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Abstract Artificial intelligence (AI) offers great potential

in organizations. The path to achieving this potential will

involve human-AI interworking, as has been confirmed by

numerous studies. However, it remains to be explored

which direction this interworking of human agents and AI-

enabled systems ought to take. To date, research still lacks

a holistic understanding of the entangled interworking that

characterizes human-AI hybrids, so-called because they

form when human agents and AI-enabled systems closely

collaborate. To enhance such understanding, this paper

presents a taxonomy of human-AI hybrids, developed by

reviewing the current literature as well as a sample of 101

human-AI hybrids. Leveraging weak sociomateriality as

justificatory knowledge, this study provides a deeper

understanding of the entanglement between human agents

and AI-enabled systems. Furthermore, a cluster analysis is

performed to derive archetypes of human-AI hybrids,

identifying ideal–typical occurrences of human-AI hybrids

in practice. While the taxonomy creates a solid foundation

for the understanding and analysis of human-AI hybrids,

the archetypes illustrate the range of roles that AI-enabled

systems can play in those interworking scenarios.

Keywords Human-AI hybrids � Human-AI collaboration �
Taxonomy � Archetypes � Sociomateriality

1 Introduction

Rapid advancements in the field of artificial intelligence

(AI) have raised the level of expectations to the point at

which some are even heralding AI as the next general-

purpose technology (Goldfarb et al. 2019; Jöhnk et al.

2021). As AI-related technologies become ever more

sophisticated, researchers and practitioners alike are iden-

tifying increasing numbers of AI use cases in the world of

business (Bughin et al. 2018). At the same time, this

growing potential of business applications has led to sig-

nificant investments, which in turn has led to copious

amounts of AI use cases (Dellermann et al. 2019a).

The conventional approach of AI use cases has been to

treat humans and machines as substitutes that can replace

one another in the performance of tasks (Daugherty and

Wilson 2018; Raisch and Krakowski 2021). Recent studies,

however, have revealed that this limited perspective on AI

has had two unfortunate consequences: (1) a dispropor-

tionately large focus on automation and (2) a tendency to

neglect the powerful interworking that occurs when

humans and AI augment each other (Dellermann et al.

2019b; Rai et al. 2019; Seeber et al. 2020). It has, therefore,

become a complicated matter to identify true value-gen-

erating use cases (Bughin et al. 2018) which is why many

organizations still fail to realize value from using AI

(Ransbotham et al. 2020). Researchers have since resorted
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to so-called human-in-the-loop and algorithm-in-the-loop

approaches (Green and Chen 2019; Grønsund and Aanes-

tad 2020). Both concepts advance AI application since they

are predicated on the understanding that, in an ideal sce-

nario, humans and algorithms work in mutual recognition

of each other’s merits to augment one another. So far,

however, both concepts decidedly lack a differentiated

view of the precise ways in which human agents and AI-

enabled systems can complement one another when per-

forming tasks as so-called human-AI hybrids (Rai et al.

2019).

While the insights of current studies into the inter-

working of humans and AI are undoubtedly detailed, they

often focus on either a technical or a social perspective. To

account for the multiple ways in which human-AI hybrids

are entangled, an integrative perspective is required that

focuses on the complementary interworking of human

agents and AI-enabled systems (Jarrahi 2018). This ratio-

nale is shared by several experts at work in the field

(Agrawal et al. 2018; Daugherty and Wilson 2018; Trau-

mer et al. 2017), with Davenport and Ronanki (2018)

providing the empirical evidence that companies can do

better when they focus on augmenting rather than replacing

human capabilities as they try to develop AI use cases.

With this in mind, we ask the following research question:

How Can We Conceptualize the Collaborative

Interworking of Human Agents and AI-Enabled

Systems?

To address this question, we develop a taxonomy of

human-AI hybrids. We use an iterative taxonomy devel-

opment method (Kundisch et al. 2022; Nickerson et al.

2013) that allows us to analyze the complex interworking

of human agents and AI-enabled systems (Oberländer et al.

2019; Nickerson et al. 2013). Moreover, we derive five

archetypes of human-AI hybrids, each illustrating which

roles AI-enabled systems can play in those collaborative

interworking scenarios.

As a theory for analyzing (Gregor 2006), our taxonomy

provides a holistic structure to the emerging field of

human-AI hybrids. Using weak sociomateriality as justifi-

catory knowledge (Jones 2014; Orlikowski 2007; Gregor

and Jones 2007), we present AI-enabled systems and

human agents as locally separate entities with distinct

characteristics that globally intra-act in sociomaterial

practices. In doing so, we also acknowledge the importance

of both human and material agency in human-AI hybrids.

Moreover, by deriving archetypes of human-AI hybrids, we

shed light on overarching interworking patterns in human-

AI hybrids. Finally, our study provides inspiration for

practitioners to create and shape human-AI hybrids tapping

their full potential.

2 Background

2.1 Artificial Intelligence

AI provides both new opportunities and notable challenges

in its ability to learn, solve problems, and create objects

(Benbya et al. 2021). Most recently, there has been a

quantum leap in the advancement of AI-enabled tech-

nologies with previously unfathomable real-world appli-

cations, such as AI-powered diagnostic radiology tools

(Paschen et al. 2020) or the AI-driven digital operating

model of Ant Financial (Iansiti and Lakhani 2020).

Although AI has already established itself in many orga-

nizations, there is still some debate on its definition. In

agreement with Russell and Norvig (2016), we regard AI

and its related technologies as an instrument that lets one

automate and augment activities formerly associated with

human intelligence, such as decision-making, problem-

solving, and learning. Such activities are often referred to

as cognitive functions. They range from basic and even

subconscious functions, such as memory or perception, to

highly specific functions, such as recognition or problem-

solving (Hwang and Chen 2017). Looking at AI through

the lens of cognitive functions provides a common under-

standing of the broad range of possibilities afforded by AI-

enabled technologies (Corea 2019; Stohr and O’Rourke

2021). With that in mind, we will use this cognitive

functions lens of AI to ensure that first, our perception of

AI is in line with that of the wider IS research community,

and that, second, this study is situated in the area where

further research is most needed (Rai et al. 2019). That is,

we understand AI as ‘‘the ability of a machine to perform

cognitive functions that we associate with human minds,

such as perceiving, learning, and interacting with the

environment, problem-solving, decision-making, and even

demonstrating creativity’’ (Rai et al. 2019, p. iii).

In this context, it is worth noting that the umbrella term

AI is not a ready-made technology but rather an evolving

research field (Russell and Norvig 2016). It constitutes a

moving frontier of computing technologies that reference

human intelligence (Berente et al. 2021). As such, AI itself

cannot have capabilities or provide action possibilities.

Only technologies related to AI (e.g., machine learning

algorithms) can do so by functioning as an AI-enabled

system within a technical subsystem (Chatterjee et al.

2021). Therefore, we agree with Rzepka and Berger (2018)

that the term AI-enabled system is best understood and

used as a subsumption of AI-enhanced (e.g., autonomous

car navigation) as well as AI-based (e.g., natural language

processing) systems. In the following, we will refer to AI-

enabled systems whenever we discuss the interworking

between human agents and a particular instantiation of AI.
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It is of critical importance to acquire a broad under-

standing of both the strengths and limitations of AI-enabled

systems before embarking on AI use cases (Davenport and

Ronanki 2018). Among these limitations are a lack of

empathy, intuition, or the ability to quickly adapt to

unforeseen circumstances (Bughin et al. 2018), capabilities

that are closely related to the intuitive actions of what

Kahneman (2011) refers to as ‘‘System 1.’’ Not addressing

these limitations properly can hamper the success of AI

initiatives (Bughin et al. 2018). Combining the capabilities

of human agents and AI-enabled systems could help

overcome these limitations, because those intuitive actions

related to ‘‘System 1’’ have been an important foundation

of human development (Seeber et al. 2020; Kahneman

2011).

2.2 Human-AI Hybrids

To date, however, the entangled interworking of human

agents and AI-enabled systems has neither been given a

clear definition nor has it been dealt with comprehensively

in the academic literature. Possible reasons for this are the

vague terms in which AI has been discussed in a range of

disciplines (Demlehner et al. 2021) and the fact that these

discussions have been conducted in several related yet

separate streams of research, such as IS, human–computer

interaction (HCI), human–robot interaction, human–ma-

chine interaction, engineering, and management. Existing

research predominantly focuses on structuring specific

aspects of human-AI collaboration such as tasks and

interactions (e.g.,Dellermann et al. 2019a, 2019b; Traumer

et al. 2017), specific use cases and the roles of human

agents (e.g., Davenport et al. 2020; Maedche et al. 2019;

Paschen et al. 2020; Rzepka and Berger 2018), or technical

aspects of AI-enabled systems (e.g.,Liew 2018; Østerlund

et al. 2021). Yet, there is a lack of a holistic conceptual-

ization of what constitutes the interworking of human

agents and AI-enabled systems that mutually acknowledges

the role of both. One of the most impactful commentaries

on the interworking of human agents and AI-enabled sys-

tems in the realm of IS has been the editor’s comment by

Rai et al. (2019), which also features a description of their

understanding of human-AI hybrids. The authors describe

human-AI hybrids as dynamic combinations of individual

competencies of humans and AI-enabled systems. In the

interest of clarity, we aim to collect our insights under one

shared generic label (‘‘human-AI hybrids’’), which we will

use throughout this paper. We also adopt Rai et al.’s (2019)

definition of human-AI hybrids as combinations of capa-

bilities of human agents and AI-enabled systems.

