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Abstract
Pairwise comparisons matrix with fuzzy elements (FPCM) are appropriate for 
the decision makers who are uncertain about the relative importance of elements. 
We can primarily find them in Fuzzy Analytic Hierarchy Process, PROMETHEE, 
TOPSIS methods, and many exact and heuristic algorithms. They are also useful in 
aggregating pairwise comparisons, particularly in consensus group decision making 
problems and they form the basis for many decision-making models as intuitionistic 
fuzzy relations, pythagorean, q-rung orthopair fuzzy preference relations, hesitant 
or interval fuzzy sets, and also stochastic judgments. Here, the decision model is 
formulated by investigating pairwise comparisons matrices (PCMs) with elements 
from abelian linearly ordered group (alo-group), which enables unifying multipli-
cative, additive and fuzzy PCMs. Then we define a novel concept of consistency, 
coherence and intensity of FPCMs, and propose a number of optimization methods 
for finding a consistent vector, coherent vector and intensity vector of a FPCM satis-
fying the desirable properties. Finally, two illustrating examples are discussed.

Keywords Smulti-criteria optimization · Fuzzy AHP · Pair-wise comparisons 
matrix · Fuzzy elements · Alo-group · Consistency · Priority vector

1 Introduction

A fundamental problem of decision theory is how to derive the weights for a set of 
criteria (activities, alternatives, objects, etc.), according to their importance, promi-
nence, quality, etc., which is usually judged according to several criteria, aspects, 
viewpoints, etc. Each criterion may be shared by some or all of the activities. The 
criteria may, for example, also be taken as objectives, which the activities have been 
devised fulfill to. This is called a process of multiple criteria decision making which 
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is a theory of measurement in a hierarchical structure consisting of the goal, the cri-
teria and sub-criteria, and the alternatives, see [29].

The main subproblem of AHP is to calculate the priority vectors  – weights 
assigned to the elements of the hierarchy: criteria (or sub-criteria) and alterna-
tives (or variants). The decision maker (DM) is to rank the elements from the set 
C = {c1, c2,… , cn} , where n > 1 , from the best to the worst (or vice versa, which 
is equivalent), using the information given in the form of an n × n pairwise com-
parisons matrix (PCM). The ranking of the alternatives is determined by the priority 
vector of positive numbers w = (w1,w2,… ,wn) , which is calculated from the cor-
responding PCM. There exist various methods for calculating the vector of weights 
based on the DM problem, particularly, on the pairwise comparisons matrix, e.g., 
Saaty’s Eigenvector Method, the Geometric Mean Method and others, see [26, 27].

Fuzzy sets as the elements of the pairwise comparisons matrix can be used in the 
decision making problem, whenever the DM is not sure about the preference degree 
of his/her evaluations of the pairs in question. We can primarily find them in Fuzzy 
Analytic Hierarchy Process (FAHP), PROMETHEE and TOPSIS oriented meth-
ods, and various exact and heuristic algorithms, [16, 22, 32]. They are also useful in 
aggregating pairwise comparisons, particularly in consensus group decision making 
problems, see e.g. [8, 19], and they form the basis for many decision-making mod-
els as intuitionistic fuzzy relations, pythagorean, q-rung orthopair fuzzy preference 
relations, hesitant or interval fuzzy sets, [14, 15, 17, 31], and also found in stochastic 
judgment models, see e.g. [7]. Effectiveness of FAHP together with applications to 
models in environmental risk assessment and other big projects can be found in [9, 
16, 18, 20, 21, 30]. Such an approach, usually structured to Goal – Criteria – Alter-
natives, is also well known in the Fuzzy Analytic Hierarchy Process (FAHP) origi-
nated by T. Saaty in [29], and also in [10, 33]. Fuzzy elements are useful in order to 
capture the uncertainty stemming from the subjectivity of the human thinking and 
from the incompleteness of information, which is an integral part of multi-criteria 
decision-making problems. Fuzzy elements may also be useful as aggregations of 
crisp pairwise comparisons of a group DM in the group decision making problem. 
Recent development of the problem can be found in [18, 33].

