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Abstract
This paper presents a strategy based on binary labelling of nodes for the creation of 
anti-loop formulations from existing strategies. This strategy prevents by default the 
formation of odd cycles, therefore it can have important role in iterative procedures 
based on generating subtour elimination constraints. It can also be used to modify 
the classic strategies used in problems associated to graphs. In this paper we focus 
on this last application. The behavior of this strategy is analyzed with two problems 
associated with graphs, the Asymmetric Traveling Salesman Problem (ATSP) and 
the Steiner Problem, where two configurations that modify the Miller-Tucking-Zem-
lig proposal to avoid cycles are compared. The experimental analysis shows that this 
strategy keep a good convergence, highlighting its use for the Steiner problem.

Keywords Mathematical programming · Anti-loops formulations · Subtour 
elimination constraints · Travelling salesman problem · Steiner problem

1 Introduction

In this paper, a new strategy for the creation of anti-loop formulations in optimiza-
tion problems associated with graphs, based on binary labelling of nodes, is pre-
sented. In the new formulations presented in this work, the formation of cycles with 
an odd number of nodes is not allowed. This strategy can lead to an improvement in 
the iterative methods that allow the formation of cycles, in addition to allowing the 
existing anti-loop strategies to be reformulated.

When we propose arborescence formulations based on level or sequence rela-
tionships, avoiding the formation of cycles is one of the constraints for obtaining 
a tree from a graph. Also, to obtain a path that visits all the nodes of the graph 
(Hamiltonian circuit) in the case of the traveling salesman problem. In the case 
of trees, the solution must be a connected subgraph where each node connects to 
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a higher level node or parent node, except the node that is defined as root node 
of the tree. In the traveling salesman case, the solution must present a connected 
subgraph with as many edges as nodes, and each node is connected to two nodes 
(one preceding node and one posterior node in the sequence).

The most relevant optimization problems where it is necessary to obtain a tree 
of a graph are the MST problem, the VRP problem and the Steiner problem, and 
all those derived from them.

In general, the outstanding formulations that have been used on graphs to cre-
ate trees or for the traveling salesman problem have been the following:

– Obtain all the cycles [1]: Calculate all the cycles and avoids that all the nodes 
of any cycle are part of the tree (DFJ).

– Cuts: Derived from the previous, it defines that there is at least one edge 
between each pair of complementary node sets.

– Flow sending: Flow sent from a source node to the rest of the nodes of the 
graph imposing the flow conservation restrictions. Different versions: Single 
commodity flow [2], two-commodity flow [3] and multiple-commodity flow 
[4].

– Based on decisions of precedence. Proposed by Sarin et al. [5] for the ATSP 
problem. Formulation also applied in scheduling problems.

– Time Staged Formulations: Arcs are added to the tree or path at each stage or 
period [6].

– Setting depth levels at nodes or sequential formulation. Proposed by Miller 
et al. [7], MTZ from now, and later lifted by Desrochers and Laporte [8], DL 
from now. Other versions such as Sherali and Driscoll [9] and Sawik [10] also 
stand out.

In addition, there are some versions that consider mixed variants of the pre-
vious ones, as appears in Sherali et  al. [11] and Gouveia and Pires [12], where 
the identification of some cycles is incorporated into sequence formulations. 
There are also formulations like Martin [13], in this case for obtaining trees, 
which uses decisions about which part of the path each node is in with respect 
to each selected arc. It is inefficient because it makes use of O(n3) variables and 
constraints.

The Danzig and Cuts strategies turn out to be formulations with little practical 
scope. The exponential growth in the number of constraints, that is, in the number of 
cycles, makes it difficult for us to experimentally analyse these models.

The strategies that have received more practical attention have been the flow for-
mulation and the sequential formulation, the latter being more efficient when solv-
ing larger problems. Both in one and in the other, each edge (i,j) ∈ E becomes in 
two directed arcs, (i,j) and (j,i), to express a concept of direction for the case of 
flow formulations, and a concept of successor/predecessor relationship for sequen-
tial formulations.

Formulation MTZ is based on introducing as a variable the position of each node 
in the sequence (or depth level of each node in the tree):

∀i ∶ ui = Position in the sequence (or depth level in the tree) of node i
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Position 0 is assumed for node 1 (root node) and for the rest of it is imposed as 
a constraint that if we select the arc (i,j), the position of j in the sequence is greater 
than the position of i (at least one more unit). We define the boolean variable xij to 
collect the selection of arcs (i,j) ∈ A.

