 2019; Ullman and 
Cornillon 1999). Within a detecting window of a front sepa-
rating two water masses, a histogram of SST values of all 
pixels would always contain two modes corresponding to the 
two water masses, whereas the front is a locus of SST values 
that correspond to a minimum between the two modes. A 
vital advantage of this algorithm is its independence on spe-
cific gradient strengths or isolines. This allows it to provide 
objective frontal detection results. Examples of the images 
of the fronts detected using the Cayula and Cornillon algo-
rithm in the two regions are shown in Fig. 2a, d.

The Cayula and Cornillon algorithm was applied by using 
the Marine Geospatial Ecology Tools (MGET), version 
0.8a75, released 8 April 2021 (Cayula and Cornillon 1992; 
Roberts et al. 2010).

2.4  Metrics

Two metrics were used to characterize frontal activity; fron-
tal density reflects the percentage of an area occupied by 
frontal pixels, while frontal frequency represents the total 
presence of fronts in the area throughout time in terms of 
frequency.

After applying the frontal detection algorithm, each SST 
frontal image contains only three kinds of pixels: invalid pix-
els (pixel value = NaN), frontal pixels (pixel value = 1) and 
non-frontal pixels (pixel value = 0). For each map, frontal 
density (Fd), the ratio between the number of frontal pixels 

http://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/catalog.html
http://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/catalog.html
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( nfront, pixel value = 1) and the total number of all valid pixels 
( nvalid , pixel value = 0 and 1) (Eq. 1) was calculated. The 
unit of Fd used in this study is the percentage of the entire 
area (%) occupying fronts within a region. We obtained one 
Fd value for each satellite image based on this definition. 
Because SST data are 6-day composites, the time step of the 
Fd time series is also 6 days. By averaging the time series, 
we obtained monthly Fd time series. Spatial patterns of Fd 
are calculated within a 10 × 10 pixels window. Examples of 
the Fd images are shown in Fig. 2b and e for both regions.

Fd : the spatial proportion of fronts or frontal density, 
nfront : the number of frontal pixels (pixels with value 1) 
within a frontal image, nvalid : the number of valid pixels 
(pixels with values 0 and 1) within a frontal image.

Secondly, frontal frequency (Ff) was used to represent 
the likelihood of the occurrence of fronts over a specific 
period. It is the ratio between the accumulation of the counts 
of frontal detections and valid detections over a given time 
interval (Eq. 2). In this study, we used one month as the 
time interval to calculate Ff. For each month, there are five 
6-day composite SST images. We focus on a pixel in the 
same location of the five SST images (taken within a month). 
Assuming that each of the five pixels has a valid SST value 
rather than NaN ( Nvalid = 5) and that three of them are 

(1)Fd = nfront∕nvalid

defined as frontal pixels ( Nfront = 3), Ff during the month is 
0.60 or 60%. During the study, this computation was applied 
to each pixel, resulting in one Ff map per month. By taking 
average for each Ff map, we obtained monthly time series 
of Ff. Examples of the Ff images are shown in Fig. 2c and 
f for both regions.

Ff : the frequency of frontal detections for an individual 
pixel over a given time interval, Nfront : the accumulation of 
the counts of front detections over a given time interval, 
Nvalid : the accumulation of the counts of valid detections 
over a given time interval.

The annual mean cycles of Fd and Ff were computed 
by averaging the monthly composites for each variable. 
By subtracting the mean annual cycle from the appropri-
ate time series, the corresponding monthly anomalies were 
computed.

2.5  Trends, Significance, and Uncertainties

The trend analysis of this study is consistent with the anal-
ysis used by Martínez-Moreno et al. (2021). For spatially 
integrated time series, linear trends are calculated using lin-
ear least-squares regression. For the trend maps, the fields 
are first coarsened to a 0.2° × 0.2° grid, and then the linear 

(2)Ff = Nfront∕Nvalid

Fig. 2  Southeast Australia (SEA) region and Southwest (SWA) Aus-
tralia hotspot are used to illustrate frontal detection and frontal char-
acteristics: a, d, snapshot of observed frontal positions (thin black 
lines) overlapping 6-day averaged sea surface temperature (SST) val-
ues (SEA: 06 May 2012–11 May 2012; SWA: 03 Sep 2012–08 Sep 

