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A Critical Review of Centrality Measures in Social
Networks
Social networks are currently gaining increasing impact especially in the light of the
ongoing growth of web-based services like facebook.com. A central challenge for the social
network analysis is the identification of key persons within a social network. In this context,
the article aims at presenting the current state of research on centrality measures for social
networks. In view of highly variable findings about the quality of various centrality
measures, we also illustrate the tremendous importance of a reflected utilization of existing
centrality measures. For this purpose, the paper analyzes five common centrality measures
on the basis of three simple requirements for the behavior of centrality measures.
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1 Introduction

Fundamental developments in informa-
tion technology (IT) and especially the
enormous growth of the Internet are es-

sential drivers for the increasing global
interconnectedness of companies and in-
dividuals. The targeted use of power-
ful IT in this process significantly facil-
itates the interaction of actors at differ-
ent locations and information exchange
in real time. In this context, services sub-
sumed under the term Web 2.0, such as
wikis, blogs, or online social networks
in which individuals are connected to
each other and share news, experiences,
and knowledge, increasingly gain impor-
tance. The U.S. market researcher Hit-
wise, for instance, reported in March
2010 that – as measured by the num-
ber of visits – the online social network
facebook.com has replaced the search en-
gine giant google.com as the most visited
U.S. website (Hitwise 2010). Moreover,
according to a recent study by the Nielsen
Company, about 66% of global Internet
users actively use these new social com-
munities each month (The Nielsen Com-
pany 2009, p. 2). Given this development,
it is not surprising that web-based so-
cial networks have attracted the interest
of many companies since a majority of
their customers now regularly use these
services and, in this way, exchange views
on products and services (De Valck et al.
2009, p. 185).

The constitutive feature of social net-
works are the relationships between net-
work members and hence the network
structure induced by the mutual connec-
tions (Zinoviev and Duong 2009). This
interconnectedness of actors – i.e., their
structural integration into the network
– significantly influences their commu-
nication and interaction, and therefore
holds valuable information for compa-
nies with regard to various corporate is-

sues. Concerning viral marketing, for in-
stance, the integration of well-connected
actors is of considerable importance in
order to attract the attention of the
largest possible audience to a brand, a
product, or a campaign (Kiss and Bich-
ler 2008, p. 233; De Valck et al. 2009,
p. 187). In product development and in
particular in the identification of trends,
the integration of members who take a
central position within their network is
also of great advantage since these actors
have access to information about a multi-
tude of other actors (De Valck et al. 2009,
p. 185).

The successful implementation of this
exemplary list of business related issues
and similar ones requires the identifica-
tion of those members (key persons) who
are structurally very well integrated into a
social network. This identification is not
only necessary for the success of busi-
ness decisions, but is particularly impor-
tant in view of time and budget con-
straints. In this context, it appears appro-
priate to take recourse to the social net-
work analysis (SNA), which has already
developed and discussed a variety of cen-
trality measures (CM) for the quantifica-
tion of the interconnectedness of actors
in social networks. Therefore, the aim of
this paper is (1) to show the current state
of research with regard to CM in social
networks and (2) to illustrate the enor-
mous importance of a reflected utiliza-
tion of existing CM in view of highly vari-
able findings on the quality of various
CM in SNA.

The paper is organized as follows: In
Sect. 2, we first present the state of re-
search on CM in social networks. On
this basis, we exemplarily formulate three
simple general requirements for CM in
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Sect. 3, which are used in Sect. 4 to ana-
lyze five commonly applied CM from the
literature on SNA. The paper concludes
with a summary of results and an outlook
in Sect. 5.

2 Social Networks

2.1 Structure and Characteristics of
Social Networks

Based on Valente (1996), the term social
network is understood in this paper as
a “pattern of friendship, advice, commu-
nication or support” (Valente 1996) be-
tween individual members or groups of
members within a social system (cf. also
Burt and Minor 1983; Knoke and Kulin-
sik 1982; Scott 1991; Wellmann 1988).
Usually, a common goal, interest, or need
of the various persons involved consti-
tutes the unifying element of such a net-
work. Web-based social networks use the
infrastructure of the Internet to provide
basic functionality for identity manage-
ment (i.e., the presentation of oneself),
relationship management (i.e., manag-
ing one’s own contacts or maintaining
the network), and visualization of pro-
files and networks (Koch et al. 2007). In
this way, the community feeling of the ac-
tors, which is a central characteristic of
such networks, can be achieved also with-
out their direct physical presence (Hei-
demann 2010). The features for relation-
ship management and in particular the
management of contacts via contacts lists
in web-based social networks especially
enable maintaining casual acquaintances
which are often not kept alive in real life.

Taking a structural point of view, we
can model the relationships within a so-
cial network as a graph G with a set VG
of nodes and a set EG of edges between
these nodes. The set VG represents the
members of the social network, while the
set EG refers to the relationships between
them and thus describes social ties and
interaction potentials between the actors
(Sabidussi 1966; Wassermann and Faust
1994). The resulting network structure of
a social network can also be represented
by a matrix A = (aij) ∈ {0;1}nxn. The en-
try axy of this so-called adjacency matrix
is 1, if (x, y) ∈ EG holds. Otherwise, the
entry axy is 0. Figure 1 illustrates an ex-
ample of the representation of a social
network as a graph.

Regarding the characteristics of so-
cial networks, which highly differ
from biological or technical networks

Fig. 1 Example of a social network

(Newman and Park 2003), we can draw
on a variety of existing knowledge from
SNA (for an overview cf. Wassermann
and Faust 1994). Social networks can,
e.g., be classified as to whether there are
one-sided relationships ((un-)directed
network) or different relationship inten-
sities ((un-)weighted network) (Wasser-
mann and Faust 1994, p. 44). Further-
more, the American psychologist Stan-
ley Milgram realized already in the 1960s
that every person is connected to ev-
eryone else in the world via a sur-
prisingly short chain of on average six
contacts (Milgram 1967). This so-called
“small world phenomenon”, which is also
known under the heading “six degrees
of separation”, can be observed both in
the offline and in the online world (e.g.,
Dodds et al. 2003; Leskovec and Horvitz
2008; Travers and Milgram 1969). Given
these findings we can assume that the
majority of actors in a social network
form a single connected graph. In ad-
dition, there may also be other smaller
groups of members which can be an-
alyzed separately in terms of intercon-
nectedness, as well as isolated members
without any relationship to other actors
(Kumar et al. 2006; Mislove et al. 2007).
The following comments, however, focus
on social networks or those subgraphs
in which each person has a relation to
every other person in a direct or indi-
rect way. Furthermore, numerous stud-
ies show that social networks are mostly
scale-free networks in which the num-
ber of contacts is not distributed ho-
mogeneously across all members (e.g.,
Barabási and Bonabeau 2003; Ebel et al.
2002; Kumar et al. 2006; Mislove et al.
2007). Instead, such networks are made
up of many scarcely interconnected and
only some highly integrated members –
so-called hubs (see Fig. 1). These hubs
act as a link between individual groups of
strongly interconnected members. Over-
all, the interconnectedness of different
individual members of a social network
generally differs significantly. In order to
identify those actors that play a central

role in a social network, it appears ap-
propriate to make use of CM that have
been developed within SNA. In the fol-
lowing section we therefore present the
state of research as regards CM in social
networks.

