
BISE – RESEARCH PAPER

Explanatory Design Theory
The paper demonstrates how design theories are explanatory. Design theories deliver
functional explanations with a simple and elegant structure explaining generalized solution
components by the related generalized requirements. Examples of design theory drawing
from IS as well as other design-related fields to show how design theory can be both simple
and complete. Analyses of notable design find that design theory consists of two parts:
a design practice theory and an explanatory design theory.

DOI 10.1007/s12599-010-0118-4

The Authors

Prof. Richard Baskerville Ph.D.
Georgia State University
35 Broad Street NW
Atlanta, GA 30302
USA
baskerville@acm.org

Prof. Jan Pries-Heje Ph.D. (�)
Roskilde University
Universitetsvej 1
4000 Roskilde
Denmark
janph@ruc.dk

Received: 2009-12-01
Accepted: 2010-07-03
Accepted after three revisions by
Prof. Dr. Winter.
Published online: 2010-09-01

This article is also available in Ger-
man in print and via http://www.
wirtschaftsinformatik.de: Baskerville
R, Pries-Heje J (2010) Erklärende
Designtheorie. WIRTSCHAFTSINFOR-
MATIK. doi: 10.1007/s11576-010-
0237-z.

© Gabler Verlag 2010

1 Introduction

As the millennium turned, it was be-
coming notable that the research disci-
pline of information systems was drifting
away from its center on information tech-
nologies and becoming too strongly an-
chored to behavioral and managerial as-
pects (Orlikowski and Iacono 2001). De-
sign science broadens our scholarly in-
terest beyond the explanation of exist-
ing phenomena because it creates valu-

able utility through the construction of
innovative organizational and technical
artifacts. In the design science research
paradigm, the information systems disci-
pline should seek not only to develop and
build theories, but also technological ar-
tifacts that lend utility to theory (Hevner
et al. 2004). The elevation of design to an
equal footing with science is important
because there can be an institutional per-
ception that science occupies the higher
intellectual ground over engineering or
management.

The notion of a science of design entails
the notion of a theory of design (Simon
1996). It is difficult to imagine science
without theory, so it becomes incumbent
to distinguish design theory that inhab-
its design science. Accordingly, scholars
in information systems have explored
and explained what constitutes a design
theory.

However, the specific characteristics of
design theory seem rather elaborate and
overly complicated. Walls et al. (2004)
specify seven components including ker-
nel theories, hypotheses, method, etc.
Gregor and Jones (2007) specify eight
components including artifact mutabil-
ity, expository instantiation, etc. Further,
the emergence of these notions about de-
sign theory denies many important char-
acteristics of normal theory. For example,
design theory does not explain or predict,
but rather informs: “Truth informs de-
sign and utility informs theory” (Hevner
et al. 2004, p. 80).

It is not clear that layering such com-
plexity into design theories serves the
best interests of advancing design science
research as a discipline on the level of
other sciences. It violates one of the oldest
principles of scholarship, the fourteenth
century Ockham’s Razor (1964; in Latin):
“Pluralitas non est ponenda sine necessi-
tate”, which can be translated to: “entities

should not be multiplied unnecessarily.”
We seek the simplest possible delineation
of a design theory.

It also seems problematic to create such
distinct and specialized forms of theory,
especially when these theories must entail
other theories (such as kernel or justifica-
tory theory). Besides failing to satisfy our
expectations for other forms of scientific
theory, it creates complicated rationaliza-
tions. Authors of studies can be forced
to fit their less structured design theories
into these complicated frameworks and
then appear to be superficial, as if using
the frameworks like a “cloak of theoreti-
cal legitimacy” (Walls et al. 2004, p. 55).

In this paper we propose that a sim-
plified notion of design theory has more
in common with “normal” scientific the-
ories, and is indeed descriptive and of-
fers a particular kind of explanation. We
demonstrate that separating the current
notion of design theory into component
parts yields an explanatory part and a
practice part. We then show how exist-
ing design work in architecture, finance,
management, cognitive psychology, com-
puter science, and information systems
can yield explanations.

2 Design Theory

There is a rich literature treating in-
formation systems design theory. There
is not complete agreement about the
characteristics and components of de-
sign theories, and of course there is no
proof or evidence. Rather these exist as
shared assumptions about design the-
ory. In this section we identify a num-
ber of these shared assumptions, and dis-
cuss the problems and issues in the delin-
eation of design theory. These issues lead
to a proposition to partition design the-
ory into an explanatory part and a prac-
tice part. We will also treat the generaliz-

Business & Information Systems Engineering 5|2010 271

mailto:baskerville@acm.org
mailto:janph@ruc.dk
http://www.wirtschaftsinformatik.de
http://www.wirtschaftsinformatik.de
http://dx.doi.org/10.1007/s11576-010-0237-z
http://dx.doi.org/10.1007/s11576-010-0237-z


BISE – RESEARCH PAPER

ability of the explanatory part of design
theory.

2.1 Assumed Characteristics of Design
Theory

Design theory has been defined in var-
ious ways emphasizing various assump-
tions. For example, design theory is as-
sumed by many to be prescriptive. Walls
et al. (1992, p. 37) defined it as, “a de-
sign theory is a prescriptive theory based
on theoretical underpinnings which says
how a design process can be carried out
in a way which is both effective and
feasible”. Prescriptive research, which fo-
cuses on improving things, stands in con-
trast to the descriptive research, which
focuses on understanding things (March
and Smith 1995).

Design theory is assumed by many to
be practical. Goldkuhl emphasized this
nature of design theories, “Design the-
ories consist of knowledge of a prac-
tical character; i.e., for practical pur-
poses” (Goldkuhl 2004, p. 61). Van Aken
adapts these notions into the more gen-
eral realm of management, defining man-
agement theory as a design science form;
“prescription-driven research and to be
used largely in an instrumental way to
design solutions for management prob-
lems” (van Aken 2004, p. 221).

Design theory is assumed by many to
be a basis for action. Gregor and Jones
(2007, p. 313) find it is a type of the-
ory that determines actions. “The distin-
guishing attribute of theories for design
and action is that they focus on ‘how
to do something’. They give explicit pre-
scriptions on how to design and develop
an artifact, whether it is a technological
product or a managerial intervention.”

Design theory is assumed by many to
be principles-based. Marcus et al. (2002,
p. 182) emphasized the role principles in
their definition of design theory compo-
nents: “(1) a set of user requirements de-
rived from kernel theory, (2) principles
governing the development process, and
(3) principles governing the design of a
system (i.e., specifying and implementing
its features)”. While noting “some feeling
against design principles as theory”, Gre-
gor and Jones (2007, p. 314) include prin-
ciples of form, function, and implemen-
tation among their design theory compo-
nents.