Recently, [12, 18] deal with fuzzy eigenvector methods for obtaining fuzzy 
weights from pairwise comparisons matrices with fuzzy elements. They improve 
the approach published earlier in [3, 4] and [10]. The output is, however, a normal-
ized fuzzy vector of weights, which is not, from the perspective of the DM, directly 
applicable to the final decision, and/or ranking of alternatives, see e.g. [18]. Another 
suitable defuzzification or ranking procedure is necessary prior to making a final 
decision. The eigenvector method itself is criticized by some authors for unsuitable 
properties, see, e.g. [18, 40]. Moreover, the concept of the fuzzy eigenvalue of the 
matrix with fuzzy elements does not seem to be properly justified. For these reasons 
we do not follow this way of the fuzzy eigenvector method for deriving the priority 
vector of the pairwise comparisons matrix with fuzzy elements and propose our own 
approach based on investigation of crisp priority vector.

In [26–28], the authors presented a general approach for PCM with fuzzy number 
elements based on alo-groups unifying the previous approaches which enable unify-
ing of multiplicative, additive and fuzzy PCMs. Then we define a novel concept of 
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consistency, coherence and intensity of FPCMs, and propose a number of optimiza-
tion methods for finding a consistent vector (CSV), coherent vector (CV) and inten-
sity vector (IV) of a FPCM satisfying the desirable properties. Fuzzy intervals are 
elements of the PCM called Fuzzy Pairwise Comparisons matrix (FPCM). In this 
paper we apply the observation and analysis from [1, 13] to FPC matrices defining 
the coherent vector, and intensity vector of a FPCM based on �-cuts, called desira-
ble properties. In general, the most popular methods for deriving the priority vector, 
i.e., the Eigenvector Method, [29], and the Geometric Mean Method, see e.g. [11, 
13], do not always satisfy the desirable properties, see, e.g., [6, 40].

Later on, many authors proposed various approaches and methods of generating 
priority vectors with different properties. A method of obtaining the priority weights 
from an interval fuzzy preference relation was presented in [17]. Nedashovskaya, 
in [23–25] proposed a method for weights calculation based on interval multipli-
cative PCM. In [28], when comparing to this paper, the author proposes another 
type of optimization method for calculating the crisp weights of FPCMs. In a series 
of papers, Wang et al., see [34–39] published the goal programming approaches to 
deriving interval weights in analytic form from interval FPCMs.

Here, we derive new sufficient conditions for the existence of consistent vector 
(CSV), coherent vector (CV), intensity vector (IV) of a FPCM. Then, we formulate 
special optimization problems and algorithms for deriving the priority vector satis-
fying the desirable properties under appropriate assumptions. Furthermore, the pro-
posed methods solve the problem of finding a priority vector satisfying the desirable 
properties by minimizing the corresponding global error index, already proposed in 
[13]. Finally, we give some numerical examples in order to illustrate the new con-
cepts, their properties and the algorithms for solving the problem.

2  Preliminaries

The reader can find the corresponding basic definitions, concepts and results e.g. in 
[26]. Here, we summarize some necessary concepts, however, for a more detailed 
information we refer to [27].

A fuzzy subset S of a nonempty set X (or a fuzzy set on X) is a family {S�}�∈[0;1] of 
subsets of X such that S0 = X, S𝛽 ⊂ S𝛼 whenever 0 ≤ � ≤ � ≤ 1 , and S𝛽 = ∩0≤𝛼<𝛽S𝛼 
whenever 0 < 𝛽 ≤ 1. The membership function of S is the function �S from X into 
the unit interval [0; 1] defined by �S(x) = sup{� ∣ x ∈ S�} . Given � ∈]0;1] , the set 
[S]� = {x ∈ X ∣ �S(x) ≥ �} is called the �-cut of fuzzy set S. We say that a fuzzy 
subset S of R∗ = R ∪ {−∞} ∪ {+∞} is a fuzzy interval whenever S is normal and 
its membership function �S satisfies the following condition: S is closed, compact 
and convex, i.e. the �-cut [S]� are closed, compact and convex subset of X for every 
� ∈]0;1] , respectively.

