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Abstract Owing to their high performance and earth

abundance, copper sulfides (Cu2-xS) have attracted wide

attention as a promising medium-temperature thermoelec-

tric material. Nanostructure and grain-boundary engineer-

ing are explored to tune the electrical transport and phonon

scattering of Cu2-xS based on the liquid-like copper ion.

Here multiscale architecture-engineered Cu2-xS are fabri-

cated by a room-temperature wet chemical synthesis

combining mechanical mixing and spark plasma sintering.

The observed electrical conductivity in the multiscale

architecture-engineered Cu2-xS is four times as much as

that of the Cu2-xS sample at 800 K, which is attributed to

the potential energy filtering effect at the new grain

boundaries. Moreover, the multiscale architecture in the

sintered Cu2-xS increases phonon scattering and results in

a reduced lattice thermal conductivity of 0.2 W�m-1�K-1

and figure of merit (zT) of 1.0 at 800 K. Such a zT value is

one of the record values in copper sulfide produced by

chemical synthesis. These results suggest that the intro-

duction of nanostructure and formation of new interface are

effective strategies for the enhancement of thermoelectric

material properties.
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1 Introduction

Thermoelectric (TE) technology, which can directly con-

vert waste heat into useful electricity, plays a crucial part in

a global sustainable energy solution for the environmental

contamination and energy crisis [1–3]. The efficiency of

TE devices is dominated by the performance of selected TE

material, which is indexed by the dimensionless figure of

merit (zT) = S2rT/j, where S, r, T, and j are the Seebeck

coefficient, electrical conductivity, absolute temperature,

and thermal conductivity, respectively [4–6]. To approach

high TE device efficiency, materials with high zT values

are desired [7, 8]. A good TE material should simultane-

ously have a large S as semi-conductors, a high r as metals,

and a low j as glasses [9–11]. However, these three TE

parameters are synergistic with each other. It is hard to

combine all these features in a single material [12].

Specifically, r and S can hardly increase simultaneously as

these two parameters are coupled via carrier concentration
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[13, 14]. Besides, the reduction of j often degrades the

carrier mobility and thus r [15–17]. Conflicts between

these properties impede the limitless enhancement of zT,

where a compromise is necessary to optimize zT.