Design theory is assumed by many to
be a dualist construct. Design theories re-
gard both design as a product and de-
sign as a process. It is the natural out-
come of a term that is both a noun and a

verb. Simon (1996, p. 131) regards a “the-
ory of design” with two essential compo-
nents: “the shape of the design and the
shape and organization of the design pro-
cess”. Walls et al. (1992, p. 43) divide the
components of an Information Systems
Design Theory into two classes: “Design
Product” and “Design Process”. Hevner et
al. (2004, p. 83) distinguish guidelines for
“Design as an Artifact” and for “Design
as a Search Process”. Gregor and Jones
(2007) separate a design theory’s “Prin-
ciples of form and function” from the
“Principles of Implementation”.

2.2 Issues in Design Theory

There are also assumptions about what
is not design theory. For many, design
theory does not correspond to the no-
tion of scientific theory as known in
the natural sciences. “Natural science
includes traditional research in phys-
ical, biological, social, and behavioral
domains. . . Such research is aimed at un-
derstanding reality. . . . Design science at-
tempts to create things that serve hu-
man purposes. It is technology-oriented.
. . . Rather than producing general theo-
retical knowledge, design scientists pro-
duce and apply knowledge of tasks or sit-
uations in order to create effective arti-
facts” (March and Smith 1995, p. 253). In
fact, for some, design science should not
produce theory. “Design science prod-
ucts are of four types, constructs, models,
methods, and implementations. . . . No-
tably absent from this list are theories, the
ultimate products of natural science re-
search” (March and Smith 1995, pp. 253–
254).

So much effort has been expended in
delineating the non-science characteris-
tics of design theory that it leads to ques-
tions about whether design theory can
even exist. Hooker, for example, finds
this assumption space so contradictory to
common notions of theory that the entire
construct of design theory is impossible.
Hooker (2004, p. 2) points out that a the-
ory is “an explanatory account of the way
things are”. The properties of theories in-
clude making “the world intelligible” and
“a lawlike (or ‘nomic’) character”. Treat-
ing design as theoretical is complicated
because design is a practice in which a
functional description passes into a phys-
ical description of an artifact. If design
theory is a theory of practice, Hooker rea-
sons, then it is fundamentally the same
psycho-social theory that applies to any
other field of practice. In other words,

theories about the practical behavior of
designers will not differ from theories
about practical behavior of biologists. In
a similar vein, the design process com-
ponent of design theory causes many to
struggle over whether design science dif-
fers in any significant way from the soci-
ological methods of action research (Cole
et al. 2005; Järvinen 2007).

March and Smith, together with
Hooker, claim that theorizing has a nat-
ural science intent, and does not be-
long in design science. March and Smith
take the position “IT research should be
concerned both with utility, as a design
science, and with theory, as a natural sci-
ence” (March and Smith 1995, p. 255).
Both works concede theory and theo-
rizing to the natural sciences alone us-
ing a narrow, natural science viewpoint
on theory. Deciding whether, under the
assumptions above, design theory is a
legitimate type or class of theory would
first require us to delineate the criteria
for qualifying something as a theory.
This puzzle is itself so problematic that
management scholars have sidestepped
the issue entirely, choosing instead to
try defining only what “theory is not”
(Sutton and Staw 1995). In other words,
deciding how design theory differs from
psycho-social theory on the one hand,
and action theory on the other hand,
would first require us to define what is
not psycho-social theory and what is not
action theory. As Hooker’s arguments
detail, it is hard to imagine any criterion
that would characterize the application of
psycho-social theory to the design com-
munity of practice as different from its
application to any other community of
practice.

2.3 Explanations in Science and Design
Science

Like Hooker, most views of theory will
at least admit that one form of theory
can be an explanatory account of re-
ality. In the philosophy of science, we
can find four types or patterns of expla-
nations: deductive, probabilistic, func-
tional, and genetic. Using Nagel’s def-
initions (Nagel 1961), deductive expla-
nations operate where the conclusions
are logically necessary outcomes of the
premises. Probabilistic explanations op-
erate where conclusions about a mem-
ber of a class are the outcome of statis-
tical premises about the class. Deductive
explanations are common in the natural
sciences, and probabilistic explanations

272 Business & Information Systems Engineering 5|2010



BISE – RESEARCH PAPER

are common in the social sciences. Ge-
netic explanations operate where conclu-
sions about a phenomenon are the out-
comes of the historical evolution of this
phenomenon. Genetic explanations can
detail how a system is the step-by-step
outcome of previous generations of sys-
tems. Functional explanations, also called
teleological explanations, are centered in
design science research. These explana-
tions indicate “one or more functions (or
even dysfunctions) that a unit performs
in maintaining or realizing certain traits
of a system to which the unit belongs”
(Nagel 1961, p. 23). Functional expla-
nations are common in biology and the
study of human affairs. Functional expla-
nations operate by showing why a role or
action of a system is necessary to bring
about some goal. Simon (1996) explains
how functional explanations serve design
science (and other sciences of the artifi-
cial) by explaining a system’s inner en-
vironment as a necessary consequence of
the need for the system to function in its
outer environment. He uses the example
of the chronometer for a ship that reacts
to the pitching of the ship (outer envi-
ronment) by maintaining an invariant re-
lation of the hands on the dial (Simon
1996, p. 8). “An important fact about this
type of explanation is that it demands an
understanding mainly of the outer envi-
ronment” (p. 7).

Relationships in functional explana-
tions use such language as “in order that”,
“for the sake of”, etc. There is often a
reference to “a future state or event” in
terms of which the existence of a con-
struct becomes intelligible (Nagel 1961,
p. 25). Accordingly, functional explana-
tions can take two forms, which we will
call perpetual and conditional. A perpet-
ual functional explanation is given for fea-
tures or components that are present in
all systems of a certain kind, regardless of
timing or condition. A conditional func-
tional explanation is given for features
or components occurring upon a stated
condition or time.

Theories in design science provide
more than just prescriptions about how
to design and construct artifacts for the
purpose of achieving some goal. De-
sign theories also serve to provide func-
tional explanations of why designs and
artifacts have certain attributes and fea-
tures (Walls et al. 1992). The design the-
ory explains the attributes and features
of the design and artifact (found in Si-
mon’s “inner environment”) by their ne-
cessity in achieving the purpose and goal

of the artifact (found in Simon’s “outer
environment”). Design theories serve not
only prescriptive purposes, but also serve
functionally descriptive purposes as well.

