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1 Introduction

Recently, the domain of artificial intelligence (AI) has

experienced a profound transformation with the emergence

of foundation models as a new paradigm for developing AI

systems (Bommasani et al. 2021). Foundation models

constitute large-scale AI models that are pre-trained on vast

amounts of general data and that can be adapted for

downstream applications (e.g., by fine-tuning them through

further training on application-specific data). Through this

pre-train and adapt approach they expedite the develop-

ment of innovative AI products and services and accelerate

the accessibility of high-performance AI solutions in var-

ious industries (Teubner et al. 2023).

Foundation models show remarkable abilities to com-

prehend, generate, and adapt content across diverse

domains, including creative generations (Chen et al. 2023),

software debugging (Sobania et al. 2023), protein

sequencing (Madani et al. 2023), or cross-modality outputs

such as text-to-image creations (Ramesh et al. 2021). With

scaling, foundation models are becoming increasingly good

at performing tasks they were not explicitly trained for,

thereby broadening the scope of applications achievable by

a single model without the need for additional training data

or fine-tuning (Brown et al. 2020). When needed, task-

specific performance can be further enhanced through fine-

tuning or effective prompt engineering techniques; both of

which incur significantly lower costs in comparison to

developing a new model from scratch (Liu et al. 2023; Niu

et al. 2020).

The paradigm shift brought about by foundation models

reshapes the design and deployment of AI applications.

The advantages of large-scale foundation models including

their emerging capabilities encourage convergence within

the AI industry, leading to a growing number of AI

applications being adjustments of only a few foundation

models, owned by a few organizations and trained on a few

datasets (Bommasani et al. 2021). Such homogenization

promises great leverage to accelerate AI advancements

across various domains. But it also raises concerns

including monopolistic power structures, economic

dependencies, or the potential dissemination of model

vulnerabilities across a great number of downstream

applications (Fishman and Hancox-Li 2022). As founda-

tion models establish themselves as a cornerstone of state-

of-the-art AI advancement, the dynamics of value creation

and accumulation in the AI industry can be expected to

change, and organizations might be forced to reconsider

how they can differentiate their AI products and services in

an age in which high-performance, multi-functional AI

solutions are widely available. Lastly, because the design

and control over AI systems is becoming dispersed across
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an evolving ecosystem of actors, the shift from disparate

models to a foundational approach challenges existing

approaches of AI governance (Koniakou 2023; Schneider

et al. 2023).

By redefining existing premises of AI development,

management, and governance, the rise of foundation

models will shape the trajectory of AI research, bringing

forth important questions and opportunities for the field of

Information Systems (IS) research and Business and

Information Systems Engineering (BISE) (Dwivedi et al.

2023; Teubner et al. 2023). With this catchword article, we

intend to contribute to the field’s comprehension of foun-

dation models and to outline a sociotechnical perspective

(Sarker et al. 2019) on the intricate implications of this new

paradigm for the construction and deployment of AI

applications. To do so, we introduce the concept of foun-

dation models and their defining features, followed by

describing the implications of foundation models as a new

paradigm of AI, and, finally, outlining opportunities for

further IS research.

We begin Sect. 2 by defining the concept of foundation

models and describing their emergence in the historical

context of machine learning advancements to clarify their

pivotal role in the current AI landscape. We then elaborate

on the key features of foundation models – namely emer-

gent capabilities, homogenization, and prompt sensitivity –

and discuss the implications of these characteristics for AI

development and deployment. In Sect. 3, we outline mul-

tiple avenues for future research, particularly focusing on

opportunities relevant to the BISE community as a

sociotechnical and construction-oriented discipline. In

Sect. 4, we conclude the article with a summary and

indicate its limitations.

2 Foundation Models as a New Paradigm for AI

Following Bommasani et al. (2021, p. 1), we define a

foundation model as ‘‘any model that is trained on broad

data that can be adapted to a wide range of downstream

tasks’’. Through this combination of task-agnostic pre-

training and subsequent fine-tuning, foundation models

enable new approaches to building and deploying AI sys-

tems. Therefore, the rise of foundation models constitutes a

paradigm shift in AI that promises unique potential and

risks (Li et al. 2022), which is a key focus of this manu-

script as elaborated in the following sections. Foundation

models can be pre-trained on a specific modality (e.g.,

language, vision, robotics, reasoning) or show multi-modal

capabilities (Reed et al. 2022). Current examples of foun-

dational models include Open AI’s GPT-Series (Brown

et al. 2020), BERT, and CLIP. While entering numerous

domains, the pre-training paradigm of foundation models

takes shape most strongly in pushing benchmarks in the

field of natural language processing (NLP) where appli-

cations such as ChatGPT, an application built on top of the

GPT foundation model, can now generate texts that are

increasingly indistinguishable from human writing (Bender

et al. 2021).