Agreeing with Daugherty and Wilson (2018) and Rai

et al. (2019), we note that certain aspects of tasks are likely

to align well with the capabilities of AI-enabled systems,

while others are likely to correspond better with those of

human agents. By and large, human agents and AI-enabled

systems perform different roles and interactions to facili-

tate collaborative work (Daugherty and Wilson 2018;

Davenport and Ronanki 2018). We understand human-AI

hybrids to constitute the symbiotic interworking of cogni-

tive functions, some attributed to human agents, others to

AI-enabled systems, and all working together to perform

tasks. Combining the complementary strengths of AI-en-

abled systems and human agents can offer distinct benefits,

including an increase in organizational knowledge as well

as performance improvements (Fügener et al. 2021;

Maedche et al. 2019; Sturm et al. 2021). We refer to

Dellermann et al. (2019b) – who coined the term ‘‘hybrid

intelligence’’ as the combination of human intelligence and

AI – when we argue that a division of labor between human

agents and AI-enabled systems is likely to emerge as the

dominant way in which organizations will soon be using

AI. Peeters et al. (2021) define ‘‘hybrid collective intelli-

gence’’ as a quality that allows humans and AI-enabled

systems to act more intelligently when they do so collec-

tively. We support this view, as human-AI hybrids can use

symbiotic interworking to elevate themselves to hybrid

assemblages that have the potential to be greater than the

sum of their parts.

At the same time, organizations also need to be cog-

nizant of the risks that can arise for human agents when

their increased exposure to AI-enabled systems is not

managed well, such as conflicts in employee role identity

(Strich et al. 2021). This unmanaged exposure can also

decrease unique human knowledge, which in turn can

hamper creativity (Fügener et al. 2021). Furthermore, there

is the risk that AI-enabled systems may produce unfair

results (Teodorescu et al. 2021). Managing or mitigating

these potential risks requires a deep understanding of the

interworking between human agents and AI-enabled sys-

tems (Teodorescu et al. 2021).

2.3 Sociomateriality

Human-AI hybrids refer to the dynamic pairing of the

capabilities of AI-enabled systems with those of human

agents. As a sociomaterial perspective helps conceptualize

such complex relationships and facilitate a deeper under-

standing of the results of those pairings (Cecez-Kec-

manovic et al. 2014), we used this perspective as

justificatory knowledge for developing our taxonomy of

human-AI hybrids. Sociomateriality proposes to focus on

an integrated perspective of human agents and (technical)

objects (Orlikowski and Scott 2008). Such an integrated,

sociomaterial view collapses the boundaries between the

social (e.g., humans) and the material (e.g., technologies).

It facilitates insights into their relationships, interplay, and
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the various results thereof (Leonardi 2012; Cecez-Kec-

manovic et al. 2014). Sociomateriality can be regarded as

an umbrella term that incorporates several pre-existing

theories, such as socio-technical systems, actor network,

and practice theory (Leonardi 2013).

While the entangled view of the social and the material

unifies IS research concerned with sociomateriality, there

are different interpretations of their relationship. On the

one hand, strong sociomateriality presumes that the social

and material are inextricably entangled, meaning that

‘‘there is no social that is not also material, and no material

that is not also social’’ (Orlikowski 2007, p. 1437). A

strong sociomateriality lens would implicate that both

social and material entities do not exist beforehand but only

emerge through intra-actions (Cecez-Kecmanovic et al.

2014; Barad 2003). Weak sociomateriality, on the other

hand, has its roots in the critical realist tradition, which is

why it views the social and material as separate entities that

can exist without one another (Leonardi 2013). Although

(weak) sociomateriality provides an interesting perspective

to study human-AI hybrids, research leveraging this per-

spective is scarce. However, there is agreement that our

interpretation of the material and material agency will need

to change with advancements in AI-enabled systems and

their potential to act autonomously (Ågerfalk 2020; Johri

2022; van Rijmenam 2019).

In accordance with weak sociomateriality, we under-

stand human agents and AI-enabled systems as socioma-

terial actors in the sense of locally separate entities who

globally intra-act in sociomaterial practices (Leonardi

2013; Niemimaa 2016). As a result, the weak sociomate-

riality perspective allows for examining not just specific

preexisting attributes and capabilities of human agents and

AI-enabled systems (local seperabillity) but also new

action possibilities available due to human-AI hybrids and

their entangled interworking (sociomaterial practices). In

sum, drawing from weak sociomateriality as justificatory

knowledge provides the means to analyze the entangled

nature of human-AI hybrids and its potential to transcend

the boundaries of any single actor – be it social or material.

We provide more detailed explanations together with

concrete examples of how weak sociomateriality con-

tributes to our taxonomy development process in Sect. 4.1.

3 Research Method

To address the question of how to conceptualize the col-

laborative interworking of human agents and AI-enabled

systems, we chose a twofold approach: developing a tax-

onomy and deriving archetypes of human-AI hybrids based

on an application of this taxonomy. We decided to do so, as

the field of human-AI hybrids at the time did lack not only

a foundational structure for sensemaking but also a com-

prehensive overview of the status quo of human-AI hybrid

usage in real-world scenarios. To capture both existing

research and real-world applications, we base our research

on an extensive overview of relevant literature as well as a

sample of 101 human-AI hybrids. More specifically, we

first conducted a literature review on the collaboration of

human agents and AI-enabled systems following the

guidelines of Webster and Watson (2002) and vom Brocke

et al. (2015). We applied a search string with three major

elements to various databases: (‘‘Human’’) AND (‘‘Artifi-

cial Intelligence’’ OR ‘‘AI’’) AND (‘‘Hybrid’’ OR ‘‘Col-

laboration’’). After careful screening and applying

forward–backward search, we arrived at a final set of 49

relevant paper that encompass current debates, theories,

and taxonomies in the realm of human-AI hybrids. Sub-

sequently, we added a fourth block to our search string to

find practical applications: (‘‘Use Case’’ OR ‘‘Case Study’’

OR ‘‘Pilot Project’’ OR ‘‘Application’’ OR ‘‘Prototype’’).

We applied this string to an expanded set of databases that

included more application-oriented publications of the

IEEE as well as several search engines. After careful

screening and applying forward–backward search, we

assembled the sample of 101 human-AI hybrids displayed

in Table 1. ‘‘Appendix 1’’ (available online via http://link.

springer.com) contains more details on the literature review

and the sample compilation.

Frequently used synonymously with frameworks or

typologies, taxonomies are empirically as well as concep-

tually derived groupings categorized in layers, dimensions,

and characteristics (Nickerson et al. 2013). By delivering

structure, taxonomies facilitate a deeper understanding of

emerging research fields that are as yet little understood

(Nickerson et al. 2013). This makes them particularly

useful in the field of human-AI hybrids that is currently

lacking a holistic understanding of what characterizes the

collaborative interworking of human agents and AI-en-

abled systems when they augment one another.

Our purpose being to conceptualize the collaborative

interworking of human agents and AI-enabled systems, we

also derive archetypes of human-AI hybrids that illustrate

overarching approaches to the interworking of human

agents and AI-enabled systems to perform specific tasks.

As a result, these archetypes facilitate deeper insights into

the usage of human-AI hybrids.

In sum, our approach delivers a comprehensive con-

ceptualization of human-AI hybrids that is based on both

an extensive conceptual and empirical analysis. In the

following, we explain in detail how we developed our

taxonomy and our archetypes of human-AI hybrids.
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3.1 Developing a Taxonomy of Human-AI Hybrids

To develop a taxonomy of human-AI hybrids, we adopted

the taxonomy development method of Nickerson et al.

(2013). While this method has set an excellent standard for

the development of structure giving taxonomies (Ober-

länder et al. 2019), we also agree with Kundisch et al.

(2022) that it benefits from more detailed guidance in

certain aspects of the development process. Thus, we

include further methodological steps, as described by

Kundisch et al. (2022), to create a more rigorous and robust

taxonomy building process. Overall, our iterative taxon-

omy development method comprises thirteen steps.

‘‘Appendix 2’’ contains a detailed description of these steps

alongside the influence of our justificatory knowledge as

well as the modifications to the taxonomy in each iteration.

We set about this task by specifying the observed phe-

nomenon as human-AI hybrids. Building on that, we

defined our target user group as consisting of IS researchers

and researchers from other fields related to the topic of

human-AI hybrids (e.g., HCI, (cognitive) psychology)

along with high- and mid-level decisionmakers concerned

with the use and integration of AI. With this in mind, we

specified the purpose of our taxonomy as holistically

understanding of what characterizes the collaborative

interworking of human agents and AI-enabled systems

when they augment one another (Kundisch et al. 2022). We

defined ‘‘the relevant properties of the collaborative inter-

working of human agents and AI-enabled systems’’ to be

the meta-characteristic for developing our taxonomy.