2.4 Partitioning Design Theory

The management discipline’s debate
about theory does provide one helpful
key to understanding this collision be-
tween design theory and other theory
disciplines. Karl Weick (1995), writing
in response to Sutton and Staw, argued
that the focus on theory should be distin-
guished from theorizing. In other words,
the value of these two elements, the pro-
cess and the product, was more recog-
nizable when examined separately. For
our purposes, the contradictions that
challenge the assumption space of design
theory fundamentally arise in the dualist
construct.

If we separate the theory of the de-
sign product from the theory of the de-
sign process (i.e., the design from its de-
signing), Hooker’s questions about the
value of the theory soften dramatically.
Hooker notes that fundamentally a de-
sign for something is an incompletely de-
scribed abstraction of reality. Referring
only to this incomplete description, and
not the process for creating it, he admits,
“To begin with, all science abstracts cer-
tain features of an object and more or less
ignores the rest. In fact, the sciences are
defined and distinguished partially by the
level and type of abstraction they employ.
So, if the proposal is that design science
focuses only on certain features of an ob-
ject – namely, those that belong to the
designer’s incomplete description of it –
then it would seem to be no different in
principle from any other sort of science”
(Hooker 2004, p. 11).

Walls et al. (2004, p. 50) regarded this
admission as an opportunity for design
theory to exist on Hooker’s terms. “This
statement is consistent with our defi-
nition of meta-requirements and meta-
design, which deal with a class of infor-
mation system rather than a specific in-
stance of one”.

Removing the dualistic assumption
from the premises of design theory sep-
arates the theoretical component about
design practice from the theoretical com-
ponent about the design artifact. This re-
moval means that there are two types
of design theories. One type of design
theory, design practice theory, prescribes
in a practical way how to design some-
thing. The second type of design the-

ory prescribes principles that relate re-
quirements to an incomplete description
of an object. The nature of the require-
ments explains the incomplete descrip-
tion in terms of the requirements. This
type of explanation is consistent with the
definitions of functional and teleological
scientific explanations. We will designate
this type of design theory as explanatory
design theory.

The incomplete description is the de-
sign artifact, not the instantiation of the
design. Moreover, the design is incom-
plete because it describes a class of de-
sign problems, not a single specific design
problem. The value of an explanatory de-
sign theory lies in its ability to explain a
range of phenomena rather than a spe-
cific instance of a problem. This gen-
eral explanation means that an explana-
tory design theory explains why a gener-
alized set of requirements is satisfied by
a generalized set of object features. The
explanation is embodied in the relation-
ship between a requirement and a fea-
ture. For example, Walls et al. (1992) de-
scribe a generalized set of requirements
for a Vigilant Executive Information Sys-
tem (VEIS), and how these are satisfied
by the features of their generalized design
for VEISs. This theory has explanatory
value and is generalizable across a range
of VEIS applications. Similarly Markus
et al. (2002) describe a generalized set
of requirements for emergent knowledge
management systems (EKMS), and how
these are satisfied by the features of their
generalized design for EKMSs. This the-
ory has explanatory value and is gener-
alizable across a range of EKMS applica-
tions.

By eliminating the dualist assumption
within design theory, and acknowledging
two separate and distinct theory compo-
nents, the explanatory value of the de-
sign product aspect becomes apparent.
For the purposes of this paper, we will
continue to develop the explanatory de-
sign theory and postpone design practice
theory for future research.

2.5 Describing Explanatory Design
Theory

Simon’s original work focused on imper-
ative logics rather than theory, but his
theory of design was partly anchored to
the General Problem Solver (GPS) (Si-
mon 1996, p. 122). This problem solving
software was designed with two elements.
One of these elements was based on the
differences between the present situation

Business & Information Systems Engineering 5|2010 273



BISE – RESEARCH PAPER

Fig. 1 Design theory according to
Walls et al. (1992, 2004)

and the desired objects in some future sit-
uation. The second element was the set of
actions that changed the objects or situa-
tions in order to remove the differences.
In the language of current design theory,
the differences can be regarded as the re-
quirements. The necessary actions that
change the objects or situations can be
regarded as the components of the solu-
tion. Simon implemented these two key
notions in declarative logic as the “utility
function” (requirements) and the “com-
mand variables” (the components of the
solution).

These two key elements in an explana-
tory design theory, the requirements and
the components, and their embodied re-
lationships that explain the solution, can
be found in many key works in design
theory. Walls et al. (1992) and Gregor
and Jones (2007) have the carefully delin-
eated structures that are widely cited, and
parsimonious. Gregor and Jones map the
“meta-requirements” of Walls et al. onto
their element called “purpose and scope”.
In terms of the components of the gen-
eralized solution, they map the “meta-
description” of Walls et al. onto their
“Principles of form and function”.

The various other elements attributed
to design theory become peripheral when
explanatory design theory is extracted
from the dualist structures. For exam-
ple, the full structure of Walls et al. is
illustrated in Fig. 1. The elements that
embody the explanatory design theory
are the meta-requirements and the meta-
design (the components). Walls et al. use

Fig. 2 Explanatory design theory

the notion of “meta-” to emphasize the
abstract nature of the design theory.
The kernel theories, design method, and
testable design hypotheses relate to de-
sign practice theory and are unneces-
sary to explanatory design theory. The
kernel theories, which Gregor and Jones
call “justificatory knowledge,” are sepa-
rate background theories that form the
assumption space for the explanatory de-
sign theory. The hypotheses are deduced
from the theory, and while possibly im-
portant for testing, are not essential to
the theory itself. In any case, the hypothe-
ses are at least optional. Hypotheses arise
in a version of science that subscribes to
a natural science, hypothetical-deductive
mode of logic, such as that described by
Nagel (1961). These are not always fun-
damental to diverse forms of social sci-
ence.