2.2 Interconnectedness and Centrality
Measures in Social Networks

Since many years, the interconnectedness
of actors in social networks has been a
central issue of SNA. The discussion is
often limited to undirected, unweighted
social networks in a simplifying way.
However, even for these relatively sim-
ple graphs there is no uniform under-
standing of an actor’s centrality in a so-
cial network (Borgatti and Everett 2006,
p. 467). Instead, some very different con-
cepts and context-specific interpretations
of the centrality of a node exist (Borgatti
and Everett 2006, p. 467) that may result
from different objectives for the use of
CM. In the following, we therefore first
present four basic concepts of centrality.
In the simplest case, the number of a net-
work member’s direct contacts is a use-
ful indicator of centrality. The advantage
of this interpretation of an actor’s cen-
trality, with degree centrality (DC) as its
standard representative (Nieminen 1974;
Shaw 1954), is the fact that the results
are relatively easy to interpret and com-
municate. A second approach is based on
the idea that nodes that have a short dis-
tance to other nodes and consequently
are able to disseminate information on
the network very effectively, take a cen-
tral position in the network (Beauchamp
1965; Sabidussi 1966). A representative of
this approach is closeness centrality (CC),
where a person is seen as centrally in-
volved in the network if he requires only
few intermediaries for contacting oth-
ers and thus is structurally relatively in-
dependent. Accordingly, the calculation
of this CM includes the length of the
shortest paths to all other actors in the
network. Further developments of CC
even use the length of all paths between
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the actors for the calculation (e.g., New-
man 2005). A third approach, however,
equates centrality with the control of the
information flow which a member of the
network may exert, based on his position
in the network. Here, it is assumed im-
plicitly that the communication and in-
teraction between two not directly related
actors depends on the intervening ac-
tors. The most prominent representative
of this concept is betweenness centrality
(BC), where the determination of an ac-
tor’s centrality is based on the quotient of
the number of all shortest paths between
actors in the network that include the re-
garded actor and the number of all short-
est paths in the network (Bavelas 1948;
Freeman 1977; Shaw 1954). The com-
mon characteristic of all networking con-
cepts presented so far is that only little
or no attention is paid to indirect con-
tacts, meaning they are not or only in-
directly included in the quantification of
an actor’s centrality. This is where the so-
called influence measures come into play.
These CM consider actors to be centrally
involved in the network if their directly
connected network members are in rela-
tionship with many other well-connected
actors. Some of the best known of these
recursively defined CM are the eigenvec-
tor centrality (EC) (Bonacich 1972), the
CM by Bonacich (1972), and the CM
by Katz (1953). Besides these representa-
tives of the four basic concepts of central-
ity, a plethora of other CM has been de-
fined over the years (see, e.g., Bonacich
and Lloyd 2001; Freeman et al. 1991;
Lee et al. 2009; Rousseau and Zhang
2008) which, e.g., enable the integration
of edge weights or of directional connec-
tions or are suitable for specific applica-
tions and network types. Usually, these
CM represent modifications or enhance-
ments of the already discussed CM and
thus are not elaborated in more detail in
this article. For the mathematical calcu-
lation of each CM, different algorithms
have been developed which may vary sig-
nificantly in terms of complexity. While
the DC only requires to count the di-
rect contacts of the n nodes in the net-
work (complexity of O(n)), the complex-
ity of BC in unweighted graphs amounts
to O(n · m) (Brandes 2001), where m is
the number of edges in the network.1

At the same time, this algorithm allows
the calculation of other distance-based
CM, such as CC, for which Okamoto et
al. (2008) discuss other algorithms and

heuristics. According to Kiss and Bich-
ler (2008), the complexity of calculat-
ing the EC is O(n2), whereas in case
of Katz’s CM the inverting of the ad-
jacency matrix initially induces a com-
plexity of O(n3). However, this complex-
ity can be reduced by applying the al-
gorithm of Coppersmith and Winograd
(1990) to O(n2.376).

Starting from the definition of differ-
ent CM, a lively discussion of the charac-
teristics and the robustness (e.g., in case
of incorrect or incomplete data on the
network structure) of different CM has
arisen. Accordingly, on the one hand nu-
merous empirical studies exist that dis-
cuss the application of CM using differ-
ent real or simulated networks. On the
other hand, we can also find a great deal
of research which – starting from the con-
cept of different CM – derives conclu-
sions about their properties or suitabil-
ity for different applications. Table 1 pro-
vides an overview of relevant contribu-
tions which are classified according to the
dimensions of focus (empirical vs. con-
ceptual), approach, and analyzed CM.

In the field of applying CM to real or
simulated networks, e.g., Bolland (1988)
discusses the robustness of DC, CC, BC,
and the CM by Bonacich in random and
systematic variation of the underlying
network structure. This analysis shows
that BC is generally very unstable with
regard to the variation of the network
structure. In contrast, for DC and CC
the centrality score usually varies only
slightly in case of a random or systematic
change of the underlying network struc-
ture. However, according to the studies
of Bolland (1988) the CM by Bonacich
is the least sensitive one in terms of a
random or systematic variation of the
network structure. A further contribu-
tion to the discussion on the robustness
of different CM is provided by Borgatti
et al. (2006) who first define four dif-
ferent types of error (adding or delet-
ing an edge or a node) and then com-
pare the CM DC, CC, BC, and EC with
regard to these different types of errors.
The main finding of the study is that the
four CM react very similarly to manip-
ulations of the network structure, with
BC performing slightly worse than the
other three. Frantz et al. (2009) extend
these investigations by differentiating five
network topologies. They conclude that
the robustness of the four CM also de-
pends on the particular topology of the

network. Furthermore, Costenbader and
Valente (2003) also analyze the stability
of different CM in presence of incorrect
or incomplete information on the struc-
ture of a network (e.g., for the analysis
of a sample of the network). In addition
to the classic CM DC, CC, BC, EC, and
the CM by Bonacich, their investigation
includes two more CM and they also ex-
tend their analysis to directed graphs. For
undirected, unweighted social networks
they come to the conclusion that the cen-
trality scores of individual actors, which
have been determined based on a sample
of the overall network, have the highest
average correlations with the centrality
scores of the individual actors in the over-
all network in the case of EC (before DC,
CC, and BC). Here, BC, however, comes
off less successfully than the other three
CM, indicating a fundamentally distinct
conception of centrality for this CM (Bol-
land 1988). The investigations on the ro-
bustness of CM concerning the variation
of the network structure discussed here
are very important since the connections
between actors that are considered for an
analysis of social networks usually only
present a distorted picture of the real so-
cial network for both the offline and the
online context. Therefore, a user of CM
is often confronted with the problem of
incomplete information on the structure
of the network or does not have the re-
sources essential for measuring the struc-
ture of large, complex networks in to-
tal. Therefore, the information on the ro-
bustness of the used CM is highly rele-
vant.

Besides considerations on the robust-
ness of different CM, further research ex-
ists which identifies and analyzes the dif-
ferences in results when applying differ-
ent CM. Mutschke (2008), for instance,
describes six anomalies (i.e., high cen-
trality score of an actor using one CM
but low centrality score when using other
CM at the same time) when applying the
CM DC, BC, and CC and gives a possi-
ble justification for each of these differ-
ences in the centrality of an actor. Fur-
ther contributions focus on the partly
significant differences in the rankings of
the different actors in a social network
when using different CM (e.g., Freeman
1979; Freeman et al. 1980; Kiss and Bich-
ler 2008). Here, the ranking of the ac-
tors is defined by the descending order
of the centrality score of the respective
CM. In this context, when comparing

1If an approximation rather than a precise calculation of the values of BC is sufficient, the faster algorithm of Bader et al. (2007) can be used.
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Table 1 Approaches to the analysis of centrality measures

Authors Focus Approach Analyzed centrality
measures

Bolland (1988) Conceptional & empirical Analysis of the robustness and sensitivity of different
centrality models under conditions of random and
systematic variation introduced into a network

DC, CC, BC, CM
by Bonacich

Borgatti (2005) Conceptional Discussion of various CM regarding their matching
for different types of network flow

DC, CC, BC, EC

Borgatti et al. (2006) Empirical Analysis of the robustness of CM under conditions
of imperfect data

DC, CC, BC, EC

Costenbader and
Valente (2003)

Empirical Analysis of the stability of centrality measures when
networks are sampled

DC, CC, BC, EC,
CM by Bonacich,
Integration,
Radiality

Freeman (1979) Conceptional & empirical Discussion of different concepts of centrality and
application of related CM to different exemplary
networks