Copper sulfides were identified as a promising TE

material since 1827 [18–20]. With low j and high TE

performance, copper sulfides attract extensive research

interest [21–27]. Currently, the field of copper sulfides is

mainly focusing on the reduction of j by designing

intrinsically low-dimensional crystalline structures and on

the increase of power factor (PF = S2r) by enhancing

electron transport properties [28, 29]. Cubic copper sulfide

with liquid Cu-ion has intrinsic low lattice thermal con-

ductivity (jL) in high-temperature regions [30, 31], which

is the main reason for intrinsically low jL of copper sul-

fides [32, 33]. For example, an extremely low jL below

0.35 W�m-1�K-1 and a high zT of 1.7 at 1000 K has been

reported in Cu2-xS [34]. Besides, Fe dopants remarkably

decrease j without compromising PF, leading to improved

zT of 0.8 at 750 K for Cu1.80Fe0.048S, which is about three

times that of Cu1.80S [35]. In the aspect of enhancing PF,

electron transport abilities play a key role, which can be

achieved by tuning the compositions in copper sulfide

compound, such as doping, hybridization, and designing

mosaic architecture [36–41]. It was demonstrated that Na-

doped Cu9S5 shows remarkable low j ranging from 0.68 to

2.3 W�m-1�K-1 due to the weak-binding copper ions in the

quasi-molten state, where Na0.01Cu9S5 eventually achieves

a zT value of 1.1 at 773 K [36]. Se doping was reported to

enhance PF of Cu2S by modifying the band structure and a

peak zT value of 0.74 was achieved at 723 K in

Cu2S0.9Se0.1, which is 131% higher than that (zT value of

0.32) of the pristine Cu2S [37]. Hybridizing the three-

dimensional interface structure of graphene and Cu2-xS

can enlarge S. Experiments show that a high zT value

and PF reached 1.56 and 1197 lW�m-1�K-2 at 873 K

in 0.75 wt% G/Cu2-xS sample [38]. A designed mosaic

nanostructured Cu2S0.52Te0.48 shows multiform effects

to tune TE properties, where electrons are freely

transferred within the quasi-single crystal structural

frames while phonons are strongly scattered by lattice

strains or interfaces [39]. The optimization of the

electron and phonon transport is simultaneously pro-

moted to reach a peak zT value of 2.1 at 1000 K in

mosaic nanostructured Cu2S0.52Te0.48. It should be

mentioned that controlling and fine-tuning of the

mesoscale architectures in nanostructured TE materials

can scatter heat-carrying phonons with long mean free

paths, leading to the maximum reduction of jL [42].

This motivates us to design the multiscale architectures

in copper sulfides by simultaneously employing nanos-

tructure engineering and grain-boundary engineering.

Moreover, it is still necessary to explore low-cost and

practical strategies to achieve the reduction of jL and

enhancement of PF, simultaneously.

In this work, the micro- and nano-Cu2-xS particles are

fabricated by an ambient wet chemical method. The mul-

tiscale architecture-engineered Cu2-xS is prepared by

mechanical mixing of these two kinds of particles and

spark plasma sintered (SPS) into pellets. The obvious

increase of r in the multiscale architecture-engineered

Cu2-xS is by 4 times than that of the micro-Cu2-xS at

800 K due to the formation of new grain boundaries and

carrier mobility. The jL (below 0.5 W�m-1�K-1) of mul-

tiscale architecture-engineered Cu2-xS is secured by

nanoparticles in the multiscale architecture inducing pho-

non scattering. A zT value of 1.0 has been achieved at

800 K in the multiscale architecture-engineered Cu2-xS,

revealing that the design of multiscale architectures

improves the TE performance of Cu2-xS.

2 Experimental

2.1 Chemicals

Chemical reagents, including Cu nano-powder (25 nm,

C 99.5%), S powder (C 99.5%), 2-Mercaptoethanol

(C 99.0%), and hydrazine solution (35 wt%), were ordered

from Sigma-Aldrich. Cu powder (250–300 mesh,

C 99.7%), NaOH (C 96.0%), and anhydrous ethanol were

ordered from Sinopharm Chemical Reagent Co., Ltd.

2.2 Synthesis of micro-/nano-Cu2-xS particles

In a typical synthesis [43, 44], 7.626 g (0.12 mol) Cu

micro-powder or Cu nano-powder, 3.848 g (0.12 mol) S

powder, and 200 ml of anhydrous ethanol were added into

a 500-ml beaker. Then 25.2 ml (0.36 mol) of 2-mercap-

toethanol and 2 ml of NaOH (7 mol�L-1) were added into

the beaker with gentle stirring for one day. The formed

dark brown precipitates were separated from the solution

and redispersed in the hydrazine solution (200 ml) with

stirring for 20 min. The precipitates were filtered, purified

with distilled water and ethanol several times, and dried at

50 �C in oven.

2.3 Synthesis of multiscale architecture-engineered

Cu2-xS

The micro- and nano-Cu2-xS particles with the ratios of

a to b (a:b = 3:1, 1:1, 1:3) were mixed by mechanical

mixing. Then the mixture particles were annealed under

Ar/H2 atmosphere at 700 �C (10 �C�min-1) for 2 h. After

ground, the mixture particles were sintered by SPS at

420 �C for 5 min in a U12 mm graphite die under 70 MPa.
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To express expediently in the following content, the mul-

tiscale architecture-engineered Cu2-xS with different ratios

of a to b were shortly named M/N-3/1-Cu2-xS, M/N-1/1-

Cu2-xS, and M/N-1/3-Cu2-xS, respectively.

2.4 Characterization

X-ray diffraction (XRD) patterns for all Cu2-xS samples

were detected using Cu Ka radiation (k = 0.15406 nm) by

a Rigaku D/Max-2550 PC diffractometer (Tokyo, Japan).