One common element in all of these
descriptions of the explanatory compo-
nent of design theory is the notion of
generalized requirements for the class
of artifacts under consideration. For Si-
mon, this is the utility function. An-
other common element is the general-
ized components that satisfy these gen-
eral requirements. These two elements,
general requirements and general com-
ponents, together with the relationships
between these elements, form the essence
of a design theory. We have shown this
graphically in Fig. 2. This explanatory de-
sign theory is a general design solution
to a class of problems that relates a set
of general components to a set of gen-
eral requirements. We explained above
what we mean by generalized. We use
the term ‘requirement’ in a sense simi-
lar to that of the IEEE standard glossary
(IEEE Std 610.12.-1990), that is: (1) a
condition or capability needed by a user
to solve a problem or achieve an objec-
tive; (2) a condition or capability that
must be met or possessed by a system or
system component to satisfy a contract,
standard, specification, or other formally
imposed document; (3) a documented
representation of a condition or capabil-
ity as in (1) or (2). The standard does
not define conditions or capabilities, but

the Oxford Advanced Learner’s dictio-
nary (Wehmeier 2000, p. 255) defines
the term ‘condition’ as, “the state that
something is in”, as “the circumstances
or condition . . . ”, or as “the physical sit-
uation that affects how something hap-
pens”. Further we use the term ‘capability’
as “the ability or qualities required in the
whole set of general components neces-
sary to do something”. As a whole, the set
of general components provide a general-
ized solution to the general requirements.

The IEEE standard glossary goes on
to define component as, “one of the
parts that make up a system”. A com-
ponent may be more than just hard-
ware or software and may be subdi-
vided into other components. For ex-
ample, a requirement for organizational
memory support may be answered by
components such as ‘Knowledge acquisi-
tion’, ‘Knowledge retention’, ‘Knowledge
maintenance’, ‘Knowledge Search’ and
‘Knowledge Retrieval’; all five parts of a
whole justified by the general require-
ment. Another example is a general re-
quirement for ensuring profit without
too much risk when investing. This re-
quirement can be answered by portfolio
thinking which involves two major com-
ponent parts namely diversification of in-
vestments and combination of different
stocks and options whose returns are not
correlated.

The definitions of general require-
ments and general components must be
circular. Requirements specify (and ex-
plain) the reasons for components. Com-
ponents are justified by requirements.

The presence of conditions along with
capabilities relates to Nagel’s distinction
between the two forms of functional ex-
planations (which we called conditional
functional explanations and perpetual
functional explanations). Where uncon-
ditional capabilities appear in the gen-
eral requirements, the explanatory design
theory is delivering a perpetual func-
tional explanation. When conditions ap-
pear in the general requirements, the ex-
planatory design theory is delivering con-
ditional functional explanations. Con-
ditional explanations approximate an

274 Business & Information Systems Engineering 5|2010



BISE – RESEARCH PAPER

IF. . . THEN. . . kind of logic. Explanatory
design theory requirements will usually
have at least one capability. If the expla-
nation is not perpetual in nature, then we
would expect one or more conditions to
be present.

2.6 Explanatory and Constructive
Design Theory

Taking an explanatory view of design the-
ory does not eliminate the important role
of design theory for prescribing, together
with the design practice component, the
construction of an artifact. This com-
bined operation provides a constructive
theory. The explanatory design theory
explains why a component is being con-
structed into an artifact. The design prac-
tice component explains how to construct
the artifact. Unlike theories that yield
purely descriptive deductive or proba-
bilistic explanations, design theories pro-
vide elements of a prescriptive theory
of artifact construction and a descrip-
tive theory for functionally explaining
the artifact’s intended features and be-
havior. This constructive role of explana-
tory design theories is similar to Dietz’s
(2006) construction theory that links re-
quirements (functional system proper-
ties) to components (constructional sys-
tem properties).

Together, an explanatory design theory
and its related design practice theory ex-
plain “why” and “how” to construct an
artifact. Once an artifact has been con-
structed, the explanatory design theory
component continues to enact an ex-
planatory role, explain an artifact’s func-
tions teleologically. In this way, design
theories are more powerful and broader
in scope than simple descriptive theories,
because they are both prescriptive and
descriptive in nature.

The usefulness of explanatory design
theory is comparatively diverse and pow-
erful. By focusing on the essential ele-
ments of design theory, we can discover
how it is a constructive theory, prescrip-
tive on the one hand, while remaining
available as an explanatory theory, de-
scriptive on the other hand. Because de-
sign theory applies as both constructive
theory and explanatory theory, it serves
roles before, during, and after artifact
construction.

Because explanatory design theory has
a role both in the explanation and con-
struction of design artifacts, it still satis-
fies most of the assumed characteristics
of design theory described in Sect. 2.1

above. It is both practical and a basis
for action because it explains why each
component is necessary for an artifact in
terms of the artifact’s own requirements.
It is principles-based in a most straight-
forward way, because it operates purely
on the relationship between two kinds
of constructs (requirements and compo-
nents). However, explanatory design the-
ory is no longer a dualist construct be-
cause the process for construction (the
design practice theory) has been removed
as a separate and distinct category of the-
ory.

2.7 Generalizability of Explanatory
Design Theory

The generalizability of an explanatory de-
sign theory operates similarly to other
kinds of explanatory theory. It will de-
pend on the nature of its expression. It
can be stated with more-or-less general-
ity (scope) depending on the level of ab-
straction. This critical degree of an in-
complete description is the degree of its
abstract expression. The more abstract
the expression of a theory, i.e., the more
general its statements, then the more gen-
eralizable are its claims. For example,
Walls et al. expressed their theory as a
general description of a “vigilant exec-
utive information system”. They did not
choose to advance a broader theory, one
that might have been more generally ex-
pressed as a “vigilant information sys-
tem”. They reasoned that the theory was
anchored to experience with EISs, and
they chose to limit the generality (and
scope) of their claims accordingly.

In addition, the level of generality in
the expression of an explanatory design
theory is related to the completeness of
its description of reality (Hooker 2004).
The more abstract the notions in the the-
ory, then the more incomplete is the de-
scription of reality. For example, because
expression of the theory of “vigilant exec-
utive information systems” is more spe-
cific, it permits a more complete descrip-
tion of the more specific solution. Con-
sequently, generality, completeness of de-
scription, and abstraction are dimensions
of the same human decision. It occurs
by leaving out some parts of a particular
while retaining other parts, and arriving
at general names and general ideas. The
creation of the abstract is an individual
person’s conceptualization process. The
process of “abstracting the universal from
the particular” can be traced back to Aris-
totle and arrives in the philosophy of sci-
ence through Aquinas, Hobbes and Locke

(Walmsley 2000, p. 396). It refers to the
way in which a person, within his or her
intellect, forms an “idea” or “notion” of
material phenomena.