Technically, foundation models are nothing new: they

are based on long-existing deep neural networks and

standard transfer learning. However, their size and large-

scale training data result in newly emergent capabilities

that can be transferred across applications and fine-tuned

for the creation of numerous AI applications. Before

introducing the defining features of foundation models and

their respective implications for AI development and use,

we describe the emergence of foundational models in the

historical context of machine learning advancements.

2.1 History: From Expert Systems to Foundation

Models

Foundation models can be seen as a ‘‘logical’’ step in the

development of machine learning as shown in Fig. 1.

Before learning from data, decision-making by machi-

nes was done by expert systems which encoded explicit

rules extracted from experts on how to turn an input into an

output. Later, machine learning systems could operate

‘‘without explicitly being programmed’’, as coined by

Samuel Jackson in 1959. At first, machine learning systems

learned decision rules based on a set of criteria, i.e., fea-

tures, still defined by experts. (Simple) representation

learning aimed at automating the identification of features,

which was marked by a breakthrough based on deep

learning using artificial neural networks. Deep learning

enabled machine learning systems to learn a hierarchy of

features directly from the data, reducing the need for fea-

ture engineering (Janiesch et al. 2021). It demanded much

larger datasets and models. Deep learning also allowed

building models in a modular, flexible way by stacking

various layers of artificial neurons on top of each other.

This made it easy to enlarge models or to combine models

trained on different modalities of data such as text and

images. Consequently, deep learning was adopted in vari-

ous areas of AI, including computer vision, speech, and

natural language processing, and specific deep learning

models were developed through different compositions of

basic elements.

Initially, neural networks were mostly trained using

supervised learning. Supervised learning relies on a labeled

dataset in which each input is associated with an output

label (Janiesch et al. 2021) commonly provided by a

human. Model training was constrained by the availability

of labeled training data. Addressing this challenge while

also reducing training costs, the method of transfer learning
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later allowed reusing the ‘‘knowledge’’ a neural network

learned from one task (e.g., recognizing objects in images)

for another task (e.g., recognizing behavior in videos) by

keeping most of the model’s architecture unchanged and

retraining only parts of the network (Niu et al. 2020). Put

differently, transfer learning enables pre-training a model

on a surrogate task, and then adapting it via fine-tuning to a

downstream task.

Transfer learning, together with scale, enabled the suc-

cess of foundation models starting around 2017 (Bom-

masani et al. 2021). While transfer learning based on

labeled datasets had been a practice before (e.g., Deng

et al. 2009), the required pre-training was still limited by

the cost of data annotation. This limitation was overcome

by a wave of developments in self-supervised learning. In

self-supervised learning the pre-training task is derived

from task-agnostic data with self-generated labels. For

example, language models such as the GPT-1 to GPT-4 are

trained to predict the next word in a text, i.e., the label to

predict is simply the next word in the text (OpenAI 2023a).

While foundation models achieve state-of-the-art results

that on some tasks outperform tailored models (Ziems et al.

2023), additional fine-tuning based on supervised learning

(using a small-scale, task-specific dataset), reinforcement

learning (using human feedback to generate output), or

instruction tuning (based on a dataset described via

instructions) often improves application-specific perfor-

mance and model alignment with user intent (Ouyang et al.

2022). Fine-tuning of foundation models furthermore

constitutes an important tool to increase models’ alignment

with ethical standards (Ouyang et al. 2022). For example,

human feedback and additional datasets can be used to

penalize toxic outputs or counterweight learned biases of a

model.

Self-supervised learning hence revolutionized the utility

of low-cost training data, which could now be abstracted

through web crawling. This enabled the scaling of larger

and more expressive pre-trained models that can be opti-

mized in subsequent fine-tuning (Bender et al. 2021).

Scaling was further supported by improvements in com-

puter hardware and the development of the transformer

model architecture (Vaswani et al. 2017). Unprecedented

scalability and the resulting ability to efficiently handle

large amounts of diverse data and to flexibly capture

diverse information therefrom (model expressiveness) is

what sets foundation models apart from prior deep learning

models. This can be observed, for example, in models like

GPT-4 (OpenAI 2023a) or Llama-2 which both perform

extremely well on a broad set of tasks by increasing model

and training data size compared to the original transformer

model (Vaswani et al. 2017) and earlier models. Additional

relevant properties of foundation models include multi-

modality (the processing of multimodal data such as ima-

ges and text in one model), memory (storing and retrieving

knowledge, possibly from a model external source), and

compositionality (modularity of the model and generaliz-

ability) (Bommasani et al. 2021). Jointly, these properties

result in the key features of foundation models such as

emergent capabilities of in-context learning (Brown et al.