DC, CC, BC

Freeman et al. (1980) Conceptional & empirical Identification of an appropriate CM for the case of
problem solution in groups

DC, CC, BC

Gneiser et al. (2010) Conceptional Development of requirements for a CM for online
social networks

DC, CC, BC,
PageRank-based
CM

Kiss and Bichler (2008) Empirical Comparison of the performance of different CM
regarding the identification of influential actors in a
network of calls from a telecom company

DC, CC, BC, EC,
PageRank-based
CM, Edge-weighted
DC, HITS-based
CM, SenderRank
CM

Mutschke (2008) Conceptional Discussion of various anomalies of CM DC, CC, BC

Nieminen (1974) Conceptional Development of axioms for CM DC

Sabidussi (1966) Conceptional Development of axioms for CM Various indices

the CM DC, CC, and BC for all possible
graphs with five actors, Freeman (1979),
e.g., concludes that the order of the dif-
ferent actors varies enormously with the
use of different CM. This observation
is also confirmed by the work of Free-
man et al. (1980), in which the CM DC,
CC, and BC are applied to other sample
networks. In addition, this article eval-
uates the suitability of the three CM to
identify key persons in the context of
“problem solving in groups”. More re-
cent contributions deal with the capabil-
ity of different CM for other applications
(e.g., Borgatti 2006; Hossain et al. 2007;
Kiss and Bichler 2008; Lee et al. 2010;
Gloor et al. 2009). For example, Kiss and
Bichler (2008) investigate the quality of
different CM in terms of news dissemi-
nation in a telecommunications network.
Their analysis is based on a defined dif-
fusion model. In addition to the clas-
sic CM DC, CC, BC, and EC, the au-
thors also apply newer concepts (such as
PageRank-based CM, the edge-weighted
DC, a HITS-based CM and a SenderRank
CM) (Kiss and Bichler 2008, pp. 236).

The main result of this investigation is
that the centrality of individual actors
significantly differs when using various
CM, with the SenderRank CM and the
relatively simple CM out-degree (a di-
rected version of the DC) being suited
best for the identification of key persons
in this application case. Hossain et al.
(2007) consider a similar issue by eval-
uating real-world data from the mobile
sector as regards the four CM DC, CC,
BC, and EC in order to assess the rela-
tionship between the centrality of an ac-
tor and his possibilities for disseminat-
ing information. It turns out that only
by combining different CM the most im-
portant actors for the dissemination of
information can be identified. Lee et al.
(2010) deal with a related problem and
analyze the suitability of the CM DC and
BC as an indicator for the influence of in-
dividual customers on the behavior of the
entire customer base. For this purpose,
the authors conduct various field stud-
ies and evaluate the involved actors’ self-
assessment and the assessment by oth-
ers in terms of their influence on other

clients. The analysis shows that BC is pos-
itively related to opinion leadership in
both cases, whereas out-degree central-
ity is only a good indicator for the self-
assessment of the surveyed actors. More-
over, Borgatti (2006) examines the qual-
ity of CM for the identification of key
individuals for the purpose of optimally
diffusing something through the network
on the one hand and for the purpose of
disrupting or fragmenting the network
by removing nodes on the other hand.
The author concludes that the traditional
CM CC is suited best for the first case,
while in the second case BC is prefer-
able. Since these CM do not exhaustively
solve the particular problems, Borgatti
(2006) additionally developed new CM
that are better suited for the studied is-
sues. Comparing the results of current re-
search which analyzes the centrality of in-
dividual actors in the application of vari-
ous CM as discussed above, it remains to
be noted that different CM in some cases
lead to considerably different results in
terms of the centrality of individual ac-
tors.
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In addition to the previously discussed
empirical work, SNA also offers some
conceptual studies on the characteristics
and underlying assumptions of CM. Bol-
land (1988) explains for each of the CM
DC, CC, BC, and the CM by Bonacich
two assumptions on the nature of net-
work flow, one concerning the decay of
resources (such as information) over dis-
tance and time and the other concern-
ing the paths through which resources
are able to flow. He comes to the con-
clusion that different CM are implicitly
based on different assumptions on the
losses that incur in transferring a re-
source from one actor to another. While
DC assumes immediate deterioration of
the transferred resource after a transfer
starts, BC and CM by Bonacich assume
no deterioration of the resource. In case
of CC, however, a gradual loss of the re-
source with increasing number of trans-
fers is assumed. Also Borgatti (2005) dis-
cusses different possibilities of network
flow using some example cases for the ap-
plication of CM and assigns appropriate
CM to them. However, this assignment in
Borgatti (2005) is merely argumentative,
i.e. he does not provide quantitative crite-
ria for intersubjective verification of the
suitability of individual CM for certain
applications. Other authors (e.g., Niem-
inen 1974; Sabidussi 1966) approach the
question of the quality of a CM by for-
mulating axiomatic requirements for the
characteristics and the behavior of CM.
Also for the special case of online social
networks first contributions exist, aiming
at a stronger focus on the characteristics
(e.g., high relevance of indirect contacts
of an actor) of these web-based social
networks when deriving requirements for
a CM in order to quantify the centrality
of individual actors (see, e.g., Gneiser et
al. 2010). However, this research largely
lacks the motivation or justification for
why and in which cases the CM should
meet the requirements. Moreover, these
requirements are partly of qualitative na-
ture so that an intersubjective assessment
of their validity for different CM proves
difficult.

In summary, we can note that recent
research on interconnectedness and CM
in social networks has defined different
concepts of centrality and, based on these
concepts, has developed different CM.
Furthermore, there are a number of both
empirical and conceptual papers which

compare different CM and discuss their
suitability for various applications, net-
work types, and network flows. In this
context, the respective authors aim at the
presentation and discussion of anoma-
lies of different CM on the one hand or
at the identification of the CM that is
most appropriate for the particular ap-
plication case or network flow on the
other hand. In addition, the analysis of
current research shows that different CM
in some cases provide considerably dif-
fering results in terms of the centrality
of individual actors. Therefore, the se-
lection of a CM requires the consider-
ation of both the specifics of different
CM and the widely varying requirements
of different application cases. Given the
highly variable findings in view of qual-
ity of different CM, this article focuses
on the illustration of the enormous im-
portance of a reflective use of CM. Based
on the findings of the SNA literature, in
the following section we motivate and
formulate three simple general, quanti-
tative, and thus intersubjectively verifi-
able properties of CM in social networks,
partly drawing on the work of Nieminen
(1974) and Sabidussi (1966). The three
properties are then used for the analysis
of some of the most widely discussed and
used CM of SNA.

3 Properties of Centrality
Measures in Social Networks

Formally, a measure to quantify inter-
connectedness of a node x in a graph
G is a mapping σ G : VG → IR+

0 which
assigns a non-negative real number to
each x ∈ VG, where a higher value of σ G

indicates a better interconnectedness. In
case of an identical network structure
of two nodes x and y in the network
the application of the CM should have
the same value σ G(x) = σ G(y) for both
nodes (Nieminen 1974, p. 333; Sabidussi
1966, p. 592). Two nodes x and y are
thereby considered as being identically
structurally integrated into the network
if a renaming of all nodes of the network
is possible in such a way that all existing
edges remain and x is mapped to y, i.e.
if an automorphism2 η : VG → VG with
y = η(x) exists. In Fig. 2, e.g., the nodes
1 and 5 as well as the nodes 2 and 4 are
identically integrated into the network in
terms of structure since these nodes can
be mapped to each other through 2 → 4,

Fig. 2 Example of a network illustrat-
ing structural equivalence

4 → 2, 3 → 3, 1 → 5, 5 → 1 and the
edges (1,2) (4,5) (2,3) (3,4) and (2,4)

remain.
In the subsequent motivation of three

simple general properties of CM in undi-
rected, unweighted social networks we al-
ways assume a connected graph G. Fur-
thermore, statements about the desired
behavior of a CM when adding a new
edge are made. Thus, the network is
transformed from a state 1 (with associ-
ated graph G) into a state 2 (with associ-
ated graph G′). The removal of an edge
corresponds exactly to the opposite oper-
ation and is associated with the reversal
of the statement. For this reason, we only
consider the case of adding an edge in the
following.