While the choice of generality in the ex-
pression of an explanatory design theory
lies in the mind doing the theorizing, its
evidence and testing can be more objec-
tive. Explanatory design theories, like all
theories, are necessarily tentative. Their
prescriptive nature makes them certainly
falsifiable. The credibility of the general-
izations are dependent on the credibil-
ity assigned to the evidence, arguments,
and background theories used to develop
them. Because of the greater scope in
its claims, the validity of a more gen-
erally stated theory is subject to wider
scrutiny and possible denial. For exam-
ple, the falsification scope of an explana-
tory design theory of vigilant executive
information systems is narrower than the
falsification scope of a vigilant informa-
tion system. Such falsification would in-
volve instantiating the theory with an ar-
tifact, and discovering that the resulting
artifact did not satisfy the requirements.
In such a setting, the explanatory design
theory would no longer explain the com-
ponents in the design product, and the
theory consequently fails.

Like other kinds of explanatory theo-
ries, more general and more specific the-
ories about phenomena can be seen as hi-
erarchical, with specific theories inherit-
ing the relationships between constructs
of more general theories. If the assump-
tions are consistent, a general theory of
a vigilant information systems should in-
habit a more specific theory of vigilant
executive information systems. These no-
tions scale up and down with abstrac-
tion. If the assumptions are consistent,
a more specific theory of vigilant execu-
tive decision support systems should re-
flect a more general theory of vigilant ex-
ecutive information systems.

Because explanatory theories express
relationships between the constructs of
requirements and components, it be-
comes necessary to specify and construct
an instantiation in order to make validity
checks. Goodman (1955) suggests such
operations are beyond the theory itself,
but are rather outside operations on (or
with) the theory. He uses the term pro-
jection for operations in which a theory
is projected into an instance. For us, this
task of projection is a fundamental role
of design practice theory. Constructively,
the design practice theory projects the ex-
planatory design theory into an instance.

Business & Information Systems Engineering 5|2010 275



BISE – RESEARCH PAPER

3 Explanatory Design Theories in
Reference Disciplines

Explanatory design theories are present
in the reference disciplines of informa-
tion systems. Reference disciplines men-
tioned in Baskerville and Myers (2002)
– citing many authors – are engineer-
ing, computer science, cybernetic sys-
tems theory, mathematics, management
science, behavioral decision theory, sys-
tems science, political science, psychol-
ogy, sociology, accounting, finance, man-
agement, architecture, economics and
anthropology. This is not an exhaustive
list; there may be more.

While it is not possible to cover them
all, we can ‘span the field’ by examin-
ing a careful selection of design theories.
We selected design theories that range
from highly behavioral to highly natural-
science-oriented disciplines. We also con-

Table 1 The five examples and the field they span

Field Discipline What? Unit of analysis

Architecture Building and
Engineering

Patterns and patlets Buildings (&/)
practices

Software
Engineering

Computer
Science

How to fake
rationality

Documents

Portfolio
Theory

Finance Minimizing risks and
maximizing profit

Assets

Organizational
structure

Management Designing effective
organizations

Organizations

Product Design Cognitive
psychology

Designing everyday
things

Things

Fig. 3 Pattern as explanatory design theory

Fig. 4 Patlet as explanatory design theory

ditioned our selection to range from a
unit of analysis set as the society or the
organization and ranging to a unit set as
the individual. We present five examples
out of the host of theories in which it is
possible to detect the explanatory design
theories in the literature on design. The
examples we have taken arise from ar-
chitecture (patterns), software engineer-
ing (faked rationale), portfolio theory (fi-
nance), organizational structure (man-
agement), and product design (everyday
things). In Table 1 we have illustrated
how these examples together cover a very
large field and diverse units of analysis.

The presence of multiple requirements
and multiple components creates an ex-
pectation that components will map to
requirements discretely and vice-versa.
Sometimes such mapping can be simple
and indisputable, but usually such map-

ping is made problematic by system or
problem complexity and its own historic-
ity. Requirements traceability regards the
degree to which a particular component
can map to a particular requirement.
While conceivable, it is beyond the scope
of the present paper. In the examples that
follow, we will not attempt to unravel the
unpublished requirements trace, but will
instead follow the model of the original
publications and treat the relationships
between the requirements and compo-
nents as holistic.

3.1 Patterns

The idea of capturing architectural de-
sign ideas for reuse in an archetypi-
cal form was pioneered under the name
patterns. Christopher Alexander (1964)
opened his book “Notes on the synthe-
sis of form” with this statement: “These
notes are about the process of design: the
process of inventing things which display
new physical order, organization, form,
in response to function.” In this state-
ment we clearly can recognize the same
elements as in our explanatory design
theory. See Fig. 3. The presence of a con-
dition suggests this theory delivers condi-
tional functional explanations.

Some years later Alexander et al. (1977)
constructed a pattern language. In com-
puter science this may be termed as a gen-
erative grammar. It describes a vocabu-
lary of interacting design patterns. The
book describes exact methods for con-
structing practical, safe and attractive de-
signs at every scale, from entire regions,
through cities, gardens, buildings, and
down to the doorknob of a door in the
building. The pattern language provides
rules and pictures, but leaves decisions to
be taken from the precise environment of
the project.

The idea of patterns was brought into
software development and adopted es-
pecially by the object-oriented program-
ming community (Coplien and Harrison
2005). In this community the explana-
tion of a design pattern lay in its role as a
general reusable solution to a commonly
occurring problem. In 1995 the “Gang of
Four” (Gamma et al. 1995) presented a
book that rose to a monumental role for
object-oriented software development.

Ten years later Jim Coplien and Neil
Harrison (2005) presented nearly 100
Organizational Patterns. At the end of
this book the authors explain patlets
(p. 349): “A patlet is a short sum-
mary of the problem and solution for
a pattern. Patlets are often used as an

276 Business & Information Systems Engineering 5|2010



BISE – RESEARCH PAPER

Fig. 5 How and why to fake a rational design process – as explanatory design the-
ory

Fig. 6 Portfolio Theory – as explanatory design theory

Fig. 7 Effective organizational design – as explanatory design theory

aid to discovering patterns in order to
solve a particular problem at hand”.

See Fig. 4 for a representation of a Pat-
let as an explanatory design theory. The
absence of conditions suggests this the-
ory delivers perpetual functional expla-
nations. An example patlet is called Size

the Organization (p. 352). It says: “If an
organization is too large, communica-
tions break down, and if it is too small,
it can’t achieve its goals or easily over-
come the difficulties of adding more peo-
ple. Therefore, start projects with a criti-
cal mass of about 10 people”. Patlets are

quite consistent with explanatory design
theory.