X-ray photoelectron spectroscopy (XPS) was used to

understand the surface chemical composition of the sam-

ples. Scanning electron microscopy (SEM) and transmis-

sion electron microscopy (TEM) images of all the samples

were collected by a Hitachi S-4800 (Japan) microscope and

a JEOL JEM-2100F microscope, respectively.

2.5 Thermoelectric measurements

The resultant multiscale architecture-engineered Cu2-xS

pellets were cut and polished as cuboids with a size of

*2 mm 9 3 mm 9 10 mm for electrical property mea-

surement and as a disk shape with a diameter of 10 mm and

a thickness of 1 mm for thermal diffusion measurement.

The r and S were measured simultaneously under a He

atmosphere by the ZEM-3 (ULVAC-RIKO, Japan). The

thermal diffusivity (D) was measured using a Netzsch

LFA427 (Germany). The heat capacity (Cp) was measured

using a NETZSCH DSC 204F1 Phoenix. The test tem-

perature ranges from room temperature to 800 K. The

densities (q) were measured by the Archimedes method.

The j was calculated according to the relationship

j = qCpD. The carrier concentration (nH) and carrier

mobility (lH) at room temperature were measured using

the Hall measurement system (Lake Shore 8400).

3 Results and discussion

3.1 Phase and microstructure

Figure 1 illustrates the typical process for fabricating the

multiscale architecture-engineered Cu2-xS, in which the

micro- and nano-Cu2-xS particles with different ratios

were mixed by mechanical mixing and sintered by SPS.

The XRD patterns of as-prepared micro, nano Cu2-xS

particles, and multiscale architecture-engineered Cu2-xS

samples are shown in Fig. 2. The XRD peaks of both as-

prepared micro- and nano-Cu2-xS samples can be well

assigned to the planes of the orthorhombic Cu2S (JCPDS

No. 2–1294). The diffraction peak of the nano Cu2-xS

sample is wider than that of the micro-Cu2-xS sample,

indicating that the particle size of the micro-Cu2-xS sample

is large. After the annealing process, all peaks of the

multiscale architecture-engineered Cu2-xS samples con-

sistent with the standard peaks of the tetragonal Cu1.81S

(JCPDS No. 41–959). An orthorhombic to tetragonal phase

transition in the high-temperature annealing process is the

intrinsic properties of Cu2-xS [45–49]. Further confirma-

tion of this phase transition was determined by measure-

ment of the Cp curve, which has a prominent peak at 373 K

(Figure S1 in Supporting Information). The tetragonal

Fig. 1 Schematic illustration of formation process for multiscale architecture-engineered Cu2-xS

Fig. 2 XRD patterns of as-prepared micro-Cu2-xS and nano Cu2-xS

particles, and annealed multiscale architecture-engineered Cu2-xS

samples
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phase was retained after the SPS process and TE mea-

surements, which were confirmed by XRD results

(Figure S2).

The typical SEM images and low-resolution TEM

images indicate that the micro-Cu2-xS sample is irregular

particles with a rough surface on the micron scale (Fig. 3a,

c), and the nano Cu2-xS sample is agglomerating round

particles with the diameters ranging from 10 to 20 nm

(Fig. 3b, d). The reaction mechanism of Cu2-xS is that Cu

particles are used as sacrificial templates during the

preparation of the micro- and nano-Cu2-xS particles [50].

In the reaction, thiol molecules were directionally adsorbed

on the surface of Cu particles and S molecules were dis-

solved in 2-Mercaptoethanol to form thiosulfide, then Cu/

thiol groups reacted with thiosulfide to finally form

Cu2-xS. Thus the particle size of Cu2-xS is determined by

the size of self-sacrificed Cu template. Employing the

M/N-1/3-Cu2-xS sample as an example, nanoparticles

remained in multiscale architecture-engineered Cu2-xS

(Fig. 3e) after SPS. The high-resolution TEM (HRTEM)

images show the nanoparticles and the interface between

nanoparticles in the M/N-1/3-Cu2-xS sample. The lattice

fringes have a spacing of 1.51 nm (Fig. 3f), which matches

well with the (340) planes of the tetragonal phase Cu2-xS.