Mathematically this is expressed by modelling the following logical proposition:

Whose modelling results in:

The proposed modification DL, proposes a formula-
tion based on the modeling of the following logical statement: 
∀i, j = 2...n, i ≠ j ∶ IF xij + xji = 1 THEN ui + xji = uj + xij.

which is developed in García [14] and generates constraints:

DL improves the results of the MTZ formulation because the DL formulation 
integrates into the anti-loop constraint that xij + xji is a binary expression.

On the other hand, solving problems associated with graphs to integer optimality, 
strategies based on obtaining solutions for the previous models have also been used, 
eliminating the anti-loop restrictions. These are iterative processes, where for each 
solution obtained it is calculated whether it has subtours, incorporating the specific 
subtour elimination constraints into the model to avoid these cycles, and solving the 
model again in the next iteration. Model resolutions in this way are quite fast. For 
some applications of these strategies see Aguayo et al. [15], Miliotis [16], Pferschy 
and Stanek [17], Crowder et al. [18] or Bosch [19]. With the technique that we are 
going to introduce in this work, these iterative methods will always avoid the forma-
tion of odd subtours, without the need to introduce new integer variables into the 
model, as will be explained in Sect.  2. These methods are not undertaken in this 
work, but we focus on the study of analysing variations in the MTZ and DL strate-
gies derived from introducing our odd anti-loop constraints.

2  Binary labelling of nodes

Binary labelling of nodes consists of incorporating a boolean variable �i for each 
node i = 2…n, and imposing constraints (3) and (4) whose logical meaning expresses 
that.

“IF xij = 1 THEN �i + �j = 1 “

1 ≤ ui ≤ n − 1

∀i, j = 2...n, i ≠ j ∶ IF xij = 1 THEN ui ≥ uj + 1

(1)∀i, j = 2...n, i ≠ j ∶ ui − uj + (n − 1)xij ≤ n − 2

(2)∀i, j = 2...n, i ≠ j ∶ ui − uj + (n − 3)xij + (n − 1)xji ≤ (n − 2)

(3)∀(i, j) ∶ �i + �j ≤ 2 − xij
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Therefore, when we select the arc (i,j) ∈ A:
xij = 1 ⇒ �i + �j = 1 . The labelling of the two nodes connected by the arc must 

be different.

xij = 0 ⇒ 
�i + �j ≤ 2

�i + �j ≥ 0
 No constraint for �i and �j.

The consequence of this labelling is that the model cannot allow solutions with 
odd loops, as shown in Fig. 1.

The labelling of the root node or initial node (node 1) can be assigned freely. 
This has the consequence that if the constraints of the problem ensure a con-
nected graph, we can consider the labelling variables as continuous, although in 
that case they would not form part of the decision process in the branch&bound 
resolution. Both configurations will be analysed experimentally in the computa-
tional results section.

From previous experiments, it is more efficient to group the constraint associ-
ated with xij and xji in a single formulation:

∀(i, j) ∈ E ∶ IF xij + xji = 1 THEN �i + �j = 1.
Generating:

For the case of the TSP problem, if the number of nodes is odd, since the con-
straints do not apply to node 1, the model would allow a solution that creates the 
Hamiltonian path.

(4)∀(i, j) ∶ �i + �j ≥ xij

(5)�i + �j ≤ 2 − xij − xji

(6)�i + �j ≥ xij + xji

Fig. 1  Nodes loop



1 3

OPSEARCH 

3  Application to classical formulations

To apply binary labelling, we are going to modify the TSP formulations proposed by 
Danzig, Fulkerson, and Johnson, the TSP MTZ formulation, and for tree generation, 
an arborescent formulation of the Steiner problem.

3.1  TSP‑Danzig, Fulkerson, and Johnson

The classic formulation DFJ would go on to consider only the calculation of even 
cycles. Odd cycles cannot occur.

For a directed graph G(N,A) from the undirected graph G(N,E) and given the set 
of decision variables,

xij = 1 if the directed arc (i,j) is selected; 0 otherwise. (i,j) ∈ A.
The TSP would be as follows:

With (10) partial even cycles are not allowed. (11) and (12) express the binary 
labelling. (13) assigns the label to the first node, hence we would allow the variables 
of the binary label to be relaxed, that is, we do not need to use binary variables to 
prevent odd cycles.

(7)Min
∑

(i,j)∈A

cijxij

(8)
s.t.