3.2 Faking a Rational Design Process

In “A Rational Design Process: How and
Why to Fake It” Parnas and Clements
(1986) claim that “. . . to many observers,
the usual process of designing software
appears quite irrational . . . ”. That is be-
cause programmers “make a long se-
quence of design decisions with no clear
statement of why they do things the way
they do”. The authors argue that this will
never change: “. . . the picture of the soft-
ware designer deriving his design in a ra-
tional, error-free way from a statement of
requirements is quite unrealistic. No sys-
tem has ever been developed in that way,
and probably never will”. However, they
explain that we should write the docu-
mentation of a software system in a way
equal to what “. . . we would have pro-
duced if we had followed the ideal pro-
cess”. We can translate this theory of the
design process to a generalized picture
similar to Fig. 5. This theory is oriented
toward conditional functional explana-
tions.

3.3 Portfolio Theory

When investing money, increasing re-
turn is often associated with increasing
risk. Diversification of portfolio hold-
ings will sometimes develop high returns
while comparatively reducing risk. Port-
folio theory explains why pairing assets
with opposite risk profiles means that ev-
ery investment in the portfolio does not
go down (or for that matter up) at the
same time. This idea and the mathemat-
ical expression and implementation of
it brought Markowitz (1952) the Nobel
Prize in 1990 (for this and two other con-
tributions to economics). In Fig. 6 the
essence of portfolio theory is captured.
This theory is oriented toward perpetual
functional explanations.

3.4 Organizational Structure

Mintzberg’s classic “Structure in Fives”
(Mintzberg 1980, 1983) advanced an or-
ganizational theory for designing effec-
tive organizations. This contingency the-
ory explains effective organizational de-
sign with five organizational parts, five
coordinating mechanisms, five types of
decentralization and so on. Mintzberg’s
design theory translates into a general-
ized form in Fig. 7. This theory should

Business & Information Systems Engineering 5|2010 277



BISE – RESEARCH PAPER

Fig. 8 The design of everyday things – as explanatory design theory

Fig. 9 Supporting emergent knowledge (Markus et al. 2002) – as explanatory de-
sign theory

deliver conditional functional explana-
tions.

3.5 The Design of Everyday Things

. . . is the title of one of most influen-
tial books on usability (Norman 1988).
Norman begins with the observation that
even smartest among us can feel inept as
we fail to figure out which light switch
to turn on, or whether to push, pull,
or slide a door in a building. Norman’s
work shows how we are not to blame.
Instead he explains how the fault lies in
poor product design that ignores both
the needs of users and basic principles of
cognitive psychology.

In his opening chapter, Norman ex-
plains a conceptual design model based
on making “affordances” available. He
advocates the use of visibility (pp. 17–23),
as well as a principle of mapping (pp. 23–
27), and a principle of feedback (pp. 27–
29). He further details many examples of
this model in operation. For example he

emphasizes to “Use technology to make
visible what would otherwise be invisible,
thus improving feedback and the abil-
ity to keep control” (p. 192). Norman’s
design theory translates into a general-
ized form similar to Fig. 8. This theory
should provide perpetual functional ex-
planations.

4 Information Systems
Explanatory Design Theories

Like design theories in our reference dis-
ciplines, prominent design theories in in-
formation systems will also adapt to this
form. Since explanatory design theories
are, by definition, a subset of the semi-
nal Walls et al. (1992) model, theories de-
veloped using this more elaborate model
easily distill to explanatory design theo-
ries. The simpler explanatory design the-
ory model also fits other published de-
sign theories that do not carefully follow
the seminal framework. We will briefly

examine seven design theories in the in-
formation systems literature and explain
how each can be represented as explana-
tory design theories.

Markus et al. (2002) propose a design
theory for systems that support emer-
gent knowledge processes. This paper re-
lates an explanatory design theory that
addresses the dual problems embodied by
(1) knowledge processes (which are com-
plicated human activities) and (2) dy-
namic settings (where knowledge pro-
cesses have to change continuously to
match an evolving context). These re-
quirements explain why the design so-
lution involves support for rapidly iter-
ative user involvement. The explanatory
design theory (p. 206) is summarized as
follows in Fig. 9. This theory is oriented
toward conditional functional explana-
tions.

Walls et al. (1992) propose a design
theory for vigilant executive information
systems. In that paper, we find an ex-
planatory design theory that addresses
the variety and evolution of structuring
issues at the executive level of organi-
zations. While this problem is approxi-
mated by a sense-and-respond require-
ment, it operates at a very high con-
ceptual level, and the issues must be
translated into an actionable level. This
requirement explains why the design so-
lution involves general templates that
trap the issues into an explicit sense-and-
respond framework that maximizes use-
ful information about the issues for ex-
ecutives, and provides a cohesive track to
responsible actions. The explanatory de-
sign theory can be summarized as fol-
lows (adapted from meta-requirements
Table 9, p. 51 and from meta-design, Ta-
ble 11, p. 54) in Fig. 10. This theory
should provide conditional functional
explanations.

Brohman et al. (2009) proposed a de-
sign theory for strategic network-based
customer service systems. The require-
ment involves deciding which services to
deliver to a customer base where each
and every customer may seem to want
distinctly different services. This require-
ment explains why, for efficiency, ven-
dors need to find a set of services that
have value to the largest possible group
of customers, without driving them out
of the customer network to other ven-
dors. Accordingly, the design solution in-
volves a process of discovering the ideal
set of services for a customer network.
In this paper, we find an explanatory de-

278 Business & Information Systems Engineering 5|2010



BISE – RESEARCH PAPER

Fig. 10 A design theory for vigilant EIS (Walls et al. 1992) – as explanatory design
theory

Fig. 11 A design theory for strategic network-based customer service – as ex-
planatory design theory

sign theory that is summarized as follows
in Fig. 11. This theory is oriented toward
conditional functional explanations.

Ngai et al. (2009) propose a design
theory for RFID-based healthcare man-
agement systems. The design theory for-

mulates the requirements as a problem
of information errors that endanger pa-
tient safety. These requirements explain
why a general solution is needed that in-
volves using RFID technology as the basis
for patient identification, location, track-
ing, medication/monitoring, and drug
inventory management. In this paper, we
find an explanatory design theory that is
summarized as shown in Fig. 12. This
theory should provide conditional func-
tional explanations.