Throughout the entire development process, we ensured the

compatibility of all characteristics and dimensions with the

meta-characteristic, this being a relevant step for devel-

oping useful taxonomies (Nickerson et al. 2013). We then

defined our objective as well as our subjective ending

conditions.

To develop our taxonomy, we performed a total of four

iterations, combining two conceptual-to-empirical (C2E)

approaches with two empirical-to-conceptual (E2C)

approaches (see Table 2). Thus, we developed our taxon-

omy based on combining deductive (conceptual) and

inductive (empirical) approaches (Nickerson et al. 2013).

We referred to weak sociomateriality as justificatory

knowledge to inform each of these four iterations (Gregor

and Jones 2007). Weak sociomateriality provided us the

means to structure, analyze and understand how the

entangled nature of human-AI hybrids can produce some-

thing greater than the sum of its individual components. In

our first two iterations, we applied a C2E approach, the

rationale being to inform our efforts with the knowledge

produced by prior research. With this approach, we were

able to integrate ideal–typical conceptual characteristics as

discussed in the literature (Snow and Reck 2016). To

extend our knowledge of human-AI hybrids use cases and

render the taxonomy applicable to real-world scenarios, we

took an E2C approach in iterations three and four (Nick-

erson et al. 2013). After each iteration, we revised our

taxonomy and created a revised version (see Fig. A1). We

terminated the process when all objective and subjective

ending conditions were met (Nickerson et al. 2013).

To improve both the rigor of our development process

and the applicability of our taxonomy, we performed an

external evaluation after all of our objective and subjective

ending conditions had been met (Szopinski et al. 2020).

Here, we conducted eight semi-structured interviews with a

select group of individuals who combined practical and

Table 1 Sample of human-AI hybrids

References Number of use

cases

Number of human-AI

hybrids

Agrawal et al. (2018) 3 3

Ansari et al. (2019) 1 2

Berger et al. (2021) 1 1

Daugherty and Wilson

(2018)

31 34

Davenport et al. (2020) 7 7

Davenport and Kirby

(2015)

2 2

Davenport (2018) 7 7

Doltsinis et al. (2018) 1 1

Green and Chen (2019) 1 1

Grønsund and Aanestad

(2020)

3 5

Heer (2019) 3 3

Iansiti and Lakhani

(2020)

4 4

Jussupow et al. (2021) 1 1

Kahn et al. (2020) 1 1

Klumpp (2018) 1 1

Lai et al. (2020) 1 1

Liew (2018) 3 3

McAfee and

Brynjolfsson (2017)

5 5

Mirbabaie et al. (2021) 1 1

Paschen et al. (2020) 5 5

Schmitt et al. (2020) 1 1

Shin et al. (2021) 1 1

Sowa et al. (2021) 1 1

Syam and Sharma (2018) 4 4

Tsang et al. (2018) 1 1

van Dun et al. (2023) 1 1

Yin et al. (2013) 1 1

Zhang et al. (2021) 3 3
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academic expertise (for details, see ‘‘Appendix 3’’). The

interviews consisted of a brief introduction to the taxon-

omy and the topic at hand so that the ensuing interview

could focus on the dimensions and characteristics of the

taxonomy and its applications. Moreover, we evaluated the

taxonomy based on a set of criteria (i.e., comprehensibility,

completeness, robustness, and suitability for the real world

in terms of the purpose of our taxonomy) for taxonomy

evaluation (Kundisch et al. 2022). By way of an iterative

approach, we performed one interview, analyzed and dis-

cussed the results of that interview, revised our taxonomy,

and then prepared for the following interview accordingly

(see ‘‘Appendix 3’’). We terminated our external evaluation

process when all our evaluation criteria were met, and no

further revisions were necessary.

Lastly, we performed a final validation of the taxonomy

with three authors independently classifying thirteen ran-

domly selected human-AI hybrids from our sample and

determine the taxonomy’s reliability. Based on these

independent classifications, we calculated the quality of

agreement by using the kappa coefficient of Fleiss (1971).

This allowed us to measure the proportion of joint judg-

ment between a fixed number of raters (see results in

‘‘Appendix 4’’).

3.2 Developing Archetypes of Human-AI Hybrids

To facilitate deeper insights on the status quo of human-AI

hybrid usage and demonstrate the applicability of our

taxonomy, we applied it to the complete sample of 101

human-AI hybrids that informed our taxonomy develop-

ment process and was built based on an extensive review of

academic and practice-oriented literature (see ‘‘Appendix

1’’). First, one of our co-authors performed an initial

classification based on the definitions of characteristics and

dimensions from the preceding taxonomy development

process (see Sect. 4) (Gimpel et al. 2018). We jointly

reviewed and discussed the results of this classification to

arrive at a consensual classification of all 101 human-AI

hybrids. Then, we clustered our classified sample of

human-AI hybrids to derive archetypes.

Cluster analysis and, more specifically, hierarchical

clustering are common statistical methods in IS research

used to group objects based on their similar characteristics

(Hair et al. 2010). Hierarchical clustering offers the

advantage of a better interpretation of results due to the

visualization of clusters using dendrograms. To perform

our cluster analysis, we chose Ward’s (1963) agglomera-

tive hierarchical clustering algorithm, as it minimizes the

total within-cluster variance (Ferreira and Hitchcock 2009)

and has produced reliable results in prior IS research

studies (e.g. Janssen et al. 2020). As a distance measure, we

chose Euclidean distance because it naturally fits Ward’s

linkage method (Rencher 2002) and has proven to perform

reliably in practice (Nerbonne and Heeringa 1997). To

facilitate a correct application of the distance measure, we

dichotomized our classification so that each characteristic

of a dimension is represented by a separated column that

equals either 1 if the characteristic is observable in the

analyzed human-AI hybrid or 0 if it is not (Gimpel et al.

2018). Further, we normalized all values in the respective

columns so the distance resulting from the classification of

characteristics in one dimension can only assume values

between 0 and 1 to avoid overrating dimensions with a high

number of characteristics.

Cluster algorithms require input on the number of

clusters to classify sets of data. To date, however, there is

no consensus on which approach produces the ideal num-

ber of clusters (Wu 2012). Therefore, we calculated the

ideal number of clusters based on various metrics,

including but not limited to the Calinski-Harabasz index,

the Davies-Bouldin index, the gap statistic, and the sil-

houette coefficient (Calinski and Harabasz 1974; Davies

and Bouldin 1979; Rousseeuw 1987; Tibshirani et al.

2001). According to early indications, the ideal number of

clusters appeared to lie between three and seven. Having

analyzed the resulting dendrogram (see ‘‘Appendix 6’’), we

determined five to be the appropriate number of clusters in

our case (Aldenderfer and Blashfield 1984).

After clustering our data set, we studied each cluster for

dominant taxonomy characteristics, then derived suit-

able archetypes of human-AI hybrids. Finally, we evalu-

ated our archetypes with the Q-sort method (Nahm et al.

2002), a frequently used statistical tool to test the reliability

and usefulness of taxonomies and archetypes (Carter et al.

Table 2 Iterations of the taxonomy development

Iteration Approach Focus

1 C2E* Analysis of body of knowledge (scientific

contributions and studies)

2 C2E* Panel discussion with IS researchers and

reconciliation of additional literature

3 E2C** Analysis of identified human-AI hybrids

4 E2C** Taxonomy application on additional human-

AI hybrids

*C2E: Conceptual-to-Empirical, **E2C: Empirical-to-Conceptual

Human agent
Human agency

AI-enabled system
Material agency

Interaction

Sociomaterial practices

Fig. 1 Sociomaterial entanglement of human-AI hybrids (adapted

from Niemimaa 2016)
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2007). To perform Q-sort, Carter et al. (2007) recommend

that two or more judges (P-set) with a clear understanding

of the topic classify a set of items (Q-set) to predefined

criteria. In our case, two of our co-authors were yet unfa-

miliar with the results of our agglomerative clustering.

Unbiased as they were, we selected them to map the

human-AI hybrids to the identified archetypes. Following

the advice of Nahm et al. (2002), we measured the relia-

bility of our archetypes with Cohen’s (1960) kappa coef-

ficient and the validity of our archetypes through hit-ratios

(for results, see ‘‘Appendix 8’’). In doing so, we were able

to measure the proportion of joint judgment as well as the

frequency of correctly assigned objects (Moore and Ben-

basat 1991; Nahm et al. 2002).

4 Taxonomy of Human-AI Hybrids

Here, we present the results of our taxonomy development

process, including the insights generated from using weak

sociomateriality as justificatory knowledge. We include a

detailed description of the dimensions and characteristics

across the three sociomaterial entities (sociomaterial

practices, AI, and human) as of the final iteration.