The inset fast Fourier transforms (FFT) pattern in Fig. 3f

confirms this tetragonal structure.

Due to the Cu2S is easy to oxidize [45], XPS results

were used to calculate the ratios of Cu with different

valence states in the multiscale architecture-engineered

Cu2-xS samples (Fig. 4). The XPS spectra of Cu 2p

illustrate the presence of both Cu? and Cu2? in these

samples (Fig. 4a). The calculated ratio of Cu?/Cu2?

increases from 8.1, 12.9 to 14.1 as the fraction of

nanoparticles increased indicating a reduced amount of Cu

vacancies. The S 2p peak from S2- is located around

162.0 eV for all three multiscale architecture of Cu2-xS

Fig. 3 SEM images and TEM images of a, c as-prepared micro-Cu2-xS sample and b, d as-prepared nano Cu2-xS sample; e TEM image of

annealed M/N-1/3-Cu2-xS sample; f HRTEM image of annealed M/N-1/3-Cu2-xS sample and (inset) FFT pattern
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Fig. 4 XPS spectra of a Cu 2p and b S 2p of multiscale architecture-engineered Cu2-xS (black asterisks in a marking satellite peak of Cu2?)

Fig. 5 TE properties of micro-Cu2-xS and multiscale architecture-engineered Cu2-xS samples in measured temperature (300–800 K): a r, b S,
c PF, d j, e jL, and f zT
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samples (Fig. 4b). The Cu/S ratios in the multiscale

architecture-engineered Cu2-xS samples were calculated

being 1.82, 1.83, and 1.85 with increasing the fraction of

nanoparticles.

3.2 Thermoelectric properties

The temperature-dependent TE properties of micro-Cu2-xS

and multiscale architecture-engineered Cu2-xS samples are

Table 1 Measured and predicted TE parameters for micro-Cu2-xS and multiscale architecture-engineered Cu2-xS samples

Samples micron Cu2-xS M/N-3/1-Cu2-xS M/N-1/1-Cu2-xS M/N-1/3-Cu2-xS

nH at 300 K/(1020 cm-3) 0.89 2.97 2.53 2.28

lH at 300 K/(cm2�V-1�s-1) 5.95 6.85 7.28 8.28

m* at 800 K/me 1.4197 1.6277 1.4515 0.2833

(zT)max at 800 K 0.91 0.78 0.81 1.00

q/(g�cm-3) 5.13 5.40 5.48 5.50

R/%a 91.6 96.3 97.8 98.2

aWith regard to theoretical density of 5.6 g�cm-3

Fig. 6 a Optimized lH of micro-Cu2-xS and multiscale architecture-engineered Cu2-xS samples in temperature range between 300 and 800 K;

b zT as a function of nH at 800 K, where symbols and solid curves are predicted from SPB model; c r/j ratio of micro-Cu2-xS and multiscale

architecture-engineered Cu2-xS samples in temperature range between 300 and 800 K; d presumed carrier and phonon transport paths in

multiscale architecture-engineered Cu2-xS. Reproduced with permission from Ref. [6]. Copyright 2010, Springer Nature Limited
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shown in Fig. 5. The r values of the multiscale architec-

ture-engineered Cu2-xS are much higher than that of the

micro-Cu2-xS sample in the entire measured temperature

range (Fig. 5a). Specifically, the r value of M/N-1/3-

Cu2-xS sample reaches 4.1 9 104 S�m-1 at 800 K, which

is 4 times higher than that of the micro-Cu2-xS sample. All

samples exhibit positive S with holes as the major charge

carriers due to the formation of Cu ion vacancies. The S of

the multiscale architecture-engineered Cu2-xS samples is

lower than that of the micro-Cu2-xS sample, with the

opposite trend of r curves (Fig. 5b). While PF values of the

multiscale architecture-engineered Cu2-xS samples are

higher than that of the micro-Cu2-xS sample and increase

with temperature rising after 450 K. M/N-1/3-Cu2-xS

sample approaches a high PF value of 961 lW�m-1�K-2 at

800 K (Fig. 5c).

The j values of multiscale architecture-engineered

Cu2-xS samples increase at the low-temperature range and

decrease when the temperature is above 600 K (Fig. 5d).