With an additional relationship be-
tween a member x and another member
y in the network, the opportunities for
communication and interaction particu-
larly increase if x gains a more direct con-
nection (i.e. of lesser distance dG(x, y))
to y. The distance dG(x, y) between the
actors x and y is thereby defined as the
minimum length of all paths in G that
lead from x to y. In this context, Davis
(1969, p. 549) assumes that the flow of in-
formation between two actors decreases
in proportion to their connection length.
Thus, both the extent and the quality of
the transmitted information between two
actors are usually higher the smaller their
distance is. In addition, with a relatively
low number of contacts between two ac-
tors, the contact is normally made faster
and the individual actors tend to have a
higher willingness to disclose relevant in-
formation (Algesheimer and von Wan-
genheim 2006). Moreover, the message
passed through the network is usually
trusted more when the actors are closer to
each other. Overall, an actor x thus holds
a higher potential in terms of informa-
tion exchange when he is more directly
connected to an actor y than without
the additional connection. This should be

2An automorphism is an isomorphism of a graph to itself, with two graphs G = (VG,EG) and G′ = (VG′ ,EG′ ) being referred to as isomorphic if a
bijection η : VG → VG′ exists with (a,b) ∈ EG if and only if (η(a), η(b)) ∈ EG′ for all a, b ∈ VG.
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Property 1 Monotonicity with respect to the distance of the actors

If the distance of the actor x to at least one other actor y is reduced through an additional relationship in the network, the centrality score of x
increases.
Formally, this means:
If VG = VG′ , ν,w, x, y ∈ VG, ν �= w, x �= y, (ν,w) �∈ EG, EG′ = EG ∪ (ν,w) and if for the distance between x and y due to the additional
relationship between ν and w dG′ (x, y) < dG(x, y) holds, it follows that σ G′

(x) > σ G(x).
Due to the symmetry of relations in this case it also follows that σ G′

(y) > σ G(y).

Property 2 Monotonicity with respect to the number of shortest paths

If the number of paths with shortest length from an actor x to at least one other actor y increases through an additional relationship in the
network, the centrality score of x increases.
Formally, this means:
If VG = VG′ , ν , w, x, y ∈ VG , ν �= w, x �= y, (ν,w) �∈ EG, EG′ = EG ∪ (ν,w) and if for the distance between x and y due to the additional rela-

tionship between ν and w d(ν,w)

G′ (x, y) = dG(x, y) (Here, d(ν,w)

G′ (x, y) refers to the length of the shortest path between x and y which contains the

edge (ν,w). Since the path with the length d(ν,w)

G′ (x, y) only exists after adding the edge (ν,w), the number of shortest paths really increases in

the case d(ν,w)

G′ (x, y) = dG(x, y).) holds, it follows that σ G′
(x) > σ G(x).

Due to the symmetry of relations in this case it follows that σ G′
(y) > σ G(y).

Property 3 Receipt of the actors’ ranking

With an additional relationship between two actors x and y, the ranking of the two members does not change with respect to the CM.
Formally, this means:
If VG = VG′ , x, y ∈ VG , x �= y, σ G(x) > σ G(y), (x, y) �∈ EG, EG′ = EG ∪ (x, y) holds, it follows that σ G′

(x) ≥ σ G′
(y).

If even σ G(x) = σ G(y) holds, it follows that σ G′
(x) = σ G′

(y).

positively reflected in the value of the CM
of x, as expressed in Property 1.

Furthermore, it is advantageous for the
interaction in a social network if an ac-
tor can contact another member on var-
ious paths (Davis 1969, p. 549). In this
way, on the one hand disruptions of the
information flowing along a single path
can be compensated. On the other hand,
the actor usually receives more informa-
tion on different paths from and about
a larger number of indirect contacts. In
addition, several paths to another mem-
ber generally contribute to trust. This is
due to the fact that in this case several,
more direct contacts of an actor have a
relationship to this member and thus in-
dependently indicate his trustworthiness.
Due to the benefits of a smaller distance
between two actors, as already described
above, a path is more valuable the shorter
it is. If there are multiple paths of short-
est length from one network member to
another, this actor also becomes more
independent from the influence of indi-
vidual actors in between (Freeman 1979,
p. 221). Hence, an increase in the number
of paths with shortest length should pos-
itively affect the centrality score of x. This
is stated in Property 2.

Based on the assumption of symmet-
rical relations, an additional relationship

between the actors x and y is always of
advantage for both parties involved as
they may gain a better access to the net-
work of each other due to the new re-
lationship. If actor x was previously bet-
ter connected than actor y, it is expected
that this ranking of the actors in terms of
their centrality score remains the same af-
ter adding the new contact. This results
from the fact that actor y cannot benefit
more from the network of actor x than x
does, since x still has a more direct access
to his (better evaluated) network than y
and vice versa. This is expressed in Prop-
erty 3.

The Properties 1 to 3 represent three
simple general requirements for the be-
havior of CM in social networks which
may be desirable in various applications.
In Sect. 4 we now analyze some repre-
sentatives of the CM already presented in
section two in more detail.

4 Analysis of Centrality Measures

In the following we first formally define
five CM one at a time and illustrate them
by means of an example network. Sub-
sequently we analyze them with respect
to the previously formulated properties.
The selection is limited to DC, CC, and

BC as well as the two influence measures
EC and the CM by Katz as some of the
most commonly used CM in SNA litera-
ture. Thus it provides a cross section of
the different basic concepts of centrality
as presented in Sect. 2.

4.1 Degree Centrality

DC σD represents the simplest CM and
determines the number of direct contacts
as an indicator of the quality of a network
member’s interconnectedness (Nieminen
1974, p. 333). Using the adjacency matrix
A = (aij) it can be formalized as follows:

σD(x) =
n∑

i=1

aix. (1)

As a consequence, the centrality score
σD(x) for a node x is higher, the more
contacts a node x has. In the network of
Fig. 3, e.g., it follows that σD(1) = 1 since
actor 1 has only one direct relationship
with actor 2. In contrast, actor 4 has the
centrality score σD(4) = 3.

Table 2 shows the values of DC for
all members of the example network. In
addition, the actors’ ranking (in short
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Fig. 3 Example of a network for the illustration of centrality measures

Table 2 Results for degree centrality

Degree Centrality

Actor x 1 2 3 4 5 6 7 8 9 10

σD(x) 1 3 2 3 2 3 3 1 2 2

Rank 9 1 5 1 5 1 1 9 5 5

Table 3 Results for closeness centrality

Closeness Centrality

Actor x 1 2 3 4 5 6 7 8 9 10

σC(x) 1/34 1/26 1/27 1/21 1/19 1/19 1/23 1/31 1/29 1/25

Rank 10 6 7 3 1 1 4 9 8 5

“rank”) is stated, i.e. their order in de-
scending value of DC. The actors 2, 4,
6, and 7 take rank 1 and thus are the
best networked members when applying
this CM.

With respect to Properties 1 to 3, the
major disadvantage of DC is that indirect
contacts are not considered at all. There-
fore, a reduction of the distance from one
actor x to another actor y resulting from
an additional relationship in most cases
does not increase the value of the CM.3

The intensification of a connection of
shortest length between x and y does also
not increase the value of this CM, since
DC only considers direct contacts. How-
ever, in an undirected, unweighted graph
a direct connection between the actors x
and y can exist only once. Overall, Prop-
erties 1 and 2 are therefore generally not
met. In contrast, DC satisfies Property 3.
Through a new relationship both actors
involved win one additional direct con-
tact. So the DC of both members equally
increases by 1 and the ranking of the ac-
tors thus always remains the same.