4.1 Taxonomy Foundations: Sociomateriality

In line with the meta-characteristic, our taxonomy refers to

the collaborative interworking of human agents and AI-

enabled systems. Leveraging weak sociomateriality as

justificatory knowledge, we understand both entities as

locally separate sociomaterial actors. That is, we regard AI-

enabled systems with their underlying technology and

algorithms as ‘‘material’’, whereas human agents are ‘‘so-

cial’’ entities. In line with weak sociomateriality, we

acknowledge that both actors have specific attributes and

capabilities. Consequently, these attributes and capabilities

are reflected in different dimensions and characteristics of

our taxonomy. At the same time, weak sociomateriality

allows us to analyze how AI-enabled systems and human

agents intra-act on a higher-level to form sociomaterial

practices (Leonardi 2013; Niemimaa 2016). Since either

actor can initiate interactions, we view both human and

material (non-human) agency as relevant aspects of a

sociomateriality perspective on human-AI hybrids (Jones

2014; Oberländer et al. 2018; van Rijmenam 2019; Johri

2022). Moreover, this notion acknowledges that AI-en-

abled systems can assume responsibility for tasks, even

when there are ambiguous requirements. They can act

autonomously, complementing the human agent (Ågerfalk

2020).

Figure 1 illustrates how we depict the two sociomaterial

actors (human agent, AI-enabled system) and their

interworking. Drawing from weak sociomateriality, we

organized our taxonomy in three distinct entities: the

human (i.e., the ‘‘social’’), the AI (i.e., the ‘‘material’’), and

sociomaterial practices.

For instance, an AI-enabled diagnosis system can

autonomously monitor its environment and deliver pre-

dictions based on its observations (material agency). A

human inspector can make sense of and verify those pre-

dictions to complete diagnosis and plan next steps

accordingly (human agency). Collectively, the AI-enabled

system and the human agent enact sociomaterial practices

that can result in better outcomes, such as improved

diagnosis or better plannability of maintenance activities.

Moreover, using weak sociomateriality as justificatory

knowledge influenced both the structuring of our taxon-

omy’s dimensions (i.e., the organization of dimensions

under the overarching sociomaterial entities) and our ter-

minology. For instance, weak sociomateriality helped us

understand that both the human and the AI require

dimensions that reflect their specific capabilities (i.e.,

cognitive functions) and the interaction from one entity to

the other (see ‘‘Appendix 2’’ for more details).

In summary, weak sociomateriality as justificatory

knowledge provides us with the theoretical groundings to

analyze human-AI hybrids in their local separability and

their higher-level entanglement through sociomaterial

practices (Kautz and Jensen 2013; Leonardi 2013). Thus,

weak sociomateriality helped with structuring the collab-

orative interworking of human-AI hybrids.

4.2 Taxonomy

In line with our meta-characteristic, we developed a tax-

onomy that provides a clear structure to the field of human-

AI hybrids. Our final taxonomy includes three layers:

sociomaterial entities, dimensions, and characteristics. It

comprises three distinct sociomaterial entities, the human

(human agency), the AI (material agency), and socioma-

terial practices, and nine dimensions, of which seven are

mutually exclusive (ME) and two are non-exclusive (NE)

(see Fig. 2). Although a taxonomy’s characteristics are

ideally mutual exclusive (Bailey 1994; Bowker and Star

1999; Nickerson et al. 2013), certain cases may justify

deviations (Kundisch et al. 2022). We find that the

dimensions human cognitive functions and AI cognitive

functions justify non-exclusiveness as we could introduce

an individual characteristic for each combination or binary

dimensions for each cognitive function. This would lead to

mutual exclusiveness, but also to an excessive set of

characteristics or dimensions. Such a taxonomy, in turn,

would contradict Nickerson et al.’s (2013) conciseness

criterium.

123

L. Fabri et al.: Disentangling Human-AI Hybrids, Bus Inf Syst Eng 65(6):623–641 (2023) 629



4.2.1 Human (Human Agency)

The sociomaterial actor human comprises three dimen-

sions, each consisting of characteristics that concretize the

cognitive functions, the interplay toward AI-enabled sys-

tems, and the focus of human agents in human-AI hybrids.

These dimensions and characteristics reflect a human

agent’s specific attributes and capabilities (i.e., the ‘‘so-

cial’’). The dimension human cognitive functions com-

prises the relevant cognitive functions that human agents

can contribute to human-AI hybrids. Based on our analysis,

we determine the key cognitive functions of human agents

to be perceiving, reasoning, predicting, planning, decision-

making, explaining, interacting, creating, and empathizing.

The interaction possibilities of human agents that are

tailored to AI-enabled systems (interaction human to AI)

are akin to the interaction possibilities in the other direc-

tion. They consist of facilitating, verifying, and supple-

menting. We discovered this to be the case in our

interviews (see ‘‘Appendix 3’’). Facilitating is about put-

ting an AI-enabled system in a position where it can deliver

a meaningful contribution to the accomplishment of a task.

Facilitation can also happen when human input or modi-

fication is required to improve an AI-enabled system.

Beyond that, human agents can verify the results of AI-

enabled systems based on reactive or proactive oversight

(Teodorescu et al. 2021). Meanwhile, supplementing AI-

enabled systems with the actions of human agents happens

in various forms, all of which depend on the context and

requirements of the specific task.

Human focus denotes the primary purpose of human

agents in human-AI hybrids. Whereas AI-enabled systems

can also have a primary role of automation in human-AI

hybrids, human agents’ primary purpose in human-AI

hybrids is augmentation. Therefore, we have further spec-

ified the augmentation purpose in this dimension. More

specifically, this dimension indicates whether the aug-

menting purpose is sensemaking, creativity, compassion, or

flexibility. Sensemaking, for instance, occurs in strategic

thinking processes that require a certain understanding of

the world beyond the specific decision context. While AI-

enabled systems have already found their way into the

enhancement of art creation processes, e.g., composing

music or paintings based on large sets of training data,

creativity itself is still driven by the competencies of

human agents (Rai et al. 2019). Thus, when being a part of

human-AI hybrids, human agents still focus on generating

value with their creative capabilities. Other clear remits of

human agents are compassionate activities, e.g., sensing

and displaying emotions, or social and emotional intelli-

gence in general. This brings us to the final element of this

dimension, the flexibility of human agents that enables

them to perform a broad range of activities without the

need for extensive training data, a skill facilitated by the

inherent versatility of human beings.

To take the medical diagnostics hybrid (Jussupow et al.

2021) as an example: We found that human agents

(physicians) use the cognitive functions of reasoning to

draw conclusions based on the information of the AI-en-

abled system and their patient inspection and decision-

making to decide upon the treatment. Moreover, we clas-

sified the interaction human to AI as verify because the

physician examines the patient and makes a diagnosis to

verify the AI-enabled system’s recommendation. Lastly,

we classified the physicians’ focus as sensemaking because

they need to evaluate the AI-enabled system’s diagnosis

and use their own judgment to decide upon a treatment best

suited to the individual patient, taking into account other

factors such as allergies and life situations.

Layer 1:
Sociomaterial 

entities

Layer 2:
Dimensions

Layer 3:
Characteristics

Human
(human agency)

Human cognitive 
functions NE Perceiving Reasoning Predicting Planning Decision-

making Explaining Interacting Creating Empathizing

Interaction
human to AI ME Facilitating Verifying Supplementing

Human focus ME Sensemaking Creativity Compassion Flexibility

AI
(material agency)

AI cognitive 
functions NE Perceiving Reasoning Predicting Planning Decision-making Interacting Creating

Interaction
AI to human ME Facilitating Verifying Supplementing

AI focus ME Automation Augmentation

Sociomaterial 
practices

Form of 
interworking ME Parallel Sequential Flexible

Mode of 
interworking ME Singular Continuous

Learning ME None AI learns Human learns Human and AI learn separately Co-evolution

ME = mutually exclusive, NE = non-exclusvie

Fig. 2 Taxonomy of human-AI hybrids
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4.2.2 AI (Material Agency)

The sociomaterial actor AI comprises three dimensions,

each consisting of characteristics that concretize the cog-

nitive functions, the interplay toward human agents, and

the focus of the AI-enabled system in human-AI hybrids.

These dimensions and characteristics reflect an AI-enabled

system’s specific attributes and capabilities (i.e., the ‘‘ma-

terial’’). AI cognitive functions constitute their own

dimension because an AI-enabled system contributes cer-

tain primary cognitive functions to human-AI hybrids. This

understanding is consistent with current literature (e.g.,

Daugherty and Wilson 2018; Stohr and O’Rourke 2021)

and observations made in multiple use cases (see

‘‘Appendix 1’’). We identified perceiving, reasoning, pre-

dicting, planning, decision-making, interacting, and cre-

ating as relevant (current) cognitive functions of AI-

enabled systems. It is worth noting that many cognitive

functions are common to both human agents and AI-en-

abled systems (e.g., creating and decision-making). While

this may seem counterintuitive at first glance, it accounts

for the rapid advancements of AI-enabled systems and the

far-reaching potential for collaboration that is associated

with these advancements. At this point, only explaining

and empathizing can still be regarded as cognitive func-

tions that human agents predominantly possess. As AI-

enabled systems remain limited in their emotional and

social competencies, their use in scenarios that require such

capabilities continues to be rather unattractive for organi-

zations (Paschen et al. 2020; Sowa et al. 2021). At the same

time, explainable AI (XAI) proposes to make a shift toward

more transparent AI (Adadi and Berrada 2018). It aims to

create a suite of methods and techniques to generate more

explainable models that human users can understand,

appropriately trust, and derive implications from while

maintaining a high level of prediction performance (Adadi

and Berrada 2018; Barredo Arrieta et al. 2020). Therefore,

we understand XAI as enabling human ‘‘users to under-

stand, appropriately trust, and effectively manage the

emerging generation of AI systems’’ (Gunning and Aha

2019, p. 45). In this understanding, XAI is not actively

explaining but rather providing transparency on its rea-

soning. However, with continuous advancements in the

field of XAI explaining may need to be added to the tax-

onomy as a cognitive function of AI-enabled systems in the

future.