2020). In-context learning refers to models’ ability to solve

tasks without explicitly being trained on them, constituting

a key feature of foundational models as detailed below.

2.2 Key Features of Foundation Models

To frame our consideration of foundation models from the

perspective of IS research, we start with a description of

their essential characteristics. Following previous research,

we identify emergent capabilities and homogenization as

key features of foundation models (Bommasani et al. 2021;

Fishman and Hancox-Li 2022). We furthermore add

prompt sensitivity, given its contingency on foundation

model pre-training and its critical implications for AI

development and deployment as detailed in Sect. 2.3.

Fig. 1 History of machine learning
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Emergent Capabilities The first key feature of founda-

tion models is the emergence of behavioral capabilities that

were not explicitly constructed, nor expected, by human

developers, which frequently is referred to as in-context

learning (Min et al. 2022). Emergent capabilities are pri-

marily investigated in the context of large-language models

(e.g., Wei et al. 2022). During training, the large-scale

model extracts a rich set of patterns and broad skills from

the diverse training data, for example abstracting ‘‘an

understanding’’ of the vocabulary and grammar of a lan-

guage from a text corpus without being trained for a

specific task (e.g., translation or question answering).

During application, it can then flexibly employ respective

modeling to perform various downstream tasks by the

provision of a prompt, i.e., a description of the task in

natural language or through a visual representation and,

possibly, a few examples. For instance, GPT-3 and later

versions show strong performance on mathematical tasks

and analogical reasoning although they were not specifi-

cally trained for such (Brown et al. 2020; Webb et al.

2023). In contrast to GPT-3 (being a model of 175 billion

parameters), the smaller GPT-2 (1.5 billion parameters)

does not show comparable capabilities of in-context

learning, demonstrating the contingency of emergent

capabilities on model scale (Bommasani et al. 2021).

The feature of emergent capabilities is essential to

models’ high performance on complex tasks such as nat-

ural language understanding and generation. The profi-

ciency of large-scale foundation models at ‘‘tasks defined

on-the-fly’’ suggests that the relevance of fine-tuning for

task-specific performance might decrease as models grow

further in size (Brown et al. 2020, p. 9). This would

decrease the cost and required effort to deploy foundation

models for an even wider range of downstream tasks.

Moreover, in-context learning allows to improve model

performance by crafting adequate prompts without

parameter updates (frequently referred to as prompt

engineering).

The property of emergent capabilities also raises con-

cerns. Emergence implies a substantial uncertainty over the

capabilities, flaws, and limitations of foundational models,

making it hard to understand, explain, and predict their

behavior and potential failure modes (Bommasani et al.

2021). This is illustrated by the extent to which slightly

altered prompts may cause considerably different out-

comes; that is, small changes to the model input can cause

a large change in its qualitative behavior. In this context,

the complexity and relevance of prompt engineering can be

expected to increase as new, unexpected model behavior

emerges, a point we will return to below. Uncertainty over

model behavior particularly demands caution where

undesired behaviors of a foundation model could be passed

on to adapted models downstream, implying that the key

features of emerging properties and homogenization ‘‘in-

teract in a potentially unsettling way’’ (Bommasani et al.

2021, p. 6).

Homogenization Foundation models give rise to

unprecedented degrees of homogenization, referring to the

consolidation of methodologies and models across AI

applications and research communities. Homogenization is

visible in three interrelated developments: new AI models

are adjustments of (i) a few foundational models, (ii)

trained on a few datasets, and/or (iii) by a few organiza-

tions (Bommasani et al. 2021). Homogenization is driven

by the immense costs of training foundation models (e.g.,

computational and data aggregation costs), the monopoly

of few companies on some large-scale proprietary datasets

(e.g., social media platforms), and the self-perpetuating

cycle of improved model performance, user engagement,

and model-improving user feedback. These factors push

toward a winner-takes-it-all dynamic that can be expected

to result in the development of a few large-scale foundation

models upon which a large share of future AI systems will

be built.

Homogenization promises great leverage, as advances in

the foundation model are automatically inherited by

downstream AI systems. This leverage accelerates and

decreases the cost of developing task-specific AI systems,

now requiring only small-scale training or skillful

prompting without any fine-tuning at all. Possibly, this

makes AI available to new domains in which model

training was previously unaffordable or impeded by the

unavailability of rich datasets.