4.2 Closeness Centrality

CC σC is based on the idea that nodes
with a short distance to other nodes

can spread information very productively
through the network (Beauchamp 1965).
In order to calculate the CC σC(x) of a
node x, the distances between the node
x and all other nodes of the network are
summed up (Sabidussi 1966, p. 583). By
using the reciprocal value we achieve that
the CC value increases when the distance
to another node is reduced, i.e. when the
integration into the network is improved.
Formally, this means (e.g., Freeman 1979,
p. 225)

σC(x) = 1∑n
i=1 dG(x, i)

(2)

For actor 4 in the network of Fig. 3 results
σC(4) = 1/21. This is due to the fact that
for the actors x = 2, 3, 5 dG(4, x) = 1, for
the actors x = 1, 6 dG(4, x) = 2, for the
actors x = 7, 10 dG(4, x) = 3 and for the
actors x = 8, 9 dG(4, x) = 4 holds. Table 3
includes the centrality scores of all mem-
bers in the network in Fig. 3 and their
ranking when applying CC.

For CC the reduction of the distance
to at least one other actor when adding
another relationship leads to a smaller
value of the denominator in formula (3).
Consequently, in this case the CM value
of the considered actor increases and
Property 1 is satisfied. However, in for-
mula (3) only the distances between the

different actors are taken into account.
Therefore, a larger number of paths with
shortest length between two actors does
not positively affect the value of this
CM as illustrated by the network 4a of
Fig. 4, where both before and after adding
the additional connection (3,4) σ G

C (1) =
σ G′

C (1) = 1/4 holds, although in G′ there
are two paths of length 2 from actor 1 to
actor 3. In the network 4b the ranking
of the actors 1 and 2 also changes. While
initially σ G

C (1) = 1/13 = σ G
C (2) holds,

σ G′
C (1) = 1/10 < σ G′

C (2) = 1/9 results af-
ter adding the connection (1,2). Conse-
quently, Property 3 is also not fulfilled.

4.3 Betweenness Centrality

In case of BC σB a network member is
considered to be well connected if he is
located on as many of the shortest paths
as possible between pairs of other nodes.
The underlying assumption of this CM
is that the interaction between two non-
directly connected nodes x and y depends
on the nodes between x and y. According
to Freeman (1979, p. 223) the BC σB(x)
for a node x is therefore calculated as

σB(x) =
n∑

i=1,i�=x

n∑

j=1,j<i,j �=x

gij(x)

gij
(3)

with gij representing the number of
shortest paths from node i to node j, and
gij(x) denoting the number of these paths
which pass through the node x.

For actor 9 in the network of Fig. 3, e.g.,
σB(9) = 1/2 + 1/2 = 1 results since he is
located on one of the two shortest paths
from the actors 7 and 8 to actor 10. The
values of the BC for the other actors and
their ranking are listed in Table 4.

BC does not meet any of the required
properties as is demonstrated by the net-
works of Fig. 5. In the network 5a ac-
tor 1 has a centrality score of σ G

B (1) = 3
before adding the connection (4,5) and
a centrality score of σ G′

B (1) = 1 after-
wards, although the distance to actor 4
is reduced through the new relation-
ship. Consequently, Property 1 is vio-
lated. Network 5b shows that Property 2
is also not satisfied for BC. For actor 1
holds first σ G

B (1) = 2 and after adding

the connection (3,4) σ G′
B (1) = 0,5 al-

though there are two paths of length 2
from actor 1 to actor 3 due to the addi-
tional relationship. Moreover, the rank-
ing of the actors 1 and 2 changes in net-

3An exception is the case that the new edge (x, y) is added and dG′ (x, y) = 1 results.
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Fig. 4 Closeness centrality – Counterexamples regarding Properties 2 and 3

Fig. 5 Betweenness centrality – Counterexamples regarding Properties 1 to 3

work 5c. While both have the same cen-
trality score (σ G

B (1) = 0 = σ G
B (2)) before

adding the connection (1,2), afterwards
σ G′

B (1) = 1,5 > σ G′
B (2) = 0,5 holds. Con-

sequently, Property 3 is also not fulfilled
for BC.

4.4 Eigenvector Centrality

EC σE is based on the idea that a relation-
ship to a more interconnected node con-
tributes to the own centrality to a greater
extent than a relationship to a less well
interconnected node. For a node x, the
EC is therefore defined as (Bonacich and
Lloyd 2001)

σE(x) = vx = 1

λmax(A)
·

n∑

j=1

ajx · vj (4)

with v = (v1, . . . , vn)
T referring to an

eigenvector for the maximum eigen-
value4 λmax(A) of the adjacency ma-
trix A.

In Table 5 the values of the EC for the
actors 1 to 10 in the network of Fig. 3
and the resulting ranking of the actors are
listed.

Table 4 Results for betweenness centrality

Betweenness Centrality

Actor x 1 2 3 4 5 6 7 8 9 10

σB(x) 0 8 0 18 20 21 11 0 1 6

Rank 8 5 8 3 2 1 4 8 7 6

Table 5 Results for eigenvector centrality (with λmax(A) = 2,41)

Eigenvector Centrality

Actor x 1 2 3 4 5 6 7 8 9 10

σE(x) 0,171 0,413 0,363 0,463 0,342 0,363 0,292 0,121 0,221 0,242

Rank 9 2 3 1 5 3 6 10 8 7

Just like BC, EC does not meet any of
the required properties. This can be il-
lustrated by means of the networks from
Fig. 6.5 In network 6a, actor 1 first has
a centrality score of σ G

E (1) = 0,602 and
after adding the connection (4,6) of
σ G′

E (1) = 0,417 although the distance of
actor 1 to actor 6 has been reduced. This
contradicts Property 1. In network 6b the
value of the CM decreases for actor 4

when the new connection (1,2) is added
(σ G

E (4) = 0,604 > σ G′
E (4) = 0,530) al-

though the relationship between actor 4
and actor 2 has been intensified. There-
fore Property 2 is also not fulfilled.
Regarding Property 3, network 6c can
serve as a counterexample. Whereas be-
fore adding the connection (4,6) actor
4 has a lower centrality score than ac-
tor 6 (σ G

E (4) = 0,271 < σ G
E (6) = 0,311),

the ranking of both actors changes due to

4Being a non-negative, irreducible matrix, A always has a positive eigenvalue, which is equal to the spectral radius, and an associated eigenvector
with only positive entries (Graham 1987, p. 131).
5For detailed calculations and further details, see Appendix A.
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Fig. 6 Eigenvector centrality – Counterexamples regarding Property 1 to 3

the new relationship (σ G′
E (4) = 0,435 >

σ G′
E (6) = 0,421). Even these simple ex-

ample networks demonstrate the addi-
tional problem that the results of EC are
harder to interpret and less comprehen-
sible than those of the previously de-
scribed CM.