∀j ∈ N ∶
∑

i∕(i,j)∈A

xij = 1

(9)∀i ∈ N ∶
∑

j∕(i,j)∈A

xij = 1

(10)∀S∕S ⊂ N, |S| ≥ 2, |S|even ∶
∑

i,j∈S&(i,j)∈A

xij ≤ |S| − 1

(11)∀(i, j) ∈ E, i ≠ 1 ∶ �i + �j ≤ 2 − xij − xji

(12)∀(i, j) ∈ E, i ≠ 1 ∶ �i + �j ≥ xij + xji

(13)�1 = 1

∀(i, j) ∈ A ∶ xij ∈ {0, 1}

∀i ∈ N, i > 1 ∶ 𝛿i ≤ 1
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3.2  TSP‑Miller, Tucker, and Zemlin

When we introduce binary labelling in the MTZ formulation, the number of posi-
tions can be halved. We transform the MTZ proposition into the following:

Hence, the positions are sequenced as shown in Fig. 2.
Therefore the upper bound of variables ui becomes 

⌈

n

2

⌉

− 1 , and the modeling 
of (14) is as:

The complete resulting model would be:

(14)∀i, j = 2...n, i ≠ j ∶ IF xij = 1 THEN ui ≥ uj + �j

∀i = 2...n ∶ ui ≥ 0

∀i = 2...n ∶ ui ≤
⌈

n

2

⌉

− 1

∀i, j ∈ N, i > 1, j > 1, i ≠ j ∶ ui − uj + (
⌈

n

2

⌉

− 1)xij ≤
⌈

n

2

⌉

− 1 − 𝛿j

(15)

Min
∑

(i,j)∈A

cijxij

s.t. ∀j ∈ N ∶
∑

i∕(i,j)∈A

xij = 1

∀i ∈ N ∶
∑

j∕(i,j)∈A

xij = 1

∀i, j ∈ N, i > 1, j > 1, i ≠ j ∶ ui − uj + (
�

n

2

�

− 1)xij ≤
�

n

2

�

− 1 − 𝛿j

(16)
∀i, j ∈ N, i > 1, j > 1, i ≠ j ∶ 𝛿i + 𝛿j ≤ 2 − xij − xji

∀i, j ∈ N, i > 1, j > 1, i ≠ j ∶ 𝛿i + 𝛿j ≥ xij + xji

(17)�1 = 1

(18)∀i ∈ N, i > 1 ∶ 0 ≤ ni ≤
⌈

n

2

⌉

− 1

∀ i, j ∈ N, i ≠ j ∶ xij ∈ {0, 1}

∀ i ∈ N, i > 1 ∶ 𝛿i ≤ 1
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Fig. 2  Sequence of positions 
with binary labelling
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3.3  Steiner problem in graphs

In an equivalent way, we are going to analyse a tree formulation of Steiner’s prob-
lem, collected in Khoury, Pardalos, and Du [20]. The model includes the MTZ 
constraints.

Given a directed graph G(N,A) where are defined as data:
∀j ∈ N ∶ Tj = 1 if i is Terminal node; 0 is Steiner node.
∀(i, j) ∈ A ∶ cij = Cost of selecting arc (i,j).
And the following variables:
∀(i, j) ∈ A ∶ xij = 1 if arc (i,j) is selected; 0 otherwise;
The common formulation without introducing anti-loop constraints is as follows:

 (19) Every terminal node, except the root node, has a parent node.
 (20) Connectivity of the Steiner nodes used. If a Steiner node acts as a parent of a 

node, then it must be connected to another node.

This formulation would only need to prohibit the formation of subtours. The orig-
inal model incorporates the MTZ constraints. In our case we incorporate the same 
constraints incorporated to the TSP problem, constraints (15), (16), (17) and (18).

4  Computational results

For the analysis of the formulations we have executed the following formulations 
both for the ATSP to a battery of problems collected in TSLIB, as well as for a set 
of existing Steiner problems in the same library:

– MTZ: Incorporates anti-loop constraints (1)
– MTZBL: Binary labelling. Incorporates constraints (10).
– MTZRBL: Relaxing binary labelling. Incorporates constraints (10), relaxing 

variables �i.