A bounded fuzzy interval S called the triangular fuzzy number is denoted 
by S = (a, b, c) . Notice that each crisp number is also a bounded fuzzy interval 
S = (a, b, c) with a = b = c.

In order to unify various approaches and prepare a more flexible presentation, 
we apply abelian linearly ordered groups, shortly, alo-groups, see [5]. Recall that 
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an abelian group is a set, G, together with an operation ⊙ and corresponding "group 
axioms" that combine any two elements a, b ∈ G to form another element in G 
denoted by a⊙ b . The well known examples of alo-groups can be found in [5] or 
[26].

Example 2.1 Additive alo-group R = (R,+,≤) with the usual addition operation and 
natural ordering is a continuous alo-group with:

e = 0, a(−1) = −a.

Example 2.2 Multiplicative alo-group R+ = (R+, ∙,≤) with the usual multiplication 
operation and natural ordering is a continuous alo-group with:

e = 1, a(−1) = a−1 = 1∕a. Here, by ∙ we denote the usual operation of 
multiplication.

Example 2.3 Fuzzy additive alo-group Ra=(R,+f ,≤) with a special addi-
tion operation and natural ordering, see [5], is a continuous alo-group with: 
a +f b = a + b − 0.5, e = 0.5, a(−1) = 1 − a.

Example 2.4 Fuzzy multiplicative alo-group Rm=(]0;1[, ∙f ,≤) , see [5], with a special 
multiplication operation and natural ordering is a continuous alo-group with: 
a ∙f b =

ab

ab+(1−a)(1−b)
, e = 0.5, a(−1) = 1 − a.

3  FPC matrices, reciprocity and consistency

Our general approach based on alo-groups is useful, as it unifies various important 
approaches known from the literature, see [5, 27]. This fact has been already demon-
strated on 4 examples presented above, where the well known alo-groups are shown. 
Particularly, all concepts and properties which will be presented bellow can be eas-
ily applied to any alo-group. Before we shall investigate PC matrices with fuzzy ele-
ments we remember some concepts and properties of PC matrices on alo-group with 
crisp elements.

A crisp PC matrix A = {aij} is said to be ⊙ -reciprocal, if the following condition 
holds:

For every i, j ∈ N = {1, ..., n}

A crisp FPC matrix A = {aij} is ⊙-consistent if for all i, j, k ∈ N

Remember that an ⊙-consistent PC matrix A = {aij} is ⊙-reciprocal, but not vice-
versa. The following equivalent condition for consistency of PC matrices is well 
known, see e.g. [5, 29].

(1)aij ⊙ aji = e, or, equivalently, aji = a
(−1)

ij
.

(2)aik = aij ⊙ ajk, or, equivalently, aij ⊙ ajk ⊙ aki = e.
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A crisp PC matrix A = {aij} is ⊙-consistent if and only if there exists a vector 
w = (w1, ...,wn) , wi ∈ G, such that

Here, wi ÷ wj = wi ⊙ w
(−1)

j
.

In [26], we extended the above stated definition of ⊙-reciprocity and ⊙-consist-
ency to non-crisp matrices with fuzzy elements. In particular, we introduced a new 
concept of reciprocity and consistency based on �-cuts: �-⊙-reciprocity and �-⊙
-consistency. Let us start with the �-⊙-reciprocity in the fuzzy case.

Let G = (G,⊙,≤) be a divisible and continuous alo-group over an open interval G 
of R , see [5]. Let � ∈ [0;1], Ã = {ãij} be an n × n matrix, where each element is a 
bounded fuzzy interval of the alo-group G, let [ãij]𝛼 = [aL

ij
(𝛼), aR

ij
(𝛼)] be an �-cut of ãij

.
Matrix Ã = {ãij} is said to be �-⊙-reciprocal, if the following two conditions hold 

for each i, j ∈ N:

If Ã = {ãij} is �-⊙-reciprocal for all � ∈ [0;1], then it is called ⊙-reciprocal.
If Ã = {ãij} is ⊙-reciprocal, then Ã = {ãij} is called the fuzzy pairwise compari-

sons matrix,  fuzzy PC matrix, FPC matrix, or, shortly, FPCM.
Now, we turn to the concept of consistency of FPC matrices. We start with the 

definition of �-⊙-consistent FPC matrix, see [26].