Interaction AI to human denotes the interaction possi-

bilities of AI-enabled systems that are tailored to human

agents. Here, facilitating refers to an AI-enabled system

that makes a human agent’s course of action possible. For

instance, an AI-enabled system can guide human actions by

providing indications or nudging (Heer 2019). An AI-en-

abled system can also put a human agent into a position to

perform a specific task. More still, an AI-enabled system

can also act as a control body, which is to say it can verify

the results of human agents to detect wrongdoing or

highlight potential requirements for change. This is also

referred to as supervised reliance (Teodorescu et al. 2021).

Supplementing occurs when the cognitive functions of an

AI-enabled system are used to symbiotically complement

the cognitive functions of human agents for them to per-

form tasks jointly.

AI focus denotes the overarching purpose of an AI-en-

abled system in a human-AI hybrid. This dimension indi-

cates whether the primary purpose of an AI-enabled system

is automation or augmentation. However, while the focus

can be directed exclusively on automation or augmenta-

tion, there is a beneficial co-existence of both (Davenport

and Ronanki 2018; Raisch and Krakowski 2021). With the

technological advancements of AI-enabled systems in

mind, it is worth mentioning that automation can extend

into formerly human-dominated domains, such as creativ-

ity, as evidenced by Autodesk’s generative design

approach (Iansiti and Lakhani 2020). We agree with Harper

(2019), however, that this rather represents an enhance-

ment of the creativity of human agents, given that creative

activities such as setting goals, formulating hypotheses, or

determining decision criteria for algorithms remain within

the ambit of human agents, at least for now (Brynjolfsson

and Mitchell 2017; Corea 2019).

To take the Alibaba packing system (Zhang et al. 2021)

as an example: We found that the AI-enabled system uses

the cognitive functions of reasoning to analyze the accu-

racy of picked orders and planning, to plan the packing of

transport boxes. Moreover, we classified the AI-enabled

system’s interaction with the human agent as facilitating

because it supports the human employee in selecting

transport boxes and enables a faster and less error-prone

packaging process. Due to this focus on improving the

procedural steps of the human agents, we classified the AI

focus as augmentation.

4.2.3 Sociomaterial Practices

Sociomaterial practices comprise three dimensions, each

consisting of characteristics that concretize the interwork-

ing in human-AI hybrids. We understand these as the

aggregation of activities performed by human-AI hybrids,

separated from the actors and objects involved (Faulkner

and Runde 2012). Socio-material practices can be charac-

terized by the form of interworking between human agents

and AI-enabled systems, which can occur either in parallel

or sequentially (Daugherty and Wilson 2018). More com-

plex human-AI hybrids are characterized by a flexible form

of interworking that allows for a switch between parallel

and sequential work (Grønsund and Aanestad 2020).
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Mode of interworking classifies whether the interaction

between human agents and AI-enabled systems happens in

a singular or continuous manner. A human agent and an

AI-enabled system may only interact once during a process

(e.g., the AI-enabled system predicts a value, and the

human agent verifies this value), or it may happen several

times (e.g., human agent and AI-enabled system continu-

ously supplement one another with their respective cogni-

tive functions). Such a continuous mode of interaction is

present, for example, when a human worker assembling a

product is continuously augmented by an AI-enabled sys-

tem that provides instruction on the assembly process.

Learning plays a vital role in the context of human-AI

hybrids and constitutes a critical success factor in the

meaningful implementation of AI (Ransbotham et al.

2020). In this context, we understand learning as the

accumulation of additional knowledge that leads to

improved performance of the specific task. There are sev-

eral degrees of learning for human-AI hybrids: none (there

is no actual feedback loop), AI learning (the focus of

learning rests primarily on the AI-enabled systems), human

learning (the focus of learning rests primarily on the

human agent), human and AI learn separately (human

agents and AI-enabled systems learn independently of one

another), and a so-called co-evolution. We agree with

Dellermann et al. (2019b) in that we understand co-evo-

lution as the achievement of superior results due to con-

tinuous improvement by way of learning from one another.

Particularly in turbulent environments, AI-enabled systems

can facilitate organizational learning and offer human

agents greater freedom to learn in accordance with their

personal preferences (Sturm et al. 2021).

To take the Atomwise hybrid (Agrawal et al. 2018) as an

example: We classified the form of interworking as se-

quential because the AI-enabled prediction tool predicts

the binding affinity of drugs and, in the subsequent step, the

human agent recognizes possible side effects and evaluates

the trade-off between targeting the disease and the potential

side effects. Moreover, we classified the mode of inter-

working as continuous because the AI-enabled prediction

tool repeatedly makes predictions for the binding affinity of

new drugs. Lastly, the human agent learns by getting

information about the binding and potentially new mole-

cules and combining this knowledge with his expertise.

The AI-enabled system does not currently use the feedback

of the human agent to improve prediction.

5 Application of the Taxonomy of Human-AI Hybrids

Since our research aims at a comprehensive picture of how

to conceptualize the collaborative interworking of human

agents and AI-enabled systems, we not only want to

provide a foundational structure for sensemaking but also

capture the status quo of human-AI hybrid usage in real-

world scenarios. For this purpose, we, first, include a

detailed analysis of this status quo based on the application

of our taxonomy to the complete sample of 101 human-AI

hybrids used to create our taxonomy. Second, we derive

archetypes of human-AI hybrids that illustrate ideal–typi-

cal occurrences and facilitate deeper insights into the usage

of human-AI hybrids.

5.1 Status Quo Analysis

Based on our classification of human-AI hybrids, we ana-

lyzed the relative frequency of all characteristics to dis-

cover the current dissemination and use of human-AI

hybrids (see Fig. 3). It is worth noting that 62 percent of

human-AI hybrids are already using a continuous mode of

interaction. Not only does this enable a closer relationship

between the human agent and AI-enabled system. It also

enhances the learning possibilities, something we will

discuss in greater detail in the following section. It is also

interesting to see that in the learning dimension only the

characteristic AI learns is somewhat underrepresented.

This, however, is probably rooted in the frequent target of

human learning in human-AI hybrids, which also influ-

ences the human and AI learn separately and the co-evo-

lution characteristic. Another point of interest concerning

AI-enabled system is that it only verifies a human agent’s

output or decisions in two percent of human-AI hybrids.

Further research will have to clarify whether this is due to

the technological shortcomings of AI-enabled systems or

perhaps due to the acceptance in organizations. For now,

our findings just reveal that AI-enabled systems focus on

augmentation rather than automation in almost two-thirds

of human-AI hybrids.

Meanwhile, we find that human agents supplement AI-

enabled systems in almost three-quarters of human-AI

hybrids. This lends credence to the widespread assumption

that human agents are still needed to perform tasks in many

scenarios. Our data analysis also reveals that the dominant

cognitive functions of human agents greatly vary from

those of the AI-enabled systems involved in human-AI

hybrids. Whereas predicting, for instance, is a frequently

used cognitive function of AI-enabled systems, its use is

less common for human agents. When it comes to decision-

making, however, the opposite is true, although the dif-

ference in the distribution is not quite as pronounced. We

suspect that these differences are since the inherent capa-

bilities of human agents and AI-enabled systems offer

varying benefits to human-AI hybrids. One need only look

at the example of predicting, which often relies on ana-

lyzing enormous amounts of data, to appreciate that an AI-

enabled system can be more efficient than a human agent.
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Decision-making, on the other hand, is still often a matter

of trust and the consideration of complex interdependen-

cies, which frequently means that the human agent will

have the final word. However, AI-enabled systems are

already capable of decision-making, which is reflected in

their increasing albeit less established use as a decision-

making tool.

We extended our analysis to the correlation of charac-

teristics in current human-AI hybrids to identify relevant

dependencies (see ‘‘Appendix 5’’). This analysis provides

three distinct insights. First, a flexible form of interworking

may require flexibility on the part of the human agent.

Since humans can thrive when dealing with diverse chal-

lenges, a flexible approach to interworking gives them

room to maneuver when they encounter obstacles or

ambiguities. Moreover, a flexible interworking scenario

correlates positively with the mode of continuous interac-

tion. Since a flexible mode of interworking can result in

switching between sequential and parallel work during the

execution of a specific task, human agents and AI-enabled

systems may need to interact several times in these

instances. This is of particular interest since such contin-

uous interaction is also positively correlated with a co-

evolution of human agents and AI-enabled systems. Con-

sidering that co-evolution is a highly desirable character-

istic of human-AI hybrids (Ransbotham et al. 2020),

organizations stand to gain significant benefits by choosing

a flexible form of interworking along with a continuous

mode of interaction for their human-AI hybrids.