2012); b, e, spatial patterns of frontal density (Fd) of (a) and (d); c, 
f, resampled spatial patterns of monthly frontal frequency (Ff; SEA: 
May 2012; SWA: September 2012). Fd is calculated with a 10 × 10 
pixels window
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trends are computed for each grid point. All the observed 
trends for anomalies of SST, Fd, and Ff (time-series and 
trend maps) are assessed using the Theil–Sen estimator. A 
modified Mann–Kendall test (Yue and Wang 2004) is used 
to assess the statistical significance of trends. Furthermore, 
uncertainties of trends are calculated by dividing the stand-
ard deviation of the time series by the square root of the 
effective sample size from the Mann–Kendall test.

3  Results

3.1  Temporal Trends of SST Fronts

Both regions exhibit statistically significant positive 
trends in Ff and Fd (Fig. 3d and 2e; Table 1). For the SEA 
region, Ff anomaly increases at a rate of 0.230% ± 0.070% 
per decade, while Fd anomaly increases at a rate of 
0.227 ± 0.070% per decade (red curves and bars in Fig. 3d 
and e; Table 1). Increases in anomalies of both Ff and 

Fd are slightly higher in the SWA region, 0.290 ± 0.077% 
and 0.272 ± 0.073% per decade, respectively (blue curves 
and bars in Fig. 3d and e; Table 1). For comparison, both 
hotspot regions exhibit positive SST anomaly trends from 
1993 to 2019, positively correlated with trends in Ff and 
Fd.

Fig. 3  Time-series and linear trends for southeast Australia (SEA; 
red) and southwest Australia (SWA; blue). a Frontal frequency (Ff) 
anomaly, b frontal density (Fd) anomaly, c SST anomaly. Solid lines 
represent monthly running average for each region; the dashed lines 
correspond to time-series trends; d linear Ff anomaly trends for each 
region, e linear Fd anomaly trends, and f linear SST anomaly trends. 

In d–f, statistically significant trends (above the 95% confidence 
level) are solid bars, while non-significant trends are translucent; 
standard errors are shown with black error bars. Linear trends are cal-
culated using linear least-squares regression. Statistical significance 
of trends is accessed using a modified Mann–Kendall test (See Meth-
ods)

Table 1  Linear trends for frontal frequency (Ff, %/decade), frontal 
density (Fd, %/decade), and sea surface temperature (SST, °C/decade) 
anomalies, for the southeast Australia (SEA) and southwest Australia 
(SWA) hotspot regions

*, statistically significant at the 95% confidence level. Linear trends 
are calculated using linear least-squares regression. Statistical sig-
nificance of trends are accessed using a modified Mann–Kendall test 
(See methods)

Region Ff Fd SST

SEA  + 0.230 ± 0.070*  + 0.227 ± 0.070*  + 0.304 ± 0.038*
SWA  + 0.290 ± 0.077*  + 0.272 ± 0.073*  + 0.029 ± 0.086
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3.2  Spatial Distributions of Frontal Trends

The maps of Ff and Fd anomaly trends show increasing 
patterns in the southeast portion of the SEA region, where 
both Ff and Fd increases at rates over 0.5% per decade (dark 
red patterns in Fig. 4a). In addition, three locations with 
positive Ff and Fd trends exceeding + 0.5% per decade were 
also found along the continental shelf: near the Brisbane 
and Sydney coasts, and in the Bass Strait (red arrows in 
Fig. 4a and b). Patterns indicating decreasing Ff and Fd were 
observed in the middle of the SEA region and close to Cape 
Howe (the blue arrow in Fig. 4a and b). Geographically, 
however, the patterns of rapidly increasing SST are not con-
sistent with the patterns of either increasing or decreasing 
Ff and Fd.

Spatial patterns of increasing Ff and Fd of over 0.5% per 
decade are evenly distributed throughout the SWA region 
(dark red patterns in Fig. 5a and b) and are more concen-
trated in the central and eastern areas. Compared with the 
SST anomaly trends (Fig. 5c), there appears to be a lim-
ited degree of co-occurrence between SST and Ff (or Fd) 
anomalies.

