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Abstract In this work, a conventional HfO2 gate dielec-

tric layer is replaced with a 3-nm ferroelectric (Fe) HZO

layer in the gate stacks of advanced fin field-effect tran-

sistors (FinFETs). Fe-induced characteristics, e.g., negative

drain induced barrier lowering (N-DIBL) and negative

differential resistance (NDR), are clearly observed for both

p- and n-type HZO-based FinFETs. These characteristics

are attributed to the enhanced ferroelectricity of the 3-nm

hafnium zirconium oxide (HZO) film, caused by Al doping

from the TiAlC capping layer. This mechanism is verified

for capacitors with structures similar to the FinFETs.

Owing to the enhanced ferroelectricity and N-DIBL phe-

nomenon, the drain current (IDS) of the HZO-FinFETs is

greater than that of HfO2-FinFETs and obtained at a lower

operating voltage. Accordingly, circuits based on HZO-

FinFET achieve higher performance than those based on

HfO2-FinFET at a low voltage drain (VDD), which indicates

the application feasibility of the HZO-FinFETs in the ultra-

low power integrated circuits.

Keywords FinFET; Ferroelectric; Hafnium zirconium

oxide; Subthreshold swing; Low power

Introduction

Ferroelectric field-effect transistors (FeFETs) have the

potential to achieve super-steep subthreshold swing (SS) or

high driving currents suitable for ultra-low power con-

sumption due to Fe dielectric layer induced negative

capacitance and a high dielectric constant [1–4]. The most

readily available Si complementary metal oxide semicon-

ductor (CMOS)-compatible field-effect (FE) material is

HfxZr1-xO2 (HZO), which has robust ferroelectricity and

can be formed into thin films (\ 20 nm), which may ben-

efit scaling down of CMOS [5–7].

Recently, experimental evidence of performance

enhancement and typical FE-induced characteristics, e.g.,

negative drain induced barrier lowering (N-DIBL), nega-

tive differential resistance (NDR), sub-60 mV�dec-1 of

SSs, and improved on-state current have been reported for

devices with thick HZO layers [8–13]. However, most

typical characteristics are not obvious in advanced tech-

nology node logic devices based on ultra-thin HZO films in

gate stacks, due to the weak ferroelectricity of thinner

films. This effect has obstructed further exploration of

super steep SS technology applied to advanced technology

nodes [14–18]. Furthermore, although many experimental

devices with HZO dielectrics have been reported, circuits

based on FeFETs have rarely been demonstrated, and may

yield improved performances on a circuit level [19–21].
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In this work, ferroelectric fin field-effect transistors (Fe

FinFETs) and circuits using the main-stream ‘‘gate-last

process’’ were fabricated with integration of a 3 nm ultra-

thin HZO layer into the gate stacks. The enhanced ferro-

electricity of the 3 nm HZO film caused by Al doping from

the TiAlC capping layer contributed to obvious perfor-

mance improvements in Fe FinFETs-based CMOS devices

and circuits.

Experimental

The process flow that was used to fabricate FinFET devices

and circuits with HZO and HfO2 is illustrated in Fig. 1a.

This basic process is similar to that used for developing n-

and p-type devices on separate wafers [22, 23]. The Fin-

FETs featuring a replacement metal gate were developed

on the 200-mm Si (100) wafers. Initially, a self-aligned

spacer image transfer technique was employed to pattern

the fin morphology. Subsequently, standard procedures for

punch-through stop doping (PTSD) and fin shallow trench

isolation (STI) were adopted. Dummy gates constructed

from amorphous silicon were fabricated using direct-write

electron beam and dry etching techniques. After procedures

for dummy gate planarization and removal had been car-

ried out, atomic layer deposition (ALD) was applied to

produce dual-work-function metal gates, which were used

to set the threshold voltages (VT) of the n- and p-type FETs

after fabrication of the interfacial layer (IL) and high-k

dielectric layer. The diagrams in Fig. 1b demonstrate the

intricate layered films of the n- and p-type devices. The

uniform 3 nm thick HZO and HfO2 dielectric layers were

produced through alternate incorporation of organic pre-

cursors based on Hf or Zr. The device contact processes for

the source and drain (SD) W-plug and gate were applied to

form the contact holes. Forming gas annealing (FGA) at

450 �C for 30 min was applied to the Al electrode of both

devices with HZO crystallization.

Transmission electron microscope (TEM) imaging was

used to examine the cross-sectional profiles of FinFETs.

The electrical characterization was conducted using semi-

conductor parameter analyzers Keithley 4200 and Agilent

4156 C.

Results and discussion

Ferroelectricity enhancement of 3 nm HZO film

Figure 1c–e shows a schematic diagram, TEM images (cut

across AA0), and energy dispersive X-ray spectroscopy

(EDX) mappings of HZO-based FinFETs, respectively.