Definition 3.1 Let � ∈ [0;1]. A FPC matrix Ã = {ãij} is said to be �-⊙-consistent, if 
the following condition holds:

There exists a crisp matrix A� = {a�
ij
} with a�

ik
∈ [ãik]𝛼 , a�ij ∈ [ãij]𝛼 , a�jk ∈ [ãjk]𝛼 , 

such that A� = {a�
ij
} is consistent, i.e. for each i, j, k ∈ N it holds

The FPC matrix Ã = {ãij} is said to be ⊙-consistent, if Ã is �-⊙-consistent for all 
� ∈ [0;1].

If for some � ∈ [0;1] the FPC matrix Ã = {ãij} is not �-⊙-consistent, then Ã is 
called �-⊙-inconsistent.

If for all � ∈ [0;1] the FPC matrix Ã = {ãij} is �-⊙-inconsistent, then Ã is called 
⊙-inconsistent.

Ramarks. Let �, � ∈ [0;1], � ≥ �.

• For a crisp PCM, definitions of ⊙-reciprocity and ⊙-consistency coincide with 
the classical definitions.

• If Ã = {ãij} is �-⊙-consistent, then it is �-⊙-consistent.

(3)aij = wi ÷ wj for all i, j ∈ N.

(4)aL
ii
(�) = aR

ii
(�) = e,

(5)aL
ij
(𝛼)⊙ aR

ji
(𝛼) = e.

(6)a�
ik
= a�

ij
⊙ a�

jk
.
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• If Ã = {ãij} is �-⊙-inconsistent, then it is �-⊙-inconsistent.
• (5) holds for all i, j ∈ {1, ..., n} if and only if (5) holds for all 

i, j ∈ N, 1 ≤ i < j ≤ n.

• (6) holds for all i, j, k ∈ N if and only if (shortly: iff) (6) holds for all 
i, j, k ∈ N, 1 ≤ i < j < k ≤ n.

The next proposition gives an equivalent condition for a FPC matrix to be �-⊙
-consistent, see e.g. [26].

Proposition 3.2 Let � ∈ [0;1] , Ã = {ãij} be a FPC matrix, [ãij]𝛼 = [aL
ij
(𝛼), aR

ij
(𝛼)] be 

an �-cut of ãij, i, j ∈ N.

Then Ã = {ãij} is �-⊙-consistent iff there exists a vector w = (w1, ...,wn) with 
wi ∈ G, i ∈ N, such that for each i, k ∈ N, it holds:

Remark 3.3 Notice that an �-⊙-consistent FPC matrix is not necessarily �-⊙-recip-
rocal, as it is true in the crisp case. In real DM problems, �-⊙-reciprocity condi-
tion is, however, a natural assumption, as the DM usually evaluates only one of the 
reciprocal elements ãij, ãji, the other element is automatically set up as the reciprocal 
one. Therefore, in the sequel we assume that FPC matrices are always �-⊙-recipro-
cal. The following proposition gives a characterization of �-⊙-reciprocal matrix to 
become a mean �-⊙-consistent FPC matrix, see [27].

Remark 3.4 Let � ∈ [0;1] , let Ã = {ãij} be a FPC matrix. Notice that �-⊙-consistency 
of FPC matrix Ã = {ãij} is equivalent to the feasibility of the system of inequalities

Here, we denote the matrix

The feasible solution of system (8) will be important in deriving a corresponding 
priority vector of the FPC matrix as we shall see in Sect. 5.

Example 3.5 Consider the additive alo-group R = (R,⊙,≤) with ⊙ = + , see Exam-
ple 2.1. Let Ã = {ãij} be given by triangular fuzzy number elements as follows

or, equivalently, by �-cut representation, we obtain

(7)aL
ik
(�) ≤ wi ÷ wk.