On the other hand, homogenization describes a cen-

tralization of field-leading AI research with a few compa-

nies, raising concerns related to power, dependencies, and

the safeguarding of social and ethical interests within the

economically driven private sector (Fishman and Hancox-

Li 2022). Moreover, it risks algorithmic monoculture and

implies that the same datasets – namely those underlying

the training of the foundation models – are encoded within

numerous AI applications (Kleinberg and Raghavan 2021).

Intuitively, this points toward another major concern:

homogenization leverages not only the benefits but also

potential risks and flaws of the underlying model and

datasets across the AI landscape (Bommasani et al. 2022).

Put differently, any bias or undesirable behavior of a

foundation model will, in the absence of preventative

measures, likely be inherited by downstream applications.

Besides the centralization of AI advancements,

homogenization also holds implications for the involved

actors and their respective roles in developing AI appli-

cations (Hacker et al. 2023). Increasingly, AI applications

will be the product of an emerging ecosystem comprised of

foundation model providers, foundation model adapters

and integrators, and end users, as illustrated in Fig. 2.
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Organizations operating as adapters and integrators fine-

tune foundation models with labeled data or prompting

creating task-specific models (Liu et al. 2023) and embed

models into larger systems that are directly consumable by

end users. Their respective choice of adaptation mechanism

depends mostly on three factors: compute budget, data

availability, and access to the foundation model. Adjusting

the model itself to a specific task through transfer learning,

using a (small) task-specific dataset, relies on the ability to

modify model parameters directly or indirectly. Hence, it is

contingent upon the provisions and allowances made by the

foundation model providers, providing an example of

power centralization through homogenization as noted

above. Alternatively, adapters can fine-tune the behavior of

a foundation model for a specific use case by means of

prompting. Prompt-based fine-tuning does not depend on

model access, but model providers can potentially restrict

the permissibility of certain prompts. End users can simi-

larly use prompting to impact model outputs. In the fol-

lowing section, we will consider the implications of this

multilayered relevance of prompting in more detail.

Prompt Sensitivity Prompting refers to the use of natural

language to guide the behavior of AI systems (Reynolds

and McDonell 2021). Hence, the possibility of using

prompts to instruct respective systems is contingent on

their sophisticated capabilities to process natural language

which, as detailed above, emerge from the foundation

models pre-training on large-scale text corpora. However,

the relevance of prompts for model behavior extends

beyond pure language models and also encompasses multi-

modal foundation models such as text-to-image AI (Liu

and Chilton 2022).

In the context of foundation models, prompting is highly

relevant because the ability of the respective system to

generate diverse and possibly objectionable output

demands the possibility to specify and constrain desirable

generations (Hacker et al. 2023). In this context, the exact

wording of a prompt including instructions on how to

tackle a problem (e.g., reasoning instructions, adoption of a

role) and inclusion of exemplary input–output pairs (to

leverage in-context learning) can have a significant impact

on the behavior of respective systems. This makes prompt

engineering, i.e., optimizing the most suitable prompt to

realize desired outputs, an important tool to fine-tune,

regulate, and query AI applications based on task-agnostic

foundation models (Liu et al. 2023). For example, Kojima

et al. (2022) showed that by adding ‘‘Let’s think step by

step’’ to the textual instruction of a prompt and therewith

requiring serializing reasoning, the model performed sig-

nificantly better on various benchmarks. This has been an

unexpected phenomenon that, once again, is only visible

with large-scale models (Chowdhery et al. 2023). Other

techniques of prompt engineering similarly improve model

performance, including task specification by example or

the use of memetic proxies (Reynolds and McDonell

2021). The art of prompting receives increasing (scholarly)

attention including the emergence of frameworks for sys-

tematic, reusable solutions to prompt engineering (e.g.,

White et al. 2023).

Referring to the above illustration of actors involved in

the development and use of AI systems built on foundation

models (Fig. 2), prompts can be used by each to guide

model behavior: by the foundation model provider, by the

foundation model adapter, and by the end user. Publica-

tions on prompt engineering techniques frequently fore-

ground the prompts of end users querying downstream

applications such as ChatGPT or DALL-E. However, nat-

ural language prompts can also be used by providers and

adapters to address the foundation model directly. Besides

fine-tuning, model providers and adapters may use

prompting to constrain unwanted model behavior (Ouyang

et al. 2022). Respective prompts intended to control system

outcomes are also referred to as system prompts and

receive particular attention in the context of jailbreaks –

i.e., intentional attacks intended to circumvent system

prompts through adversarial user prompts (Wei et al. 2023;

Fig. 2 AI development involving foundation models
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Zou et al. 2023). Recent research demonstrates that the

generation of successful attack queries can be automated,

indicating an issue of major concern with language-based

foundation models that still requires solving (Zou et al.