Figure 1d shows that the fin had a top thickness of 4 nm

and a height of approximately 70 nm. The interfacial layer

(IL) and HZO layers were 1 and 3 nm thick, respectively,

which gave superior gate control over the channel. Fig-

ure 1e shows the elements distribution of a p-type device,

revealing the conformal work function metal layers around

the entire 3D fins channel. Hf and Zr atoms concentrated in

the medium layer, but Al diffused into the adjacent layers.

Fig. 1 a Fabrication process of FinFETs with a FE film replacing metal gate; b detailed gate stack layers of n- and p-type FET;
c schematic diagram, d TEM image and e EDX mapping images of a p-FinFET with 3-nm HZO
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To verify the elemental diffusion, the distribution of the

elements in the devices is shown in Fig. 2a. Elemental line

scans (along BB0 in Fig. 1d) indicate obvious diffusion of

Al into the TiN layer to form Al-doped TiN due to the

strong diffuse tendency of Al atoms (especially considering

the annealing process at 450 �C).
Figure 2b shows positive-up-negative-down (PUND)

results measured using a voltage pulse (1 V, 50 ls) on an

HZO-based capacitor with a similar structure to the gate

stacks of the HZO-based FinFETs. The polarization

switching current (Ips) and the non-switching current (Ins),

which was measured during the application of the second

voltage pulse, constitute the transient current (Is) arising

from the application of the first voltage pulse [24]. By

integrating the Ips signal, which is the difference between Is
and Ins, the remnant polarization values are obtained.

Accordingly, a comparison of the capacitances based on

3 nm HZO with Al-doped TiN and TiN electrodes is

identified, as shown in Fig. 2c. Compared with the capac-

itance of the device with a TiN electrode, an improvement

in the Pr value of approximately 20% was obtained with

the Al-doped TiN electrode. Figure 2d shows XRD pat-

terns of the 3 nm HZO films with Al-doped TiN and TiN

capping layers. The orthorhombic phase was confirmed in

both films. Furthermore, consistent with the PUND results,

for the Al-doped TiN capping layers, the (111) peak was

sharp and intense, indicating good crystallinity and chem-

ical ordering [25–27]. This result is mainly attributed to the

presence of AlOx at the interface that may facilitate HZO

film crystallization, as shown in Fig. 2e, and has also been

reported for other elemental oxides [28–30].

HZO-based devices results

The electrical characteristics of the FinFETs with 3-nm

HfO and HZO were subsequently investigated. Figure 3a, c

shows the transfer curves of both types of CMOS FinFETs

at VDS of |100| mV (LIN) and |800| mV (SAT), respec-

tively. Unlike the devices based on HfO2 as the dielectric

layer, an obvious N-DIBL phenomenon was observed for

the FinFET with 3-nm HZO due to its enhanced ferro-

electricity. Importantly, owing to the N-DIBL effect, the

IDS in the subthreshold region of the HZO-based devices

was much larger than that of the FinFETs with HfO2.

To investigate the N-DIBL effects further, dual-sweep

IDS-VGS curves were obtained over a range of VDS, and the

Fig. 2 a Corresponding line scan for N, Al, Ti and Zr, respectively; b PUND results of current signals of HZO-based capacitor with Al-
doped TiN; c comparison of Pr from capacitors with HZO/Al-TiN, HZO/TiN, and HfO/TiN; d XRD patterns of samples with and without
Al-doped TiN; e schematic diagram of interactions between HZO films and Al-doped TiN and TiN capping layers
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extracted VT values for p- and n-type HZO-based FinFETs

at various VDS biases are shown in Fig. 3b, d, respectively.

The values of the VT@FOR and VT@REV decreased (in-

creased) as VDS steadily increased for p-type (n-type)

HZO-based FinFET, indicating the presence of the

N-DIBL over almost the whole VDS range. In addition, the

hysteresis (defined as VT@FOR - VT@REV) was negligible

and very stable. Specifically, the hysteresis was

stable at * 90 and * 110 mV for the n- and p-type HZO-

based FinFETs with different VDS, respectively, which was

much smaller than values of previously reported devices

[21]. Furthermore, a clear negative differential resistance

(NDR) stemming from the N-DIBL effect was also

observed in the output curves of HZO-based CMOS devi-

ces (Fig. 3e, f for n- and p-type devices, respectively). In

addition, the NDR phenomenon became more obvious at

higher VGS, which was consistent with the conclusions of

previous theoretical predictions [9, 10]. The extracted dif-

ferential resistance, defined as GDS, as a function of VDS

curves is illustrated in Fig. 3g, h, indicating that HZO-

FinFETs with 3 nm ultra-thin HZO have a negative GDS.

Specifically, for the p-type HZO-FinFET shown in Fig. 3g,

when VGS is less than - 0.5 V, a low negative GDS occurs.