Second, we note a positive correlation between an AI-

enabled system verifying the work of a human agent and AI

learning. There is, then, an additional option for targeted

learning by focusing attention on verification, and this goes

well beyond the more conventional approach by which

human agents verify the output of AI-enabled systems

(which is also positively correlated to human learning).

More specifically, the establishment of human-AI hybrids

with verification interaction can be a valid option for

knowledge transfer and training purposes.

Third, a human agent’s focus on sensemaking is closely

related to facilitating or verifying the AI-enabled system

but not supplementing it. We attribute this to the fact that

the act of facilitating and verifying requires the human also

to evaluate and understand the output of an AI-enabled

system.

5.2 Archetypes

From our previous analysis, we infer that existing human-

AI hybrids have diverse configurations across our taxon-

omy’s nine dimensions. To better understand how we can

conceptualize human-AI hybrids, we were interested in

whether there were any overarching interworking patterns

across the classified hybrids. For this purpose, we applied

agglomerative cluster analysis and derive five archetypes to

conceptualize prototypical human-AI hybrid usage sce-

narios: sequential automation (AI pre-worker), parallel

automation (outsourcing AI), sequential augmentation

(superpower-giving AI), sequential co-evolution (assembly

line AI), and flexible co-evolution (collaborator AI). These

archetypes provide a comprehensive picture of the possi-

bilities available when human agents and AI-enabled sys-

tems engage in sociomaterial practices (see Fig. 4 and

‘‘Appendix 7’’ for classification percentages).

Since our research indicates that some human-AI

hybrids demonstrate a closer sociomaterial entanglement

than others (e.g., a continuous mode of interaction indicates

closer entanglement of human agents and AI-enabled sys-

tem than a singular mode of interaction), we will present

our archetypes in ascending order, from the lowest to the

highest perceived entanglement. In doing so, we also

illustrate the potential of progressing current human-AI

hybrids in such a way that they work well in a state of

closer entanglement, the beneficial results of which include

co-evolution.

 Layer 1:
Sociomaterial 

entities

Human cognitive 
functions NE

Perceiving
(14%)

Empathizing
(8%)

Interaction
human to AI ME

Human focus ME

AI cognitive 
functions NE

Perceiving 
(36%)

Interaction
AI to human ME

AI focus ME

Form of 
interworking ME

Mode of 
interworking ME

Learning ME

Layer 2:
Dimensions

Layer 3:
Characteristics

Human
(human agency)

Reasoning
(50%)

Predicting
(1%)

Planning
(3%)

Decision-making
(47%)

Explaining
(7%)

Interacting
(46%)

Creating
(6%)

Facilitating
(10%)

Verifying
(17%)

Supplementing
(74%)

Sensemaking
(55%)

Creativity
(8%)

Compassion
(9%)

Flexibility
(28%)

AI
(material agency)

Reasoning
(88%)

Predicting
(52%)

Planning
(8%)

Decision-making
(10%)

Creating
(10%)

Facilitating
(44%)

Verifying
(2%)

Supplementing
(54%)

Automation
(38%)

Augmentation
(62%)

Interacting
(17%)

Cumulated relative frequencies can be different from 100% if a dimension is non-exclusive or in case of missing data or rounding errors

Co-evolution
(19%)

Sociomaterial practices

Parallel 
(13%)

Sequential 
(63%)

Flexible 
(23%)

Singular 
(37%)

Continuous 
(62%)

None 
(14%)

AI learns 
(8%)

Human learns 
(32%)

Human and AI learn separately
(28%)

Fig. 3 Relative frequencies of the characteristics among the 101 classified human-AI hybrids
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5.2.1 Archetype 1: Sequential Automation (AI Pre-

Worker)

Archetype 1 is one of two where the AI-enabled system

focuses on automation. AI-enabled systems in this arche-

type are predominantly concerned with supplementing

rather than facilitating human agents, which is why a large

variety of AI cognitive functions comes into play, ranging

from perceiving to creating. The form of interworking is

strictly sequential, the mode of interaction singular. In this

archetype, the role of human agents often goes beyond

verifying AI-enabled systems. In doing so, they predomi-

nantly rely on the cognitive functions of reasoning and

Human-AI Hybrids Sociomaterial entities Dimensions Characteristics
Human cognitive functions Reasoning/Decision-making (60%)

Interaction human to AI Supplementing (47%)
Human focus Sensemaking (73%)

AI cognitive functions Reasoning (93%)
Interaction AI to human Supplementing (73%)

AI focus Automation (100%)
Form of interworking Sequential (100%)
Mode of interworking Singular (100%)

Learning Human and AI learn separately (40%)
Human cognitive functions Reasoning/Interacting (48%)

Interaction human to AI Supplementing (61%)
Human focus Sensemaking (65%)

AI cognitive functions Reasoning (74%)
Interaction AI to human Supplementing (83%)

AI focus Automation (100%)
Form of interworking Parallel (43%)
Mode of interworking Continuous (100%)

Learning Human and AI learn separately  (39%)
Human cognitive functions Reasoning/Decision-making (59%)

Interaction human to AI Supplementing (82%)
Human focus Sensemaking (73%)

AI cognitive functions Reasoning (95%)
Interaction AI to human Facilitating (59%)

AI focus Augmentation (100%)
Form of interworking Sequential (100%)
Mode of interworking Singular (100%)

Learning Human learns (55%)
Human cognitive functions Reasoning/Decision-making (62%)

Interaction human to AI Supplementing (86%)
Human focus Sensemaking (52%)

AI cognitive functions Reasoning (100%)
Interaction AI to human Facilitating (71%)

AI focus Augmentation (100%)
Form of interworking Sequential (100%)
Mode of interworking Continuous (100%)

Learning Co-evolution (43%)
Human cognitive functions Interacting (70%)

Interaction human to AI Supplementing (90%)
Human focus Flexibility (60%)

AI cognitive functions Reasoning (80%)
Interaction AI to human Faciliating/Supplementing (50%)

AI focus Augmentation (100%)
Form of interworking Flexible (85%)
Mode of interworking Continuous (100%)

Learning Co-evolution/Human learns (35%)

Archetype 1
Sequential Automation

(aka AI Pre-Worker)

Human
(human agency)

AI
(material agency)

Sociomaterial practices

Archetype 3
Sequential Augmentation
(aka Superpower-giving 

AI)

Human
(human agency)

AI
(material agency)

Sociomaterial practices

Archetype 2
Parallel Automation
(aka Outsourcing AI)

Human
(human agency)

AI
(material agency)

Sociomaterial practices

For each dimension, we illustrate the relative frequency of the characteristic which occurs most frequently 

AI
(material agency)

Sociomaterial practices

AI
(material agency)

Sociomaterial practices

Archetype 5
Flexible Co-Evolution

(aka the Collaborator AI)

Human
(human agency)

Archetype 4
Sequential Co-Evolution
(aka the Assembly Line 

AI)

Human
(human agency)

Fig. 4 Archetypes of human-AI hybrids

123

634 L. Fabri et al.: Disentangling Human-AI Hybrids, Bus Inf Syst Eng 65(6):623–641 (2023)



decision-making. Moreover, their focus is on sensemaking.

Thus, we call this archetype AI pre-worker.

For example, Liew (2018) describes a case of using AI-

enabled systems to automate detection and prediction in the

domain of radiology. Based on perceiving and reasoning,

such systems can generate an automated prediction that

supports human agents in performing subsequent task

steps. In doing so, these systems perform the function of an

AI pre-worker. Human agents are not required until they

get involved in verifying the results of the AI-enabled

radiologic analysis systems, make a decision, and initiate

the next steps in accordance with the completed diagnosis

(Liew 2018).

5.2.2 Archetype 2: Parallel Automation (Outsourcing AI)

In our archetype 2, AI-enabled systems also focus pri-

marily on automation. In contrast to archetype 1, however,

interworking tends to take the shape of parallel execution

of work and learning mostly happens separately. The mode

of interaction in this archetype is continuous, allowing for

a much closer entanglement of human agents and AI-en-

abled systems. Because the form of interworking is mostly

parallel, archetype 2 human-AI hybrids often provide an

opportunity to outsource certain parallel task steps to the

AI-enabled system, which then performs a diverse set of

cognitive functions while mainly supplementing human

agents. Thus, we call this second archetype of human-AI

hybrids outsourcing AI.

An example of this archetype is the AI-enabled call

center system, as proposed by Kahn et al. (2020). This

system offers human call center agents the possibility to

outsource specific simple service requests to AI-enabled

systems, such as providing answers to frequently asked

questions. As a result, human agents can focus on more

complex cases in which their sensemaking is required, thus

supplementing the AI-enabled systems and the efficiency

achieved by them.

5.2.3 Archetype 3: Sequential Augmentation (Superpower-

Giving AI)

Contrary to the two preceding archetypes, the AI-enabled

systems in archetype 3 focus on augmentation. This para-

digm shift has significant implications for the nature of

collaborative interworking between human agents and AI-

enabled systems. First, AI-enabled systems in archetype 3

facilitate the work of human agents as often as they sup-

plement it. The form of interworking is sequential, the

mode of interaction singular. Learning mostly happens on

the part of the human agent. As a result, the AI-enabled

system acts as a facilitator and enabler. Relevant cognitive

functions in this archetype are decision-making and

interacting for the human agent, as opposed to reasoning

and predicting for the AI-enabled system. We refer to

human-AI hybrids in archetype 3 as superpower-giving AI.