Stein and Zwass (1995) discuss the
need for more concise organizational
memory support systems, and propose
a design theory. Post-industrial orga-
nizations demand better decision mak-
ing, innovation, and information acqui-
sition/distribution. These three demands
increase the usage of information and
communications technology. Use of such
technology leaves a trace record of or-
ganizational processes, rationale, context,
outcomes, etc. The fundamental require-
ment is the need to organize and ex-
tract these organizational “memories”
from the technology. This requirement
explains why the solution needs an in-
tegrated system that manages organiza-
tional memory. In this paper, we find an
explanatory design theory that is summa-
rized as shown in Fig. 13. This theory is
oriented toward perpetual functional ex-
planations.

Hall et al. (2003) propose a design
theory for learning-oriented knowledge
management systems. Much of the litera-
ture on knowledge management systems
makes explicit conceptual links to organi-
zational learning. But implementation of
knowledge management in information
technology rarely goes beyond manag-
ing the organization’s store of knowledge.
The basic requirement lies in the organi-
zational learning aspect – the expansion
of the store – which needs better treat-
ment. This requirement explains why we
need a system that explicitly supports or-
ganizational learning that expands the
organizations knowledge store. In this
paper, we find an explanatory design the-
ory that is summarized as in Fig. 14. This
theory should provide conditional func-
tional explanations.

Kasper (1996) proposes a design theory
for user calibration in decision support
systems. The requirement is the need
to prevent decision-makers from mis-
calibrations. Decision-makers are most
frequently overconfident about the qual-
ity of their decisions. Such self assess-
ments are typically higher than objective

Business & Information Systems Engineering 5|2010 279



BISE – RESEARCH PAPER

Fig. 12 A design theory for healthcare management with RFIDs – as explanatory
design theory

Fig. 13 A design theory for concise organizational memory support – as explana-
tory design theory

measures. This mis-calibration by deci-
sion makers leads to overconfidence in
the chosen course of action and subse-
quently to disaster. This requirement ex-
plains why a decision support system has
to provide true symbolic representation
to enable the decision maker’s mental
model to be calibrated against reality. In
this paper, we find an explanatory design
theory that is summarized as in Fig. 15.
This theory is oriented toward perpetual
functional explanations.

5 Discussion and Conclusion

Design, design research, and design sci-
ence are of growing prominence in infor-
mation systems. There seems to be an im-
portant need for a more precise and prac-
tical definition of a design theory. The
current notion of design theory, one that
involves a dualist engagement of both de-
sign process and product, limits the ac-
ceptability of design theory as scientific
theory. By separating design theory into
design practice theory and explanatory
design theory, we discover that design
theory harbors a more fundamental, de-
scriptive form of theory that does explain
how design features achieve design re-
quirements in a generalized form.

We have argued that an explanatory de-
sign theory provides functional or teleo-
logical explanations as opposed to pos-
itivist deductive or probabilistic expla-
nations. This functional objective, when
coupled with the constructive role of
these theories, make it less relevant to ex-
pect the theory to deliver the “best” or
the “most optimal” design. Instead the
focus is on satisfying a need or solving
a problem. A better understanding of the
broad value of design theories opens the
need for much further research on the
topic. For example, how do we evalu-
ate explanatory design theories? How can
we ensure that the set of general require-
ments and general components of an ex-
planatory design theory is complete? Is it
sensible to consider evaluating the qual-
ity of a design theory, and if so, what at-
tributes define this quality?

Based on a study of notable design
writings in architecture, patterns and
patlets, organizational design, portfolio
theory, user interface design, and com-
puter science, we have shown that only
two elements are essentially necessary for
a complete design theory. These elements
embody a general design solution to a

280 Business & Information Systems Engineering 5|2010



BISE – RESEARCH PAPER

Fig. 14 A design theory for learning-oriented knowledge management systems
(Hall et al. 2003)

Fig. 15 A design theory for user calibration in DSS – as explanatory design theory

class of problems that relates a set of gen-
eral components to a set of general re-
quirements. In making this reduction we
considered several alternatives. First we
could have kept the notion of kernel the-
ories (Walls et al. 1992, 2004). However,
it is unclear exactly what kernel theories
contribute, and why such separate theo-
ries should be integrated with explana-
tory design theories. This question has
recently been discussed (Hovorka 2010)
and criticized. Another reduction would
involve retaining the distinction between
process and product (Walls et al. 1992).
But such elaborations violate Ockhams
razor. We also considered including the
distinction between constructs, models,
methods, and instantiations (March and
Smith 1995). However, this distinction
does not simplify the theory, but actu-
ally complicates it further. Using such
distinctions means analyzing the differ-
ent types of components for the different
types of requirements.

The simplified explanatory model of a
design theory brings both strengths and
weaknesses when compared with more
elaborate models. For example, com-
pared to Walls et al. (1992), explana-
tory design theory does not enforce the
hypothetico-deductive model of the nat-
ural sciences. Consequently it admits
softer sociological approaches to schol-
arly research. This feature will be seen as a
weakness by some research communities
and as strength by others. The complex
and elaborate design theory definitions
lead scholars to criticize design science
that fails to demonstrate “required” ele-
ments such as testable hypotheses. From
the perspective of explanatory design the-
ory, such demonstrations add unneces-
sarily complex requirements for com-
pleteness. Again – to support our argu-
ment – we draw on Ockham’s Razor (Lid-
well et al. 2003, pp. 142–143); when given
a choice between functionally equiva-
lent designs, the simplest design is pre-

Abstract
Richard Baskerville, Jan Pries-Heje

Explanatory Design Theory

Design, design research, and design
science have received increasing atten-
tion lately. This has led to a more sci-
entific focus on design that then has
made it timely to reconsider our def-
initions of the design theory concept.
Many scholars in Information Systems
assume a design theory requires a com-
plex and elaborate structure. While this
structure has appeal for its complete-
ness and complexity, it has led schol-
ars to criticize simplicity and elegance
in design science theories that fail to
demonstrate the “required” elements.
Such criticisms lead to questions about
whether design theory can be consid-
ered theory at all.

Based on a study of notable design
writing in architecture, finance, man-
agement, cognitive psychology, com-
puter science as well as information
systems and the philosophy of science,
the authors demonstrate that design
theory consists of two parts: a design
practice theory and an explanatory de-
sign theory. An explanatory design the-
ory provides a functional explanation
as to why a solution has certain com-
ponents in terms of the requirements
stated in the design. For explanatory
design theory, only two elements are
essentially necessary for a complete
design theory: requirements and solu-
tion components. The argument is log-
ical as well as empirical; the authors
give examples of design theory draw-
ing from IS as well as other design-
related fields show how design theory
can be both simple and complete. The
paper concludes with a proposal for ex-
planatory design theory.