As VGS increases to - 0.6 V, partial GDS values change

from positive to negative. Notably, unlike the smooth GDS–

VDS curves previously reported [9, 10], the GDS values

appeared to fluctuate around 0 at higher VGS, which might

indicate that the NC effect in this work was dynamic rather

than static as previously reported [31–32]. Figure 3h shows

that as VGS increases to 0.9 V, the partial GDS values also

change from positive to negative in n-type devices which is

consistent with the behavior of a p-type transistor.

Figure 4a shows the distribution of DIBLs for the HZO-

based and HfO-based FinFETs over 60 devices. There are

few N-DIBL characteristics for FinFETs based on con-

ventional HfO2 films. However, The N-DIBL phenomenon

was observed for almost all HZO-based FinFETs, indicat-

ing good uniformity and stability of the devices. The

median values of DIBLs were - 0.003 and 0.012 V for

HZO- and HfO2-FinFET devices, respectively. In addition

Fig. 3 a IDS-VGS curves of p-type HZO-based FinFET at various VDS; b extracted VT as a function of IDS of device in a; c IDS-VGS

curves of n-type HZO-based FinFET at various VDS; d extracted VT as a function of IDS of device in c; measured IDS-VDS curves and
NDR phenomenon of e n-type and f p-type FinFETs with 3-nm HZO; g, h extracted GDS as a function of VDS under various VGS for p-
and n-type HZO-based FinFETs in e, f
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to N-DIBL and NDR, the ferroelectric effect was also

reflected in the improved SS, as shown in Fig. 4b.

Although the SSs of FinFETs with a 3 nm ultra-thin HZO

layer did not exceed the limit of 60 mV�dec-1, the sub-

threshold voltage switching characteristics of HfO2-based

FinFETs were improved compared with those of the HfO2-

FinFETs. The SS distribution in Fig. 4b indicates that the

median SS was approximately 67.5 mV�dec-1 for the

HZO-based FinFETs and 79.7 for the HfO2-based FinFETs

mV�dec-1. Therefore, a decrease in the average SS of

*12.2 mV�dec-1 was achieved for the Fe FinFETs.

Figure 4c, d shows ION-IOFF distributions of HZO- and

HfO2-based FinFETs at 0.8 and 0.4 V VDD, respectively.

The performance of the two types of devices was almost

the same when VDD = 0.8 V. However, when VDS was

decreased to 0.4 V, the off-current of the HZO-based

FinFET decreased by an order of magnitude compared to

that of the FinFET with a 3-nm HZO at the same level of

on-current. This result is attributed to the obvious FE

effects.

HZO-based FinFET circuits results

Figure 5a shows typical voltage transfer curves (VTC) of

HZO- and HfO-based FinFETs CMOS inverters in a series

of supply voltages. The maximum voltage gain of the two

CMOS inverters exhibited little difference under high

supply voltages. However, the voltage gain of the HZO-

based FinFET inverter was greater than that of the con-

trolled inverter when the supply voltage was lower than

0.6 V, which might have been caused by the higher IDS at

lower VDDs due to N-DIBL phenomenon (Fig. 5b). These

characteristics indicate the potential for the application of

these devices in low-power integrated circuits. Addition-

ally, Fig. 5d shows the output waveforms of 55-stage ring

oscillators (ROs, Fig. 5c) for the HZO- and HfO-based

FinFETs. The oscillation frequencies of the HfO-based and

HZO-based FinFETs were 178 and 222 kHz, respectively.

Owing to the performance of the HZO-based FinFETs, a

19.9% increase in oscillation frequency and a 16% reduc-

tion in delay per stage were achieved for the HZO-based

Fig. 4 a Distribution of DIBL values of HZO-based FinFETs and HfO2-based FinFETs; b distribution of SS values of HZO-based
FinFET and control FinFET; c Ion-Ioff mappings for HZO-based FinFET and HfO2-based FinFET at VDS = 0.8 V; d Ion-Ioff mappings for
HZO-based FinFET and HfO2-based FinFET at VDS = 0.4 V
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FinFET circuits compared with those of circuits based on

FinFET with 3 nm HZOs.

Conclusion

The ferroelectricity of ultra-thin 3-nm Hf0.5Zr0.5O2 film is

increased by our proposed approach that involves the use

of an Al-doped TiN electrode. The CMOS HZO-based

FinFETs with Al-doped stacks show clear N-DIBL and

NDR characteristics. Furthermore, the IDS values of HZO-

based FinFETs were improved compared with those of a

FinFET with 3 nm HfO2. Enhanced performance (i.e.,

higher gain of inverters at low VDD) was also confirmed in

circuits based on HZO-based FinFETs, demonstrating the

feasibility of these devices in ultra-low power applications.
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