Experiments were performed on an Intel(R) Core(TM) i7-10700  K CPU @ 
3.80GH and 16  Gb RAM. The optimization library used was CPLEX v22.1.0, 
widely used in computational analysis of mathematical models [21, 22] and [21, 
22]).

s.t. Min
∑

(i,j)∈A

cijxij

(19)∀i∕Ti = 1&i ≠ R ∶
∑

j∕(i,j)∈A

xij = 1

(20)∀i∕Ti = 0, j∕(j, i) ∈ A ∶ xji ≤
∑

k∕(i,k)∈A

xik
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4.1  Results for ATSP

Table 1 shows a comparison of the solutions of the relaxed linear problem of each 
model. It is shown that MTZ presents the worst values. MTZBL presents an average 
lower bound improvement of 5.9%.

Table 2 presents the results of the execution of the models up to a maximum of 
300 s. CPU time presents the time until the completion of the branch&bound resolu-
tion (LB = UB) or the best solution found  (ZIP) in the case of not completing after 

Table 1  Comparison of the LP 
relaxation bound for the ATSP

Problem Cities Opt MTZ MTZBL

br17 17 39 2,25 18
ftv33 34 1286 1187,73 1215.3
ftv35 36 1473 1382,89 1411,5
ftv38 39 1530 1440,21 1476.10
p43 43 5620 149,714 184
ftv44 45 1613 1523,4 1569,75
ftv47 48 1776 1655,82 1725,44
ry48p 48 14,422 12,564,70 13,809,07
ft53 53 6905 5935,38 6010,51
ftv55 56 1608 1438,29 1510,73
ftv64 65 1839 1722,89 1761,00
ft70 70 38,673 37,987,40 38,107,46

Table 2  CPU time for branch & bound (aborted after 300 s run) for the ATSP

Bold values indicate the best result

Problem Cities Opt MTZ MTZBL MTZRBL

ZIP CPU time (sec) ZIP CPU time (sec) ZIP CPU time (sec)

br17 17 39 0.06 0.36 0.89
ftv33 34 1286 0.34 0.36 0.39
ftv35 36 1473 0.36 0.67 0.55
ftv38 39 1530 0.47 0.44 0.73
p43 43 5620 5622 300 5622 300 5620 300
ftv44 45 1613 0.92 1.22 0.8
ftv47 48 1776 1.42 4.34 3.47
ry48p 48 14,422 5.31 14.09 9.33
ft53 53 6905 0.89 2.3 2.69
ftv55 56 1608 1.63 2.45 3.81
ftv64 65 1839 5.33 13.56 13.83
ft70 70 38,673 38,673 300 38,673 300 38,673 300
ftv70 70 1950 6.34 15.67 20.02
kro124p 124 36,230 7.64 52.14 31.55
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300 s. The MTZBL strategy has a slightly longer time than MTZ strategies. In gen-
eral, all formulations have difficulty as the problem size increases (increase in the 
computational time). And this is emphasized more in the binary labeling strategies, 
since the size of the problem increases with respect to the MTZ strategy in n vari-
ables and 2n constraints, with n the number of nodes.

The three strategies do not end the B & B on 2 occasions out of 14 problems. 
MTZRBL was the only strategy achieving all the optimal solutions.

Regarding the comparison between MTZBL and MTZRBL, the results are very 
similar, on 7 test cases MTZBL was better and on 6 it was MTZRBL.

4.2  Results for the Steiner problem

In the case of the Steiner problem, the LP relaxation follows a trend similar to the 
ATSP problem. MTZ gets a slightly lower value. The results obtained are presented 
in Tables  3 and 4. In Table  3 we show the SteinC problems (problems with 500 
nodes), whereas in Table  4 are shown the results for the SteinD problems (1000 
nodes). We test each problem with a maximum of 300 s.

In the case of completing 300 s without finishing the brach&bound, we show in 
 ZIP the best solution found.

In the case of the Steiner problem, the results of the continuous labelling are 
always better than those of the integer label. MTZRBL was also better than the MTZ 
strategy on seven SteinC problems and five SteinD problems. In general, the binary 
labelling strategy shows better behaviour when the percentage of terminal nodes is 
low.

5  Conclusions

We have proposed in this paper a new strategy to formulate anti-loop constraints, 
avoiding odd loops. The experimentation carried out shows the best performance for 
the binary labelling is its relaxation, which keeps integrity of the solution. Although 
better global results are achieved for the MTZ strategy, the relaxing binary labelling 
does have a good convergence and in some problems it improves the results of the 
MTZ. For the Steiner problem the results are better than the MTZ formulation in 12 
problems over 35.

On other hand, this strategy can provide new ideas for the design of algorithms 
and models in problems related to graphs when iterative strategies are proposed 
based on generating subtour elimination constraints.
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