3.3  Mean Annual Cycle of SST Fronts

For both hotspot regions, the mean annual cycles in Ff and 
Fd are identical and coincide with cycles of SST (Fig. 6). 

In the SEA region, the mean annual cycles of Ff and Fd 
are coincided and have bimodal patterns (Fig. 6a, c). The 
maximum of Ff and Fd occurs in late winter or early spring 
(September and October), while the second maximum of Ff 
and Fd occurs in early autumn (March and April) (Fig. 6a, 
c). In the SWA region, the maximum for Ff and Fd occurs 
in late winter or spring (August) (Fig. 6b, d).

4  Discussion and Conclusion

Increasing trends of Ff and Fd in the two hotspot areas of 
Australia suggest changes to features and processes of the 
ocean surface. Changes in the global climate system and 
recent warming of the upper ocean have strengthened and 
accelerated ocean currents and the intensified wind stress 
(Martínez-Moreno et al. 2021). For the SEA region, changes 
of frontal characteristics could attribute to the poleward shift 
of the EAC (Ridgway and Dunn 2003; Oke et al. 2019). The 
current accelerates and deepens as it moves poleward (Ridg-
way and Dunn 2003). This drives more warmer waters from 
the low latitudes into the SEA region. Sharp gradients on the 
sea surface may become more pronounced. In other words, 
stronger fronts become more detectable by the algorithm. 
Changes in frontal characteristics in the SWA region, which 
encompasses a vast area off the western coast of Australia, 
may be associated with several complicated processes.

Fig. 4  Regional maps of a frontal frequency (Ff), b frontal density 
(Fd), and c sea surface temperature (SST) trends in the southeast Aus-
tralia (SEA) region. Solid contours show positive trends (contours 
of + 0.5  °C per decade for SST, + 0.5% per decade for Ff and Fd). 
The dotted blue contours indicate the 200 m isobath. In b and c, red 
arrows highlight the three zonal areas near the Australian coast with 

strong positive trends near the Brisbane and Sydney coasts, and the 
Bass Strait. The blue arrow points to coastal areas near Cape Howe, 
with negative trends for Ff and Fd. For Ff, Fd, and SST maps, the 
fields are first coarsened to a 0.2° × 0.2° grid, and then the linear 
trends are computed for each grid point
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To further explore the drivers of frontal variability, we 
calculated the correlation coefficient between our time series 
of frontal activity and time series of two key atmospheric 
and oceanic variables influencing Australian climate: the 
Southern Oscillation Index (SOI) and the Indian Ocean 
Dipole (IOD) index (Fig. 7). For both hotspot regions, there 
is a weak positive correlation between frontal activity (Ff 
and Fd) and SOI and a weak negative correlation between 
frontal activity and IOD index. Specifically, the frequency 
and density of frontal activity has the potential to increase 
during La Niña and/or negative IOD events. La Niña is 
often associated with negative IOD events, and both tend 
to result in above-average precipitation and below-average 

temperatures across most of mainland Australia south of the 
tropics (Bureau of Meteorology 2023). These changes may 
result in cooler water in coastal regions. In addition, previous 
research suggested that both EAC and LC enhanced during 
La Niña (Pattiaratchi and Siji 2020). Thus, for both studied 
hotspot regions, SST difference between cooler coasts and 
enhanced ocean currents (warmer) is potentially increased 
during La Niña, which has the potential to elevate frontal 
activity (Pattiaratchi and Siji 2020). Given the connection 
between ENSO and IOD events, negative IOD events also 
tend to be accompanied by an increase in fronts.