2023). The feature of prompt sensitivity is thus essential

with respect to the customization, control, and use of

foundation models and their downstream applications.

More work to better understand respective possibilities and

limitations can be expected.

2.3 Implications for AI Development, Deployment,

and Use

The characteristics of emergent capabilities, homogeniza-

tion, and prompt sensitivity have implications for the

development, deployment, and use of foundation models

and their downstream applications. Most prominently, they

drive the emergence of a new AI ecosystem and increase

the speed and accessibility of AI advancements while

challenging organizational and regulatory control.

With respect to the development of AI the rise of foun-

dation models is realized by a new technology stack that

fuels the emergence of an intricate AI ecosystem and a new

distribution of influence over critical products and services.

Relevant actors include the developers of foundation

models and downstream applications, as well as hosting

and hardware providers. For developers of foundation

models, access to computational resources to train their

large-scale models is essential, making processing tech-

nology a critical bottleneck in the development of new

foundation models. The advancement of foundation model

performance further hinges on large, high-quality training

datasets. The rise of large-scale models is therefore

accompanied by newly emergent markets for data genera-

tion and annotation, typically characterized by precarious

labor conditions (Veselovsky et al. 2023). Due to homog-

enization, foundation model providers are incentivized to

win market share by installing their models as the back-

bone of user-facing AI applications. OpenAI’s recent

reduction of model usage prices by 50% exemplifies this

want to boost deployment. In addition, a shift from product

to platform business is visible: OpenAI recently announced

the launch of a platform, similar to the Apple App Store, to

provide access to and the possibility to publish AI appli-

cations based on the OpenAI foundation models (OpenAI

2023c). The repositioning of foundation model providers as

platform owners will likely accelerate homogenization

processes and strengthen their influence on downstream AI

applications. The emerging AI ecosystem also sees the rise

of open-source models such as the Llama series by Meta

offering an alternative to proprietary foundation models.

Open-source models reduce engineering costs for applica-

tion developers and allow them more insights into and

control over model internals, while raising challenges

similar to those for traditional software package reuse

(Jiang et al. 2023). It remains to be seen how open-source

alternatives will compete against or find integration in AI

platforms like the one announced by OpenAI.

The reuse of foundation models will likely become a

more prevalent paradigm for the development of AI

applications. AI Developers’ engagement with model

design and training can thus be expected to decrease.

Compared to classical paradigms of software engineering,

new skills and organizational workflows are needed to

realize AI solutions, including expertise in prompt engi-

neering, knowledge of model reuse and customization, and

the handling of ethical and safety risks in modular AI

applications. Particularly given the foreshadowed emer-

gence of platforms providing a multitude of fine-tuned

models, the need to build a custom AI solution from

scratch, declines. Instead, stacking and connecting modular

AI applications can be expected to emerge as the leading

approach for developing AI solutions. The expected trend

toward cross-connecting AI applications to develop use-

case-specific solutions requires revisiting existing frame-

works for risk assessment and mitigation of (foundation

model) AI developers: forecasting and reducing the risks of

a given AI model typically involves delineating the

boundaries of its reach and capabilities. However, devel-

opers of foundation models or downstream applications

might not be able to conclusively foresee how their models

will be integrated with other models, and how such inte-

gration could create new risks, including emergent capa-

bilities, or subvert capability restrictions that were

intentionally implemented as safety envelopes (Asatiani

et al. 2021). Lastly, AI platforms backed by foundation

models will enable developers to engage as a community

and to directly market their applications to users, sug-

gesting the emergence of new business models and blurring

lines between AI developers and AI users.