Keywords: Design theory, Design
science, Design research, Research
method

Business & Information Systems Engineering 5|2010 281



BISE – RESEARCH PAPER

ferred. Ockham’s razor compels the sim-
plest framework for design theory: ex-
planatory design theory.

References

Alexander C (1964) Notes on the synthesis of
form. Harvard University Press, Cambridge

Alexander C, Ishikawa S, Silverstein M, Jacob-
son M, Fiksdahl-King I, Angel S (1977) A pat-
tern language: towns, buildings, construc-
tion. Oxford University Press, New York

Baskerville R, Myers M (2002) Information sys-
tems as a reference discipline. MIS Quar-
terly 26(1):1–14

Brohman M, Piccoli G, Martin P, Zulkernine
F, Parasuraman A, Watson R (2009) A de-
sign theory approach to building strategic
network-based customer service systems.
Decision Sciences 40(3):403–430

Cole R, Purao S, Rossi M, Sein MK (2005) Being
proactive: where action research meets de-
sign research. In: Avison D, Galletta D, De-
Gross JI (eds) Proc 26th international con-
ference on information systems. Associa-
tion for Information Systems, Las Vegas, pp
325–336

Coplien JO, Harrison NB (2005) Organizational
patterns of agile software development.
Pearson Prentice Hall, Upper Saddle River

Dietz JLG (2006) Enterprise ontology: theory
and methodology. Springer, Heidelberg

Gamma E, Helm R, Johnson R, Vlissides
J (1995) Design patterns: elements
of reusable object-oriented software.
Addison-Wesley, Reading

Goldkuhl G (2004) Design theories in informa-
tion systems – a need for multi-grounding.
JITTA: Journal of Information Technology
Theory and Application 6(2):59–72

Goodman N (1955) Fact, fiction, & forecast.
Harvard University Press, Cambridge

Gregor S, Jones D (2007) The anatomy of a de-
sign theory. Journal of the Association for
Information Systems 8(5):312–335

Hall D, Paradice D, Courtney JF (2003) Build-
ing a theoretical foundation for a learning-
oriented knowledge management system.
JITTA: Journal of Information Technology
Theory and Application 5(2):63–84

Hevner AR, March ST, Park J, Ram S (2004)
Design science in information systems re-
search. MIS Quarterly 28(1):75–105

Hooker JN (2004) Is design theory possible?
Journal of Information Technology Theory
and Application 5(2):73–82

Hovorka D (2010) Incommensurability and
multi-paradigm grounding in design sci-
ence research: implications for creating
knowledge. In: Pries-Heje J, Venable J,
Bunker D, Russo NL, DeGross JI (eds) Hu-
man benefit through the diffusion of in-
formation systems design science research.
IFIP AICT, vol 318. Springer, Berlin, pp 13–
27

Järvinen P (2007) Action research is similar
to design science. Quality and Quantity
41(1):37–54

Kasper GM (1996) A theory of decision sup-
port system design for user calibration. In-
formation Systems Research 7(2):215–232

Lidwell W, Holden K, Butler J (2003) Univer-
sal principles of design. Rockport Publish-
ers, Gloucester

March ST, Smith GF (1995) Design and natural
science research on information technol-
ogy. Decision Support Systems 15(4):251–
266

Markowitz HM (1952) Portfolio selection. The
Journal of Finance 7(1):77–91

Markus ML, Majchrzak A, Gasser L (2002) A de-
sign theory for systems that support emer-
gent knowledge processes. MIS Quarterly
26(3):179–212

Mintzberg H (1980) Structure in 5’s: a synthe-
sis of the research on organization design.
Management Science 26(3):322–341

Mintzberg H (1983) Structure in fives: design-
ing effective organizations. Prentice Hall,
Englewood Cliffs

Nagel E (1961) The structure of science: prob-
lems in scientific explanation. Routledge &
Kegan, London

Ngai E, Poon J, Suk F, Ng C (2009) Design
of an RFID-based healthcare management

system using an information system de-
sign theory. Information Systems Frontiers
11(4):405–417

Norman DA (1988) The design of everyday
things, 2002nd edn. Basic Books, New York

Ockham W (1964) Philosophical writings:
a selection. Translated by Boettner P.
Bobbs-Merril, Indianapolis

Orlikowski WJ, Iacono CS (2001) Research
commentary: desperately seeking “IT” in IT
research – a call to theorizing the IT artifact.
Information Systems Research 12(2):121–
134

Parnas DL, Clements PC (1986) A rational
design process: how and why to fake it.
IEEE Transactions on Software Engineering
12(2):251–257

Simon HA (1996) The sciences of the artificial,
3rd edn. MIT Press, Cambridge

Stein EW Zwass V (1995) Actualizing organi-
zational memory with information systems.
Information Systems Research 6(2):85–117

Sutton RI, Staw BM (1995) What theory
is not. Administrative Science Quarterly
40(3):371–384

van Aken JE (2004) Management research
based on the paradigm of the design
sciences: the quest for field-tested and
grounded technological rules. The Journal
of Management Studies 41(2):219–246

Walls JG, Widmeyer GR, El Sawy OA (1992)
Building an information system design the-
ory for vigilant EIS. Information Systems Re-
search 3(1):36–59

Walls JG, Widmeyer GR, El Sawy OA (2004) As-
sessing information system design theory
in perspective: how useful was our 1992
initial rendition? JITTA: Journal of Informa-
tion Technology Theory and Application
6(2):43–58

Walmsley J (2000) The development of Lock-
ean abstraction. British Journal for the His-
tory of Philosophy 8(3):395–418

Wehmeier S (ed) (2000) Oxford advanced
learner’s dictionary, 6th edn. Oxford Uni-
versity Press, Oxford

Weick KE (1995) What theory is not, theo-
rizing is. Administrative Science Quarterly
40(3):385–390

282 Business & Information Systems Engineering 5|2010


	Explanatory Design Theory
	Introduction
	Design Theory
	Assumed Characteristics of Design Theory
	Issues in Design Theory
	Explanations in Science and Design Science
	Partitioning Design Theory
	Describing Explanatory Design Theory
	Explanatory and Constructive Design Theory
	Generalizability of Explanatory Design Theory

	Explanatory Design Theories in Reference Disciplines
	Patterns
	Faking a Rational Design Process
	Portfolio Theory
	Organizational Structure
	The Design of Everyday Things

	Information Systems Explanatory Design Theories
	Discussion and Conclusion
	Abstract
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