Seasonal variability of frontal activity was observed in 
both hotspot regions (Fig. 6). Both regions exhibit higher 

Fig. 5  Regional trends of a frontal frequency (Ff), b frontal density 
(Fd), and c sea surface temperature (SST) anomalies in the southwest 
Australia (SWA) hotspot. The solid contours show positive trends 
(contours of + 0.25 °C per decade for SST, + 0.5% per decade for Ff 

and Fd). The dotted blue contours indicate the 200 m isobath. For Ff, 
Fd, and SST maps, the fields are first coarsened to a 0.2° × 0.2° grid, 
and then the linear trends are computed for each grid point

Fig. 6  Mean annual cycles 
of monthly frontal frequency 
(Ff) and frontal density (Fd) in 
the southeast Australia (SEA) 
hotspot, as shown in (a) and 
(c); and the southwest Australia 
(SWA) hotspots, as shown in 
(b) and (d). The annual mean 
cycles of Fd and Ff were com-
puted by averaging the monthly 
composites for each variable
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Ff and Fd in late winter and early spring (August–October) 
and decreased Ff and Fd in austral summer months (Decem-
ber–February; Fig. 6). It has been proposed that fronts are 
closely related with mesoscale eddies (Mauzole et al. 2020). 
Studies show a maximum EAC transport of 21.6 ± 1.4 Sv at 
26° S in March, and a minimum transport of 18 ± 1.4 Sv in 
August (Zilberman et al. 2018). The stronger EAC flow in 
summer is associated with higher eddy kinetic energy (EKE) 
in the Tasman Sea (Qiu and Chen 2004), and according to 
Liu et al. (2022), surface EKE in the EAC averaged in 148 
E–160 E, 30 S–45 S reached a maximum in February and 
then gradually fell until it reached a minimum in August. 
The results here show that increased EKE in February/March 
is associated with a minimum Ff and Fd in the SEA hot-
spot, indicating that frontal strength may be decreasing with 
increasing EKE and are not being detected across the tem-
perature threshold of the algorithm. Conversely, a decrease 
in EKE may be associated with increased frontal strength 
and detection of fronts in August. For the SWA region, 
the LC was confirmed to have significant seasonal cycles, 
weakest in the austral summer and strongest in the austral 
winter. (Akhir et al. 2020; Feng et al. 2003, 2009; Ridgway 
and Godfrey 2015). This coincides with our observation of 
the mean annual cycle of Ff and Fd in the SWA region. In 
near-shore waters, the dynamics of upwelling were found to 
control the spatio-temporal variability of productivity (Waite 

et al. 2007). Generally strong and persistent southerlies dur-
ing the summer months generate “upwelling favourable” 
conditions and the development of upwelling fronts. How-
ever, this seasonal upwelling process is largely suppressed 
by the southward-flowing Leeuwin Current, which increases 
in the autumn and winter and when the southerlies are less 
consistent and are more variable (Pattiaratchi and Woo 
2009). These results indicate a longer term decrease in Ff 
and Fd closer to shore highlighting the potential decrease in 
upwelling fronts related to a decrease in nearshore upwelling 
favourable wind stress in winter (− 4.2%) (Foster and Sud-
meyer 2021). Changes in fronts related to upwelling could 
influence local fisheries. For example, according to Austral-
ian Commonwealth fisheries, the SEA region comprises key 
species groupings such as tuna, billfish, scalefish, and shark. 
Reduced upwelling fronts may result in decreasing fish catch 
(Wen et al. 2023).

Fd and Ff exhibit consistency in all aspects of our 
results, indicating a strong correlation between the two 
metrics. Frequent frontal activity would logically corre-
spond to many fronts. However, this does not imply that 
the two metrics are equivalent. There is an essential dif-
ference between them; Ff indicates the presence of fron-
tal activity in the time dimension, i.e., whether fronts are 
always present; while Fd quantifies the quantity of frontal 
activity in the spatial dimension, i.e., the number of frontal 
pixels. The correlation between the two metrics requires 
further investigation.

The main result of this study is the overall increase of 
frontal activity (in frequency and density) within two hotspot 
areas of Australia over the past 3 decades. The observed 
changes in frontal activity have the potential to influence 
regional ocean circulation and air–sea exchange of heat, car-
bon, etc. The results of frontal activity seasonal cycles and 
geographic trends’ patterns provide background for future 
research on fronts within other hotspots or any regional-
scale area. Our findings thus are important for investigating 
future changes in sea surface to a changing climate.
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