With respect to the deployment of AI by and within

organizations, foundation models revolutionize the avail-

ability of deployment-ready, low-cost, and high-perfor-

mance AI applications. Consequentially, organizations will

increasingly shift from custom-built AI systems toward

deploying, and possibly customizing, pre-trained AI mod-

els. Deployment of AI will hence require new skill profiles,

including expertise in choosing and integrating the right

models for internal use cases or prompt engineering and

fine-tuning skills for model customization. For the

deployment of large-scale foundation models, organiza-

tions need to consider not only technical issues such as

performance and reliability, but also sociotechnical aspects

including necessary changes to existing workflows, novel

protocols for human-AI collaboration, and cultivating a

suitable safety culture.
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As experimentation and implementation of AI use cases

become easier, faster, and economically less risky,

deployment cycles will accelerate. Moreover, bottom-up

adoption of publicly accessible AI tools might jeopardize

the centralized, managerial selection, evaluation, and

orchestration of AI solutions deployed in organizational

workflows. This decentralization and the black-box nature

of foundation models intensify existing challenges of

organizational AI deployment, including system interop-

erability, explainability of decision outcomes, and the

governance of blurring accountability boundaries (Benbya

et al. 2020; Minkkinen et al. 2023). The property of

emergent capabilities in foundation models further com-

plicates questions of accountability and the prevention of

harmful outcomes, as unwanted, model behavior might

arise unexpectedly (Bender et al. 2021; Bommasani et al.

2021). Consequentially, continuous monitoring and the

implementation of fast-response safety protocols for worst-

case scenarios become ever more critical in AI deploy-

ment, as organizational abilities to accurately foresee and

prevent potential risks decrease. In the context of effective

risk mitigation, some consider the homogenization of AI

models and the centralization of computing capacities in

the hands of a few commercial providers a regulatory

opportunity: regulatory frameworks could leverage the

central position of foundation model and infrastructure

providers, for example through know-your-customer obli-

gations, rather than posing a high regulatory burden on

each deploying organization individually (Mökander et al.

2023).

Lastly, the carbon emissions and energy consumption

associated with the training and deployment of large-scale

foundation models are gaining attention (Bender et al.

2021). Organizations hence need to consider ways to

incorporate respective environmental impact into sustain-

ability strategies and corporate responsibility efforts.

With respect to the use of AI, new skills will be required

to realize the economic potential of using the emerging

class of AI. Examples include the skill of effective

prompting to elicit accurate and relevant model responses.

Organizational knowledge is needed on the individual and

organizational factors influencing prompting skills (e.g.,

employees’ comprehension of NLP or the specific model

deployed; domain-specific expertise). Rapid fact-checking

constitutes another important skill for efficient and

responsible use, given the unresolved issue of hallucina-

tions with AI applications based on large-scale foundation

models (Ji et al. 2023). Besides awareness of the risk of

hallucinations, users need a possibility, and possibly aux-

iliary tools, to cross-reference information with reliable

sources. As a consequence, novel usage patterns of AI

might emerge, ultimately changing how individuals fulfill

their (work) tasks. The use of AI will likely also be affected

by individuals’ perception of personal risks. The impor-

tance of minimizing end-user risk to incentivize model

adaptation is illustrated by OpenAI’s copyright shield

through which the company takes on legal responsibility if

customers should be accused of copyright infringements

because of their use of OpenAI’s models (OpenAI 2023c).

Users are faced with a decreasing explainability of AI

solutions, and it remains to be seen how this affects their

willingness to integrate respective systems for various use

cases in work and private life. As noted above, as per-

sonalization and cross-integration of AI applications

become easier, the line between users and developers will

blur. Users no longer require sophisticated technical

understanding and programming skills to build AI appli-

cations but can use natural language to customize solutions

that best serve their needs.

3 Opportunities for IS Research

In this section, we outline future research directions for IS

research, focusing on opportunities relevant to the BISE

community as a sociotechnical and construction-oriented

discipline. Some opportunities overlap with those generally

described for deep learning and generative AI, including

challenges of AI explainability (Meske et al. 2022), the

organizational deployment of (generative) AI (Feuerriegel

et al. 2023), and arising ethical concerns such as fairness

(Feuerriegel et al. 2020).

We structure our overview according to the implications

of the foundation models paradigm for AI development,

deployment, and use as indicated above. We start with I.

design and implementation of AI applications under the

paradigm of foundation models, II. business models and

value creation in the evolving AI ecosystem, III. AI man-

agement and governance, and IV. ecological and ethical

dilemmas of foundation models.