An example of this archetype is the risk assessment use

case in courts, as discussed by Green and Chen (2019). By

performing the tasks of reasoning and predicting, an AI-

enabled risk assessment system allows judges to make a

data-based and, therefore, presumably fairer risk assess-

ment. The authors show how such an approach helps to

mitigate potential biases that can occur in risk assessment.

They further point out that this form of augmentation, in

contrast to an automated prediction, can fit the context of

risk assessment in criminal justice systems. As a result, it

benefits judges in that it enables them to focus their

attention on the task of interpreting results, while defen-

dants also benefit in that they experience the judge’s

treatment of their case to be less subjective.

5.2.4 Archetype 4: Sequential Co-Evolution (Assembly

Line AI)

While archetype 4 human-AI hybrids also have an aug-

mentation focus and a sequential form of interworking,

they differ from archetype 3 human-AI hybrids in their

mode of interaction. A continuous interaction between

human agents and AI-enabled systems allows for co-evo-

lution (i.e., both actors learn from each other). AI-enabled

systems in archetype 4 mostly facilitate the tasks of human

agents, but they also supplement them. Meanwhile, human

agents are mainly concerned with supplementing AI-en-

abled systems. The continuous interaction puts the indi-

vidual strengths of both sides in a successive sequence. AI-

enabled systems predominantly perform cognitive func-

tions, such as reasoning, predicting, and perceiving,

whereas human agents concentrate on reasoning, decision-

making, and interacting. Compared to archetypes 1 to 3,

human agents in archetype 4 focus less on sensemaking,

which is why creativity and flexibility play more prominent

roles. Due to the combination of sequential and continuous

interaction, we refer to archetype 4 human-AI hybrids as

assembly line AI.

An example of this archetype is the hybrid ramp-up

process in production, as presented by Doltsinis et al.

(2018). In this case, a human operator and an AI-enabled

ramp-up system work together continuously to reach a state

of maximum production output. They perform a so-called

guided exploration strategy in which the AI-enabled sys-

tem continuously augments the human agent by formulat-

ing possible ramp-up policies, the execution of which is

subject to the human agent’s decision. Interestingly, this

sequential co-evolution approach achieved a close to

optimal behavior far more efficiently than a purely algo-

rithmic approach (Doltsinis et al. 2018).
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5.2.5 Archetype 5: Flexible Co-Evolution (Collaborator

AI)

With its flexible form of interworking, archetype 5 marks

the last augmentation-focused archetype. Since its mode of

interaction is strictly continuous, it facilitates a co-evolu-

tion of human agents and AI-enabled systems. However,

because interworking takes a flexible form, the direction of

learning is also somewhat flexible. For instance, some

cases in this archetype prioritize human learning, while

others separate the learning of human agents from that of

AI-enabled systems. The most relevant AI cognitive func-

tions in archetype 5 are reasoning, perceiving, and pre-

dicting, whereas human agents mostly rely on reasoning

and interacting. AI-enabled systems in archetype 5 facili-

tate the work of human agents as often as they supplement

it. Human agents focus mainly on supplementing AI-en-

abled systems in this archetype. Because of this symbiotic

collaboration, we refer to archetype 5 human-AI hybrids as

the collaborator AI, not least because human agents are

marked out by their flexibility to collaborate.

An example of this archetype is the smart augmented

instruction system for mechanical assembly, as discussed

by Lai et al. (2020). Here, a human assembly worker is

paired with an AI-enabled assistance system that delivers

real-time guidance and instruction through augmented

reality. In the process, both continuously learn from each

other, leading to a mutually beneficial co-evolution.

6 Discussion

6.1 Contribution

Even though first applications of human-AI hybrids have

already made their way into organizations, research has yet

to embrace a holistic perspective that acknowledges the

contribution of both human agents and AI-enabled systems

as separate entities with distinct characteristics that glob-

ally intra-act in human-AI hybrids (Rai et al. 2019). Our

study addresses this issue by means of two methods widely

recognized in IS research: taxonomy development and

cluster analysis to develop archetypes. Drawing from weak

sociomateriality as justificatory knowledge, our study

contributes to the descriptive knowledge of human-AI

hybrids and the ongoing discourse on human-AI collabo-

ration (Benbya et al. 2021; Dwivedi et al. 2021; Raisch and

Krakowski 2021; Seeber et al. 2020) by providing 1) a

well-founded taxonomy of human-AI hybrids and 2)

archetypes of human-AI hybrids. We understand both

contributions together as a theory for analyzing that pro-

vides a solid foundation for future sensemaking and design

research in the field of human-AI hybrids (Gregor 2006).

Our taxonomy of human-AI hybrids gives a clear

structure to the collaborative interworking of human agents

and AI-enabled systems. Using weak sociomateriality as

justificatory knowledge, we present AI-enabled systems

and human agents as locally separate entities with distinct

characteristics that intra-act globally to form sociomaterial

practices. Bearing this in mind during our taxonomy

development process, we took an integrated perspective on

the complementary interworking of human agents and AI-

enabled systems. It follows that our taxonomy not only

enables a well-founded classification of individual human-

AI hybrids but also creates a better understanding of what

constitutes human-AI hybrids. Based on such a theoreti-

cally founded and empirically validated understanding of

human-AI hybrids, our study complements existing

research that structures specific aspects of human-AI col-

laboration and hybrid intelligence such as tasks and inter-

actions (Dellermann et al. 2019a, 2019b; Traumer et al.

2017).

Based on the classification and analysis of 101 human-

AI hybrids, we present five archetypes of human-AI

hybrids that outline the design opportunities that come with

the collaborative interworking of human agents and AI-

enabled systems. Each archetype represents a unique form

of interworking, each of which is illustrated by the analysis

of an exemplary human-AI hybrid. Building on an exten-

sive knowledge base, these archetypes offer insights into

the prototypical implementation of human-AI hybrids in

the real world. Our taxonomy of human-AI hybrids also

makes it possible to indicate differences in how closely

human-AI hybrids are entangled in these archetypes. Our

analysis of relative frequencies and the correlation between

different characteristics of human-AI hybrids reveals

interesting dependencies, such as a link between the mode

of interworking and the flexibility requirement for human

agents. Moreover, we find that an AI-enabled system’s

focus is connected to the learning possibilities. With this,

our work acknowledges the importance of both human and

non-human agency, thus complementing existing research

that rather focuses on specific uses cases as well as on

predominantly social (e.g., Davenport et al. 2020; Maedche

et al. 2019; Paschen et al. 2020; Rzepka and Berger 2018)

or technical aspects (e.g.,Liew 2018; Østerlund et al.

2021). Our proposed archetypes also illustrate that both

automation and augmentation can be important goals of

human-AI hybrids. Based on both our taxonomy and the

proposed archetypes, circumstances can be analyzed in

which one or the other focus (automation or augmentation)

is more favorable. That is, our work makes it possible to

identify interdependencies between characteristics of

human-AI hybrids that allow inferences about the focus.

Therefore, our study provides a solid foundation on which

to further explore the decision criteria for targeting an AI-
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enabled system toward automation or augmentation. In this

way, our study also contributes to research focused on the

discussion of automation versus augmentation (Benbya

et al. 2021; Raisch and Krakowski 2021).

6.2 Theoretical Implications

Our work connects to and advances the discourse on

human-AI collaboration as well as the future of work in IS

research (Dellermann et al. 2019b; Maedche et al. 2019;

Rai et al. 2019). By using weak sociomateriality as justi-

ficatory knowledge, we answer the calls of IS (Cecez-

Kecmanovic et al. 2014; Sarker et al. 2019) and AI

(Davenport et al. 2020; Paschen et al. 2020) research for a

balanced consideration of human (human agency) and AI

(material agency) in human-AI collaboration scenarios.

Therefrom, our study offers two distinct theoretical

implications.

To the best of our knowledge, our work is the first in

which weak sociomateriality is leveraged to study human-

AI hybrids, which is to say that it introduces a new per-

spective on human-AI collaboration. It is a balanced per-

spective that accounts for the respective attributes and

capabilities of human agents and AI-enabled systems in

equal measure. This balanced perspective is consistent with

recent research on agentic IS artifacts illustrating that AI-

enabled systems are no longer mere passive tools waiting

to be used for repetitive tasks (Baird and Maruping 2021).

Instead, AI-enabled systems have developed the ability to

initiate actions and accept rights and responsibilities on

behalf of humans and organizations (Ågerfalk 2020). Our

study is appreciative of the fact that social and material

agency are converging with progress in AI. In other words,

this means that our work not only avoids overemphasizing

the human-centeredness that often hampers practice theory

(Jones 2014) but also the harmful tendency to subjugate

man to the machine (Cecez-Kecmanovic et al. 2014). In

doing so, we also contrast earlier sociomateriality studies

where the social aspect fully controls the material one (e.g.,

Leonardi 2013). We use weak sociomateriality as justifi-

catory knowledge in the specific context of human-AI

hybrids to understand how human agents and AI-enabled

systems become what they are in these use cases. Socio-

materiality can help researchers to analyze and understand

the high degree of interconnectedness that characterizes

human-AI hybrids (Cecez-Kecmanovic et al. 2014).