4.5 Katz’s Centrality Measure

According to Katz not only the number
of direct connections but also the further
interconnectedness of actors plays an im-
portant role for the overall interconnect-
edness in a social network (Katz 1953).
Therefore, Katz includes all paths of ar-
bitrary length from the considered node
x to the other nodes of the network in
the calculation of his CM σK . The CM
by Katz for the node x is thus defined
as

σK(x) = 1T

( ∞∑

i=1

kiAi

)
ex (5)

with 1 = (1,1, . . . ,1,1)T representing
the n × 1 vector consisting of ones only
and ex = (0, . . . ,0,1,0, . . . ,0)T the unit
vector as well as k an arbitrary (usually
positive) weighting factor.6 Since the cor-
responding adjacency matrix A = (aij)

only contains the values 0 and 1, the entry
ãxy of the matrix Ã = Ai represents the
number of paths of length i from x to y
(Katz 1953, p. 40). For the convergence
of the series, k must be smaller than the
reciprocal value of the maximum eigen-
value λmax(A) of the adjacency matrix
A (Katz 1953, p. 42). This simplifies σK
to

σK(x) = 1T(
(In − kA)−1 − In

)
ex (5′)

Table 6 Results for the centrality measure by Katz (with k = 1/3, λmax(A) = 2,41)

Centrality measure by Katz

Actor x 1 2 3 4 5 6 7 8 9 10

σK(x) 1,91 4,72 3,99 5,25 4,06 4,91 4,30 1,77 3,23 3,38

Rank 9 3 6 1 5 2 4 10 8 7

with In referring to the identity matrix
of the dimension n = |VG|. The weight-
ing factor k can then sometimes be in-
terpreted as the probability that a single
relationship is useful for node x. This re-
sults (assuming independence of proba-
bilities) in a probability of k2 for a re-
lation of second degree, and so forth
(Katz 1953, p. 41). In Table 6, the val-
ues of the CM by Katz and the re-
sulting rankings for the actors 1 to 10
of the example network in Fig. 3 are
listed.

In each case, the CM by Katz meets
the Properties 1 and 2 since adding any
new relationship in a connected graph
always leads to an increase in the inter-
connectedness of all actors in the net-
work. This is due to the fact that in a
connected graph, a new relationship for
any actor opens up additional paths to all
other actors in the network. The validity
of the third property for the CM by Katz
can be proven formally only under cer-
tain conditions. However, extensive sim-
ulation studies show that the ranking
of two actors in the CM σK does not
change by adding an additional relation-
ship.7

4.6 Summary and Comparison of
Analysis Results

Table 7 summarizes the resulting rank-
ings of the actors when applying the five
considered CM to the example network
in Fig. 3. It becomes obvious that the
actors 1 and 8 have the worst centrality
scores for all CM investigated. Apart from
this, however, there are significant differ-
ences regarding the actors’ rankings when
using different CM. Actor 3, for instance,
is seen as poorly interconnected when ap-
plying BC or CC, while he ranks in the
midfield using DC or the CM by Katz
and reaches a top position when apply-
ing EC. In addition, it is striking that DC
and BC generally do not sufficiently dif-
ferentiate the interconnectedness of indi-
vidual members. Thus, e.g., DC provides
the same value for the actors 2, 4, 6, and
7 although with all other CM the actors
4 and 6 are seen as (partly significantly)
better interconnected than actor 7. This is
due to the fact that DC only considers the
number of direct contacts and not their
further interconnectedness (i.e., their in-
direct contacts). In addition, BC does not
distinguish between actors who have only
one contact and actors whose contacts
are completely interconnected. In both
cases, such actors have a centrality score

6In contrast to the work of Katz we abstain from normalizing the column sum of the adjacency matrix by multiplication with 1/(n − 1). As a
consequence, the result differs by a multiplicative constant from the outcome in the original work by Katz. In addition, under the assumptions
described here, the CM by Katz differs only by a constant of the alpha centrality. Further details are outlined in Appendix B.
7For detailed descriptions, see Appendix C.
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Table 7 Ranking applying different centrality measures

Rank Degree
Centrality

Betweenness
Centrality

Closeness
Centrality

Eigenvector
Centrality

Centrality
measure by Katz

1 2, 4, 6, 7 6 5, 6 4 4

2 5 2 6

3 4 4 3, 6 2

4 7 7 7

5 3, 5, 9, 10 2 10 5 5

6 10 2 7 3

7 9 3 10 10

8 1, 3, 8 9 9 9

9 1, 8 8 1 1

10 1 8 8

Table 8 Analysis of centrality measures – Summary

Centrality Measure Property 1 Property 2 Property 3

Degree Centrality × × �
Betweenness Centrality × × ×
Closeness Centrality � × ×
Eigenvector Centrality × × ×
Centrality measure by Katz � � �

of 0 and thus the last rank (see, e.g., ac-
tors 1, 3, and 8). This analysis shows that
an actor’s centrality score can vary con-
siderably depending on the CM.

Table 8 summarizes the results regard-
ing the validity of the three properties for
all CM presented in this paper. It shows
that the majority of the frequently used
CM in SNA literature does not or not
fully meet the properties discussed in this
article. Both BC and EC, for instance, sat-
isfy none of the desired properties, while
DC and CC only fulfill one of the three
properties. According to the findings of
the authors so far, among the five CM
considered in this paper, only the CM by
Katz meets all three properties. However,
the validity of the third property could
only be validated by a simulation study
(see Appendix C). This result is all the
more astonishing as the properties pre-
sented here constitute relatively generic,
intuitively plausible requirements for the
behavior of CM when adding a supple-
mentary relationship between two ac-
tors. It makes clear that the unreflective
use of existing CM may often lead to
not considered and possibly undesirable
side effects. Against this background, re-
sponsible decision makers should always
be aware of the information a CM may
provide and its limitations. A CM thus

should not be selected carelessly or arbi-
trarily. Instead, a careful analysis regard-
ing the requirements resulting from the
particular application case is necessary.

5 Summary and Outlook

The comprehensive IT penetration of all
areas of life and the enormous growth of
the Internet are major causes of funda-
mental changes in the communicative be-
havior of individuals. Hence, a significant
proportion of the world population is ac-
tively using web-based social networks
today (just facebook.com had about 400
million members at the beginning of
2010 (Facebook 2010)). This induces an
increase in the number of companies that
are interested in the use of such net-
works for selected activities in areas such
as marketing or product development. In
this context, the identification of actors
who are structurally well integrated into
the network is of major importance. For
this purpose, many CM have been de-
veloped and discussed in the SNA in re-
cent decades. On account of the currently
high importance of web-based social net-
works, this paper aimed at (1) presente-
ing the current state of research regarding
CM in social networks and (2) illustrat-
ing the enormous relevance of a reflected

use of the existing CM in social networks
given the widely varying findings on the
quality of different CM.

The paper shows that in the SNA lit-
erature a variety of CM exist to quan-
tify the interconnectedness of individual
actors in social networks. Here, four ba-
sic concepts can be distinguished accord-
ing to the underlying concept of cen-
trality. In addition, numerous empiri-
cal and conceptual contributions ana-
lyze and compare the properties and ro-
bustness of different CM. These contri-
butions from SNA literature allow the
overall conclusion that different CM of-
ten lead to significantly different results
for the centrality of individual actors.
This is also illustrated in this paper by
means of an example network. Further-
more, depending on the application case,
different requirements for CM may ex-
ist. In this context, this paper exemplar-
ily presents three simple general proper-
ties which may be desirable in various
applications. On the basis of these prop-
erties we analyzed five different CM and
showed that surprisingly only one of the
studied CM meets all three properties,
while the other four CM satisfy them only
partially. This result is all the more as-
tonishing as the properties can be con-
sidered as relatively generic, intuitively
plausible requirements for the behavior
of CM when adding a supplementary re-
lationship. Consequently, decision mak-
ers should not uncritically rely on intu-
itively obvious statements from the appli-
cation of CM. Instead, the widely varying
results provided by different CM require
an accurate analysis in relation to the rel-
evant application.

The properties used to compare the
CM, however, are derived based on some
restrictive assumptions. First, an undi-
rected, unweighted network is assumed.
In doing so, both the existence of one-
sided relations and relationships with dif-
ferent intensity or emotional ties between
the actors are neglected. Secondly, we also
do not consider the interaction frequency
of each member separately in this pa-
per. This, however, is an indicator of the
actor’s actual contact intensity. Due to
the fact that such phenomena are diffi-
cult to observe in practice, it is often only
possible to include such issues under ex-
tremely high cost. Third, the paper does
not take cannibalization and saturation
effects into account, which sometimes
arise when an actor can devote less time
to maintaining existing relationships as
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a result of adding new contacts. How-
ever, since new contacts may also lead to
an increase of activity in the network for
many members, possible cannibalization
effects are partially compensated and are
therefore generally difficult to consider.
Overall, the described limitations result
in a variety of possible starting points
for future research examining the prop-
erties and behavior of different CM in a
broader context. In addition, further re-
search is needed with regard to differ-
ent concrete application scenarios of CM,
the resulting requirements for the CM,
and the concrete integration of the results
into each application scenario. Although
the results from the application of a CM –
as presented in detail in this paper – thus
should be considered in a differentiated
manner, CM still succeed in providing an
idea of the involvement of different actors
in a social network and can provide valu-
able information for various application
scenarios when used in a reflected way.