3.1 Design and Implementation of AI Applications

Under the Paradigm of Foundation Models

Re-using existing foundation models can be expected to

substantially change organizations’ approaches to design-

ing AI products and services. Instead of training large

models themselves, organizations will focus on model fine-

tuning or prompt engineering to adapt foundation models

to their specific use cases. Foundation model providers will

relevantly influence AI application design through their

usage policies and development guidelines, as illustrated

by OpenAI (OpenAI 2023b). Future research is required to

better understand the implications of this within and across

organizations including new development processes,

expertise, or resources required to leverage the potential
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and mitigate the organizational hazards of externally

developed foundation models. In this context, existing

approaches to assessing and addressing ethical and safety

concerns during design and engineering, including solu-

tions focused on model explainability (Meske et al. 2022)

or safety envelopment (Asatiani et al. 2021), require revi-

sion. The fragmentation of control between foundation

model providers and downstream application developers is

recognized in the proposed EU AI Act, which will be

decisive for the allocation of regulatory obligations. More

knowledge is needed regarding the relevant factors orga-

nizations ought to consider when deciding whether to use a

foundation model or a custom model, selecting a specific

foundation model, and deciding how to integrate it for their

respective use cases. For the latter, additional knowledge is

required on how to evaluate if model customization is

necessary, and whether fine-tuning or prompt engineering

is more suitable for the context of a particular organization

and use case. Moreover, research should derive prescriptive

design knowledge regarding the construction of viable

downstream AI applications and investigate how organi-

zations can establish a competitive advantage to position

themselves in the evolving AI technology stack. Exemplary

research questions include:

• How does the paradigm of foundation models challenge

or reform established structures and processes for AI

product and service development?

• What design principles can be established regarding the

design of viable AI applications based on proprietary or

open-source foundation models, and regarding model

customization through either prompt engineering or

fine-tuning?

• How does the paradigm of foundation models impact

the comparable advantages of different organizational

types (e.g., start-ups, corporates, SMEs) for construct-

ing viable AI applications?

3.2 Business Models and Value Creation

in the Evolving AI Ecosystem

The paradigm of foundation models implies unprecedented

accessibility of high-performance AI models, accelerating

AI development cycles, inviting low-cost experimentation,

and enabling new applications such as generative AI (Chen

et al. 2023) or life science innovations (Madani et al.

2023), The development of foundation models and their

seamless integration into downstream applications neces-

sitates a complex ecosystem of stakeholders. This spans

from computational and storage hardware suppliers to

foundation model developers, hosting providers, and an

array of service providers, including prompt engineering

managers. Future research should investigate the dynamics

of this ecosystem, including inter-actor dependencies, dri-

vers of value creation and accumulation, and the conse-

quential emergence of novel business model innovations

including platform solutions as foreshadowed by OpenAI

(2023c). Moreover, a better understanding is needed of

how organizations can realize a competitive advantage and

differentiate their AI products and services in a homoge-

nizing AI landscape. Existing works, e.g., on AI as a ser-

vice (Lins et al. 2021), might provide a starting point.

Exemplarily research questions include:

• Which opportunities for business model innovation

emerge within the AI ecosystem, currently character-

ized by model, data and provider homogenization?

• What are the drivers of value creation in the evolving

AI ecosystem? Where can we expect the accrual of

value? Where can we expect the commodification of

products and services? If a move from product to

platform business model will be realized by foundation

model providers like Open AI, how will this impact

respective dynamics?

• How can organizations realize competitive advantages

in the emerging ecosystem, including differentiation of

their AI products or services despite homogenization?

3.3 AI Management and Governance

The integration of foundation models within business

processes or AI products and services raises novel ques-

tions for managing and governing the organizational AI

landscape. On a macro level, the allocation of responsi-

bilities and liabilities among the diverse stakeholders

remains to be formalized. The regulatory discourse on how

to foster responsible behavior and ensure ethical, legally

compliant AI systems is ongoing, illustrated by negotia-

tions on the EU AI Act. Some aspects of concerns parallel

those of the general public debate on AI, such as what an

AI model should be allowed to do (autonomously) or how

to balance freedom of speech and censorship in an attempt

to realize ethical and legally compliant outputs. For

example, should it be allowed for an AI to tell a joke

related to gender or religion? With respect to agency,

questions relate to what tasks an AI should be allowed to

conduct autonomously: driving a car, providing medical

advice, opening bank accounts and conducting online

business?

Besides identifying the risks arising with pre-trained

large-scale models, considerations involve an assessment

of which risks can be addressed most effectively by whom,

and how such mitigation could be executed. This includes

preventing that model vulnerabilities are passed on from

foundation models to downstream applications (Fishman

and Hancox-Li 2022). Future research ought to investigate
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respective best practices and derive strategic knowledge on

how organizations can maneuver the balance between

caution and safety without stifling innovation. Within

organizations, established structures and processes of AI

management and governance might require adaptation to

the foundational model paradigm. This includes the man-

agement of bottom-up implementations of easily available

AI solutions, solutions to privacy and copyright issues, and

new governance approaches to assess and constrain the

risks arising from a growing reliance on opaque black-box

models or inaccessible training data. Existing data and AI

governance frameworks might be leveraged (e.g., Schnei-

der et al. 2023). In this context, the relevance of prompt

engineering and related best practices to facilitate viable

and safe AI systems require further investigation. More-

over, new benchmarks ought to be developed for assessing

model performance including approaches to measure and

control sociotechnical effects of foundation models within

organizational structures and processes. Exemplarily

research questions include:

• How can organizational AI management contribute to

the realization of the value of foundation models with

respect to internal business processes, and product or

service development?