Moreover, this approach has two further benefits: it enables

researchers to view human agents and AI-enabled systems

as separate entities with distinct characteristics as well as

potential interactions. At the same time, it also allows us to

appreciate them as a hybrid assemblage that has the

potential to be greater than the sum of its parts (Leonardi

2013; Jones 2014). By understanding both aspects, we shed

light on how human agents and AI-enabled systems could

combine their strengths and achieve results that would be

impossible if they acted separately.

Second, our study serves a catalytic means for the pro-

gress of broader theorizing on human-AI hybrids and the

future of work in general. The clear structure provided in

this study reveals avenues for more in-depth studies of the

collaborative interworking in human-AI hybrids (Gregor

2006). In the long term, our taxonomy of human-AI

hybrids offers a theoretically founded and empirically

validated foundation on which future research can build

more advanced theories for explanation, design, and action

concerning the collaborative interworking of human agents

and AI-enabled systems (Gregor 2006). By applying our

taxonomy to a sample of human-AI hybrids and deriving

five archetypes, we have provided a starting point for a

discussion on the future division of labor between human

agents and AI-enabled systems (Seeber et al. 2020;

Østerlund et al. 2021). In this context, our archetypes

provide insights into how the roles of humans are likely to

shift and how the capabilities and limits of AI-enabled

systems are likely to contribute to this shift. The distinctive

characteristics of each archetype (e.g., cognitive functions,

interplay patterns, and foci) illustrate how this division of

labor plays out in practice. We encourage fellow

researchers to build on our analysis of current human-AI

hybrids and develop specific hypotheses for the founda-

tional ideas in this paper to be tested quantitatively.

6.3 Managerial Implications

Along with these theoretical implications, this study also

has several practical ones. Our taxonomy makes it a

straightforward task to classify the cognitive functions,

foci, and interplay of human agents as well as those of AI-

enabled systems, which puts decision-makers in a position

to analyze and understand human-AI hybrids and their

sensible use. Moreover, it lets decision-makers compre-

hend the characteristics that constitute specific human-AI

hybrids and what these characteristics might entail.

Our archetypes of human-AI hybrids with their dis-

tinctive combinations of characteristics facilitate a deeper

understanding of how human-AI hybrids work in concrete,

practical terms. Thus, our archetypes can serve as a blue-

print for practitioners to create human-AI hybrids and

generate value for their respective tasks and processes. As

organizations today still struggle to identify worthwhile use

cases for AI-enabled systems, our archetypes deliver

inspirational guidance to identify potential applications.

Practitioners can also recognize these archetypes in real-

world scenarios. With such applicable understanding, our

study can help them evaluate how current human-AI
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hybrids can be brought into closer entanglement, which

may result in advantageous benefits, such as co-evolution.

7 Conclusion

Our work is subject to certain limitations, which, if rec-

ognized as such, promise to provide opportunities for fur-

ther research. First, although we have covered a significant

number of human-AI hybrid use cases in our research, an

analysis of additional, potentially even more advanced, and

complex use cases would allow fellow researchers to refine

our taxonomy and improve our archetypes. As the

deployment of human-AI hybrids is still in its infancy,

more elaborate use cases are likely to emerge. Future

research ought to consider relevant emergent cognitive

functions along with focus points or interplay dynamics of

human agents and AI-enabled systems. Meanwhile, the

expected advancements in the field of human-AI hybrids

might require certain modifications of our proposed

dimensions or indeed additions. Second, the development

of a taxonomy requires a certain amount of generalization

and simplification of complex issues. This limits, as it

must, our insights from the analysis of specific human-AI

hybrids. An in-depth case study of specific human-AI

hybrids, however, might provide the additional insights

required to explain the more complex correlations and

interdependencies of characteristics within those use cases.

Third, our study focuses human-AI hybrids, that is, the

collaborative interworking of human agents and AI-en-

abled systems. However, there may be cases in which AI-

enabled systems (or human agents) perform better when

acting alone (Hemmer et al. 2021; Bansal et al. 2021).

Future research could build upon our taxonomy to facilitate

a deeper understanding of the characteristics of these cases.

Finally, even though we have demonstrated the potential of

our taxonomy to deepen the understanding of human-AI

hybrids, the inherently descriptive nature of a taxonomy

limits the amount of guidance it can give. We encourage

future research in the belief that it can develop more pre-

scriptive artifacts, such as decision support frameworks or

design principles, to design human-AI hybrids. Only then

will it be possible to fully support practitioners in their

endeavor to make the most purposeful use of human-AI

hybrids.

In conclusion, despite its limitations, we believe that our

research provides both foundation and stimulation for

future research in the increasingly relevant field of human-

AI hybrids. Thus, we hope that our research will be rec-

ognized as a starting point for the development of further

guiding elements that may be required for the successful

deployment of human-AI hybrids in practice and that it will

provide fellow researchers with opportunities for continued

work and discussion in this domain.
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supporting the creation of business process improvement ideas

through generative machine learning. Decis Support Syst. https://

doi.org/10.1016/j.dss.2022.113880

van Rijmenam MHWT (2019) Sociomateriality in the age of

emerging information technologies: how big data analytics,

blockchain and artificial intelligence affect organisations. PhD

thesis, Business School, University of Technology Sydney.

http://hdl.handle.net/10453/133380. Accessed 28 Sept 2022

vom Brocke J, Simons A, Riemer K, Niehaves B, Plattfaut R, Cleven

A (2015) Standing on the shoulders of giants: challenges and

recommendations of literature search in information systems

research. Commu Assoc Inf Syst 37(37):205–224. https://doi.

org/10.17705/1CAIS.03709

Ward JH (1963) Hierarchical grouping to optimize an objective

function. J Am Stat Assoc 58(301):236–244. https://doi.org/10.

1080/01621459.1963.10500845

Webster J, Watson RT (2002) Analyzing the past to prepare for the

future: writing a literature review. MIS Q 26(2):13–23

Wu J (2012) Advances in K-means clustering: a data mining thinking.

Springer, Heidelberg

Yin YH, Da Xu L, Bi Z, Chen H, Zhou C (2013) A novel human–

machine collaborative interface for aero-engine pipe routing.

IEEE Trans Ind Inform 9(4):2187–2199. https://doi.org/10.1109/

TII.2013.2257805

Zhang D, Pee LG, Cui L (2021) Artificial intelligence in E-commerce

fulfillment: a case study of resource orchestration at Alibaba’s

Smart Warehouse. Int J Inf Manag 57:102304. https://doi.org/10.

1016/j.ijinfomgt.2020.102304

123

L. Fabri et al.: Disentangling Human-AI Hybrids, Bus Inf Syst Eng 65(6):623–641 (2023) 641

https://doi.org/10.1016/j.energy.2021.119775
https://doi.org/10.2308/isys-51373
https://doi.org/10.2308/isys-51373
https://doi.org/10.1016/j.jbusres.2020.11.038
https://doi.org/10.1016/j.jbusres.2020.11.038
https://doi.org/10.17705/1jais.00663
https://doi.org/10.17705/1jais.00663
https://doi.org/10.25300/MISQ/2021/16543
https://doi.org/10.1016/j.indmarman.2017.12.019
https://doi.org/10.1007/s12525-018-0326-1
https://doi.org/10.25300/MISQ/2021/16535
https://doi.org/10.25300/MISQ/2021/16535
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1108/IMDS-09-2017-0384
https://doi.org/10.1016/j.dss.2022.113880
https://doi.org/10.1016/j.dss.2022.113880
http://hdl.handle.net/10453/133380
https://doi.org/10.17705/1CAIS.03709
https://doi.org/10.17705/1CAIS.03709
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1109/TII.2013.2257805
https://doi.org/10.1109/TII.2013.2257805
https://doi.org/10.1016/j.ijinfomgt.2020.102304
https://doi.org/10.1016/j.ijinfomgt.2020.102304

	Disentangling Human-AI Hybrids
	Conceptualizing the Interworking of Humans and AI-Enabled Systems
	Abstract
	Introduction
	Background
	Artificial Intelligence
	Human-AI Hybrids
	Sociomateriality

	Research Method
	Developing a Taxonomy of Human-AI Hybrids
	Developing Archetypes of Human-AI Hybrids

	Taxonomy of Human-AI Hybrids
	Taxonomy Foundations: Sociomateriality
	Taxonomy
	Human (Human Agency)
	AI (Material Agency)
	Sociomaterial Practices


	Application of the Taxonomy of Human-AI Hybrids
	Status Quo Analysis
	Archetypes
	Archetype 1: Sequential Automation (AI Pre-Worker)
	Archetype 2: Parallel Automation (Outsourcing AI)
	Archetype 3: Sequential Augmentation (Superpower-Giving AI)
	Archetype 4: Sequential Co-Evolution (Assembly Line AI)
	Archetype 5: Flexible Co-Evolution (Collaborator AI)


	Discussion
	Contribution
	Theoretical Implications
	Managerial Implications

	Conclusion
	Funding
	References