Appendix A: Counterexamples
to the Properties 1 to 3
for Eigenvector Centrality

In the following we present the calcula-
tions regarding the counterexamples to
the Properties 1 to 3 when applying EC
in more detail. The calculations were car-
ried out using the software Octave.

A.1 Counterexample to Property 1

The following calculations refer to the
network 6a. First, we determine the adja-
cency matrix A of the initial network (be-
fore adding the connection (4,6)). For
this matrix, we calculate the maximum
eigenvalue and a corresponding eigenvec-
tor.

A =

⎛

⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎠

λmax(A) = 1,902

ν(A) =

⎛

⎜⎜⎜⎜⎜⎝

0,602
0,316
0,316
0,512
0,372
0,195

⎞

⎟⎟⎟⎟⎟⎠

In the next step, we modify the network
to the extent that a new relationship be-
tween the actors 4 and 6 is added. This

results in the following modified adja-
cency matrix A′ for which the maximum
eigenvalue and a corresponding eigenvec-
tor are calculated:

A′ =

⎛

⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎠

λmax(A′) = 2,278

ν(A′) =

⎛

⎜⎜⎜⎜⎜⎝

0,417
0,183
0,183
0,584
0,457
0,457

⎞

⎟⎟⎟⎟⎟⎠

For actor 1 its centrality score first is
σ G

E (1) = 0,602 and after adding the con-

nection (4,6) it is σ G′
E (1) = 0,417 al-

though the distance of actor 1 to actor
6 has been reduced. This violates Prop-
erty 1.

A.2 Counterexample to Property 2

For network 6b we also initially deter-
mine the corresponding adjacency ma-
trix A of the initial network (before
adding the connection (1,2)) and calcu-
late the maximum eigenvalue and a cor-
responding eigenvector.

A =

⎛

⎜⎜⎜⎝

0 0 0 1 1
0 0 1 0 0
0 1 0 1 0
1 0 1 0 1
1 0 0 1 0

⎞

⎟⎟⎟⎠

λmax(A) = 2,214

ν =

⎛

⎜⎜⎜⎝

0,497
0,155
0,342
0,604
0,497

⎞

⎟⎟⎟⎠

After adding the connection (1,2) the
following modified adjacency matrix A′
results, for which the maximum eigen-
value and a corresponding eigenvector
are calculated:

A′ =

⎛

⎜⎜⎜⎝

0 1 0 1 1
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
1 0 0 1 0

⎞

⎟⎟⎟⎠

λmax(A′) = 2,481

ν =

⎛

⎜⎜⎜⎝

0,530
0,358
0,358
0,530
0,427

⎞

⎟⎟⎟⎠

For actor 4 its centrality score first is
σ G

E (4) = 0,604 and after adding the con-

nection (1,2) it is σ G′
E (4) = 0,530 al-

though the contact of actor 4 to actor 2 is
intensified by the new connection (1,2).
This violates Property 2.

A.3 Counterexample to Property 3

For network 6c we first also determine
the associated adjacency matrix A of the
initial network (before adding the con-
nection (4,6)) and calculate the max-
imum eigenvalue and a corresponding
eigenvector.

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

λmax(A) = 2,101

ν =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0,311
0,653
0,440
0,271
0,129
0,311
0,311

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

After adding the connection (4,6) the
following modified adjacency matrix A′
results, for which the maximum eigen-
value and a corresponding eigenvector
are calculated:

A′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 0 0 0
0 0 1 0 1 1 0
0 0 0 1 0 0 0
0 1 0 1 0 0 0
0 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

λmax(A′) = 2,359

ν =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0,236
0,557
0,421
0,435
0,185
0,421
0,236

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

Whereas before adding the connection
(4,6) actor 4 has a lower centrality score
than actor 6 (σ G

E (4) = 0,271 < σ G
E (6) =

0,311), the ranking of the two actors
changes as a result of the additional re-
lationship (σ G′

E (4) = 0,435 > σ G′
E (6) =

0,421), which is a contradiction to Prop-
erty 3.
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The calculations also show that the
Properties 1 to 3 are often even not
met if you multiply each entry of the
eigenvector with the maximum eigen-
value λmax(A) resp. λmax(A′) of the re-
spective adjacency matrix, which may in-
crease by adding a new relationship, but
will never decrease (Bermann and Plem-
mons 1994).

Appendix B: Alpha Centrality

In the context of the outlined assump-
tions the CM by Katz differs only by a
constant from the alpha centrality (AC)
σα , which is defined as

σα(x) = eT
x (In − αA)−1c

= cT(In − αA)−1ex (6)

Here, In represents the unity matrix of di-
mension n = |VG| and A is the adjacency
matrix of the network of relationships be-
tween the actors of the considered net-
work. In addition, the vector c allows
the consideration of the structural influ-
ences on the interconnectedness that are
independent of the structure of relation-
ships. The parameter α specifies the rela-
tive weighting of those influences that are
induced by the structure of relationships
and the exogenous influences (Bonacich
and Lloyd 2001). If the exogenous influ-
ences do not differ, one can choose c = 1.
In this case, for α = k the values of AC
and the CM by Katz consequently vary
only by the constant 1. The statements
about the CM by Katz in Sect. 4.5 there-
fore also apply to AC. In order to avoid
redundancy we refrain from a separate
representation of AC.

Appendix C: Comments on the
Validity of Property 3 for the CM
by Katz

C.1 Description of the Simulation

The verification of whether the CM by
Katz satisfies Property 3 was analytically
not possible in the general case. There-
fore, we simulated contiguous networks
with 5 to 1000 nodes and examined the
effect of adding an edge (x, y) on the
ranking of two previously not directly
connected nodes x and y. As the rank-
ing of the newly connected nodes did not
change after having carried out approx-
imately 1 million tests, we assumed that
Property 3 is met by the CM by Katz in
general.

The networks and their modifications
have been generated according to the fol-
lowing procedure: First, we created a ran-
dom binary matrix B. Since the adja-
cency matrix of the social network must
be symmetrical due to the symmetry of
the relations, we mirrored the upper tri-
angular part of the matrix B downwards

B̃ij = (1 − kbxy)(bij − kbijbxy + kbixbyj) − (bij − kbijbxy + kbixbyj)(kbxy − k2b2
xy + k2bxxbyy)

(1 − kbxy)[(1 − kbxy)2 − k2bxxbyy]
+ (biy − kbiybxy + kbixbyy)(kbxj − k2bxjbxy + k2byjbxx)

(1 − kbxy)[(1 − kbxy)2 − k2bxxbyy]

and obtained a symmetric matrix A. In a
next step, all matrices were rejected which
contained isolated nodes (at least one row
or column sum <1) and thus apparently
do not represent connected graphs. For
the remaining matrices we proceeded as
follows: First the adjacency matrix A′ for
a modified network was calculated by
identifying an entry with axy = 0 and set
a′

xy = 1 as well as a′
yx = 1, i.e., the graph

received a new edge (x, y). Subsequently,
we calculated the CM by Katz for both
the matrix A and matrix A′ for the nodes
x and y and determined the ranking of
the nodes before and after modification
of the network. Based on the described
simulation study we assume that Prop-
erty 3 is satisfied when using CM by Katz.