• How does organizational AI governance (have to) adapt

to the increasing relevance of (opaque) foundation

models in internal business processes, and product or

service development?

• How can the responsibility to mitigate the risks of

foundation models, including ethical, legal, and busi-

ness concerns caused by the properties of emergent

properties and homogenization, be distributed between

different actors of the AI technology stack in a way that

fosters safe and aligned AI applications?

3.4 Ecological and Ethical Dilemmas of Foundation

Models

As foundation models become increasingly integral to

various industries, ensuring their ethical deployment and

long-term viability becomes paramount. Suitable frame-

works and effective corporate governance mechanisms are

required to guide decision-making processes related to the

responsible development and deployment of foundation

models and downstream applications. Future research

should inquire into how organizations define and uphold

ethical principles in this context, including the resolution of

potential ethical dilemmas. Respective research can inform

the establishment of robust corporate responsibility

guidelines and policy recommendations to incentivize

industry-wide adoption. Future research should also

explore the broader economic and social implications of

foundation models and investigate opportunities for cor-

porate governance to influence respective effects, including

the impact on workforce dynamics, market competition, or

economic value distribution. Training and deploying

foundation models come with significant ecological costs

(OECD 2022). More research is needed to holistically

capture the environmental footprint of foundation models

and their associated infrastructure, including energy con-

sumption, carbon emission, and resource utilization

throughout the AI lifecycle. Avenues for sustainability

improvements should be devised, including technical

solutions (e.g., optimizing model architecture, reducing

redundancy in training data, enhancing model compression

techniques) and structural solutions (e.g., shared computing

resources among industry players, federate learning net-

works, shared standards for model evaluation). Moreover,

researchers could explore effective structures for incen-

tivizing organizations to prioritize sustainability and stim-

ulating industry-wide engagement in eco-friendly

practices. Exemplarily research questions include:

• How can the training and deployment of (fewer)

foundation models be realized in such a way that it

contributes to improving the sustainability of the AI

industry?

• How can corporate sustainability strategies integrate

the environmental costs of recurrent inferences of

foundation models integrated into internal business

processes, or the organization’s products and services?

• How do the key features of foundation models

challenge existing (corporate) frameworks and criteria

for responsible AI development or deployment? How

can these frameworks be adapted to address the

emerging challenges (e.g., lack of explainability of

black-boxed foundation models)?

4 Conclusion

This article has elucidated the emergence of foundation

models as a transformative paradigm for AI. Foundation

models promise unprecedented opportunities to advance

the performance and accessibility of AI applications across

various sectors and represent a significant shift in how

near-future AI systems will be developed, deployed, and

used. We delineated key features of foundation models

such as emergent capabilities, homogenization, and prompt

sensitivity. These features redefine the stakeholders and

dynamics of the AI ecosystem, including a pull toward a

centralization of power and the rise of regulatory chal-

lenges through the diffusion of accountability and control.

For organizations, foundation models provide a remarkable

chance to revolutionize their operations, services, and
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products. Avenues for future research include investigating

how foundation models change organizations’ approaches

to designing AI applications, business models and value

creation dynamics in the evolving AI ecosystem, hurdles

and remedies concerning AI management and governance,

and the formulation of organizational strategy and practices

to harness the potential of foundation models responsibly

and sustainably.

While we aimed to address a diverse array of aspects

relevant to the BISE community in the context of foun-

dation models, we recognize the limitation that there might

be nuanced issues (e.g., potential differences in foundation

models pre-trained on language vs. images or other

modalities; prompt engineering; impact of model scaling

on performance and key features) that were not exhaus-

tively examined given the complexity of the topic. More-

over, due to the rapid speed of current technological

advancements, we acknowledge a temporal constraint in

this article’s insights. However, we propose that an

understanding of the fundamental characteristics of the

foundation model paradigm, as elucidated within this

article, establishes a critical groundwork for forthcoming

discussions. Ultimately, the outlined avenues for future

research offer an agenda for the BISE community that sets

the stage for impactful contributions toward the viable,

responsible, and sustainable realization of AI systems in

the age of foundation models.
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