jL is calculated by jL = j—je, where je is the electronic

thermal conductivity [51]. jL of the M/N-1/3-Cu2-xS

sample prominently minimizes to 0.2 W�m-1�K-1 at

800 K (Fig. 5e). The M/N-1/3-Cu2-xS sample possesses an

improved zT value of 1.0 at 800 K, which is a 9%

enhancement over the micro-Cu2-xS sample at 800 K

(Fig. 5f).

To understand our improved TE performance of the

multiscale architecture-engineered Cu2-xS, the introduc-

tion of nanostructure and the formation of grain boundaries

should be considered. r of the multiscale architecture-

engineered Cu2-xS samples exhibits an obvious increase

comparing to that of the micro-Cu2-xS sample (Fig. 5a).

To understand this phenomenon, nH and lH were measured

at 300 K and further calculated by using a single parabolic

band (SPB) model. The measured nH and lH, the estimated

effective mass m*, and predicted maximum zT of all

samples are listed in Table 1. The predicted lH curves and

the curves of zT in comparison with the experimental

points as a function of nH are shown in Fig. 6a, b,

respectively. The results show that lH of the multiscale

architecture-engineered Cu2-xS samples has been

enhanced rather than nH. According to r = nH�e�lH (where

e is a charge of the electron), the obvious increase of r
should be derived from the enhancement of lH (Fig. 6a)

[28]. The lower m* of the M/N-1/3-Cu2-xS sample leads to

higher lH as well. The r also increases with expending the

fraction of nanoparticles, which is possibly due to the

potential energy filtering effect at the micro/nano bound-

aries [52]. Figure S3 displays that the grain sizes of the

annealed multiscale architecture-engineered Cu2-xS reduce

as the fraction of nanoparticles increasing. The density of

samples has a negligible effect on this result since the

relative densities for all multiscale architecture-engineered

Cu2-xS samples are almost the same, as listed in Table 1.

In Fig. 6b, nH of the M/N-1/3-Cu2-xS sample is closer to

its respective optimum than the micro-Cu2-xS sample,

which is consistent with the particular M/N-1/3-Cu2-xS

sample measured having greater zT value than the micro-

Cu2-xS sample. As shown in Fig. 6c, the r/j ratio of M/N-

1/3-Cu2-xS sample increases at 700–800 K, which means

the reduction of j has more influences than the promotion

of r at this temperature region. The presumed phonon (red)

and carrier (green) transport paths in the multiscale archi-

tecture-engineered Cu2-xS are shown in Fig. 6d. The

nanoparticles in the multiscale architecture enhancing

phonon scattering results in the reduction of jL. The

underlying mechanism is that grain boundaries can scatter

phonons more effectively than carriers [53]. The presently

enhanced zT value at 700–800 K should be mainly attrib-

uted to the reduced jL.

4 Conclusion

In conclusion, the multiscale architecture-engineered

Cu2-xS is fabricated by an optimized ambient wet chemi-

cal method combining mechanical mixing and SPS tech-

nology. The enhanced TE performance derives from the

introduction of nanostructure and the formation of new

grain boundaries. The formation of grain boundaries

induces the potential energy filtering effect leading to an

enhanced r in the multiscale architecture-engineered

Cu2-xS. Nanostructure and small grain sizes enhance

phonon scattering and result in the reduction of jL. The
peak zT value of 1.0 at 800 K can be achieved in the M/N-

1/3-Cu2-xS sample, which is competitive among the

reported Cu2-xS or its composites at the same temperature.

This work indicates our method is low cost and practical

for the preparation of the multiscale architecture-engi-

neered Cu2-xS, which shows high potential for thermo-

electric applications.
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