C.2 Partially Analytical Evidence

For some special cases an analytical proof
that Property 3 is met by the CM by
Katz is possible. Therefore, we further
present a formal proof of the validity
of Property 3 in more detail for these
cases, i.e. under certain restrictive as-
sumptions, in the following. This con-
sideration does not consider the constant
−1, which would be added as a result of
the subtraction of the unit matrix in for-
mula (5′), because it is eliminated when
calculating the difference in terms of the
comparison of the ranking.

For the further deliberations the fol-
lowing denotations are used:

a = (In − kA) = (aij)

b = (In − kA)−1 = (bij)

Ã = (In − kA − kExy) = (Ãij)

and B̃ = (In − kA − kExy)−1 = (B̃ij), with
Exy = (E

xy
ij ) describing the matrix whose

entries – except of the two entries E
xy
xy and

E
xy
yx – are null. The entries E

xy
xy and E

xy
yx

have the value 1 and thus represent the
added edge (x, y).

According to Sherman and Morrison
(1950), by using the above denotations
and applying the formula twice to calcu-
late the inverse of a matrix when chang-
ing one matrix entry in each case (by
adding the edge (x, y) the entries change
at positions axy and ayx), we obtain the
following expression:

Hence, for σ G′
K (x) = ∑n

i=1 B̃ix and

σ G′
K (y) = ∑n

i=1 B̃iy it results that

σ G′
K (x) =

n∑

i=1

B̃ix

=
n∑

i=1

[(1 − kbxy)bix + kbiybxx]
[(1 − kbxy)2 − k2bxxbyy]

and

σ G′
K (y) =

n∑

i=1

B̃iy

=
n∑

i=1

[(1 − kbxy)biy + kbixbyy]
[(1 − kbxy)2 − k2bxxbyy]

The difference between the centrality
score of x and y in graph G′, which results
from adding the edge (x, y), therefore is:

�G′ = 1

(1 − kbxy)2 − k2bxxbyy

×
[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

The denominator of this expression is ab-
breviated by N := (1 − kbxy)

2 − k2bxxbyy
in the following.

Here, bxx − 1 ≥ 0 holds. This can be
justified by the fact that bxx − 1 rep-
resents the number of paths in G that
are weighted according to their length
that begin and end in x. Since this value
is always positive in a connected graph,
bxx − 1 ≥ 0 and thus also bxx > 0 holds.
Analogously, it follows that byy > 0.

Property 3 comprises two statements.
Sub-statement 1 refers to the ranking of
two nodes that initially have a different
centrality score. The second part of Prop-
erty 3 makes a statement for nodes to
which the CM in the original graph as-
signs the same centrality score. Below, the
two sub-statements are proven separately
from each other for some special cases.

382 Business & Information Systems Engineering 6|2010



BISE – STATE OF THE ART

Sub-statement 1 To be shown:

σ G
K (x) =

n∑

i=1

bix > σ G
K (y) =

n∑

i=1

biy

⇒ σ G′
K (x) ≥ σ G′

K (y),

i.e. �G′ = σ G′
K (x) − σ G′

K (y) ≥ 0

The four cases in which the first sub-
statement of Property 3 is satisfied in gen-
eral for the CM by Katz are outlined be-
low:

(a) Assumptions: bxx > byy and
1 − kbxy − kbxx > 0

It follows from both assumptions that
1 − kbxy − kbyy > 0.

⇒ N = (1 − kbxy)
2 − k2bxxbyy

> (1 − kbxy)
2 − k2b2

xx > 0

⇒ �G′ = 1

N

[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

≥
N∑

i=1
biy<

N∑
i=1

bix

1

N
[1 − kbxy − kbyy

− 1 + kbxy + kbxx]
n∑

i=1

biy

= 1

N︸︷︷︸
>0

[kbxx − kbyy]︸ ︷︷ ︸
>0wg.Ann

n∑

i=1

biy

︸ ︷︷ ︸
>0

> 0

(b) Assumptions: bxx > byy and
1 − kbxy − kbxx = 0

It follows from both assumptions that
1 − kbxy = kbxx > 0 (as k,bxx > 0)

⇒ N = (1 − kbxy)
2 − k2bxxbyy

> (1 − kbxy)
2 − k2b2

xx = 0

⇒ �G′ = 1

N

[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

= 1

N︸︷︷︸
>0

(1 − kbxy − kbyy)︸ ︷︷ ︸
>(1−kbxy−kbxx)=0

×
n∑

i=1

bix

︸ ︷︷ ︸
>0

> 0

(c) Assumptions: bxx = byy and
1 − kbxy > kbxx

⇒ N = (1 − kbxy)
2 − k2bxxbyy

= (1 − kbxy)
2 − k2b2

xx > 0

⇒ �G′ = 1

N

[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

= 1

N︸︷︷︸
>0

(1 − kbxy − kbxx)︸ ︷︷ ︸
>0

×
(

n∑

i=1

bix −
n∑

i=1

biy

)

︸ ︷︷ ︸
>0

> 0

(d) Assumptions: bxx = byy ,
1 − kbxy < kbxx and |1 − kbxy| < kbxx

⇒ N = (1 − kbxy)
2 − k2bxxbyy

= (1 − kbxy)
2 − k2b2

xx < 0

⇒ �G′ = 1

N

[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

= 1

N
(1 − kbxy − kbxx)

×
(

n∑

i=1

bix −
n∑

i=1

biy

)

= 1

N︸︷︷︸
<0

(1 − kbxy − kbxx)︸ ︷︷ ︸
<0

×
(

n∑

i=1

bix −
n∑

i=1

biy

)

︸ ︷︷ ︸
>0

> 0

In summary, the validity of the first
sub-statement of Property 3 can be
proven for the CM by Katz, if either
(1) bxx > byy and 1 − kbxy − kbxx ≥ 0 or
(2) bxx = byy and 1−kbxy > kbxx or alter-
natively 1 − kbxy < kbxx and |1 − kbxy| <
kbxx holds.

Sub-statement 2 To be shown:

σ G
K (x) =

n∑

i=1

bix = σ G
K (y) =

n∑

i=1

biy

⇒ σ G′
K (x) = σ G′

K (y), i.e.

�G′ = σ G′
K (x) − σ G′

K (y) = 0

Abstract
Andrea Landherr, Bettina Friedl,
Julia Heidemann

A Critical Review of Centrality
Measures in Social Networks

Social networks are currently gaining
increasing impact in the light of the
ongoing growth of web-based services
like facebook.com. One major chal-
lenge for the economically successful
implementation of selected manage-
ment activities such as viral market-
ing is the identification of key persons
with an outstanding structural position
within the network. For this purpose,
social network analysis provides a lot of
measures for quantifying a member’s
interconnectedness within social net-
works. In this context, our paper shows
the state of the art with regard to cen-
trality measures for social networks.
Due to strongly differing results with
respect to the quality of different cen-
trality measures, this paper also aims
at illustrating the tremendous impor-
tance of a reflected utilization of exist-
ing centrality measures. For this pur-
pose, the paper analyzes five centrality
measures commonly discussed in liter-
ature on the basis of three simple re-
quirements for the behavior of central-
ity measures.

Keywords: Social network, Intercon-
nectedness, Centrality measures, Social
network analysis
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Assumptions: bxx = byy and
|1 − kbxy| �= kbxx

⇒ N = (1 − kbxy)
2 − k2bxxbyy

= (1 − kbxy)
2 − k2b2

xx �= 0

⇒ �G′ = 1

N

[
(1 − kbxy − kbyy)

n∑

i=1

bix

− (1 − kbxy − kbxx)

n∑

i=1

biy

]

= 1

N
(1 − kbxy − kbyy − 1

+ kbxy + kbxx)

n∑

i=1

bix

= 1

N
(kbxx − kbyy)︸ ︷︷ ︸

=0

n∑

i=1

bix = 0

Under the conditions bxx = byy and
|1 − kbxy| �= kbxx the second sub-
statement of Property 3 is satisfied when
using the CM by Katz.
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