(8)aL
ij
(�) ≤ wi ÷ wj,wj ∈ G for all i, j ∈ N,

n⨀
k=1

wk = e.

(9)AL(�) = {aL
ij
(�)}.

Ã =

⎡
⎢⎢⎣

(0, 0, 0) (1, 3, 4) (4, 6, 8)

(−4,−3,−1) (0, 0, 0) (2, 4, 5)

(−8,−6,−4) (−5,−4,−2) (0, 0, 0)

⎤
⎥⎥⎦
,
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Moreover, the �-+ PC matrix of Ã, AL(�), � ∈ [0, 1], is calculated as

By solving system (8), we obtain that Ã is �-+-consistent PCM for 0 ≤ � ≤ 0.833.

4  More desirable properties of the priority vector, error indexes

Pairwise comparisons matrices may violate some desirable properties of multiple 
criteria decision making: e.g. the best alternative with respect to DM’s preferences 
is selected from the set of non-dominated alternatives, on condition this set is non-
empty. The other PCMs may violate the preservation order preference conditions 
(the so called POP/POIP conditions, see [1]), or, the reliable preference conditions 
(RP conditions, see [6]). Here, we introduce the coherent vector (CV) of PC matrix 
and intensity vector (IV) of PC matrix as follows, see also [6] or [27].

Definition 4.1 Let A = {aij} be a PC matrix with crisp elements. A priority vector 
w = (w1,⋯ ,wn) is said to be the coherent vector (CV) of PC matrixA = {aij} if for 
all i, j ∈ N

On the other hand, a PC matrix A = {aij} is said to be the coherent PC matrix if 
there exists a priority vector w = (w1,⋯ ,wn) satisfying (10).

A priority vector w = (w1,⋯ ,wn) is said to be the intensity vector (IV) of PC 
matrixA = {aij} if for all i, j, k ∈ N

On the other hand, a PC matrix A = {aij} is said to be the intensity PC matrix if 
there exists a priority vector w = (w1,⋯ ,wn) satisfying (11).

From (10) in the above definition it is evident that any CV w of a crisp PC matrix 
A satisfies the POP condition with respect to priority vector w,  see [26], defined in 
[1]. Also, the alternative with the highest weight of CV w corresponding to DM’s 
preferences is always non-dominated. The similar property holds for any IV w, resp. 
POIP condition of a crisp PC matrix A. The opposite is evidently not true. Clearly, 
each �-mean IV is also a CV for a given FPC matrix Ã and given priority vector w, 
see also [27].

Ã =

⎡
⎢⎢⎣

[0;0] [1 + 2𝛼;4 − 𝛼] [4 + 2𝛼;8 − 2𝛼]

[−4 + 𝛼; − 1 − 2𝛼] [0;0] [2 + 2𝛼;5 − 𝛼]

[−8 + 2𝛼; − 4 − 2𝛼] [−5 + 𝛼; − 2 − 2𝛼] [0;0]

⎤
⎥⎥⎦
.

AL(�) =

⎡
⎢⎢⎣

0 1 + 2� 4 + 2�

−4 + � 0 2 + 2�

−8 + 2� − 5 + � 0

⎤
⎥⎥⎦
.

(10)aij > e iff wi > wj.

(11)aij > e, akl > e, aij > akl iff wi ÷ wj > wk ÷ wl.
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Let A = {aij} be a crisp consistent PC matrix, and let w = (w1,⋯ ,wn) be a pri-
ority vector associated with A satisfying (3). Then it is obvious that conditions 
(10) and (11) are satisfied. Moreover, it is well known (see e.g. [29]), that for 
each crisp consistent PC matrix, the priority vector satisfying (3) can be gener-
ated either by the eigenvalue method (EVM), or, by the geometric mean method 
(GMM).

Now, we are ready to define the concepts of CV and IV for a FPC matrix 
Ã = {ãij}. Further, if there is no danger of misunderstanding, the symbol ⊙ will be 
usually omitted in what follows.

Definition 4.2 Let Ã = {ãij} be a FPC matrix on the alo-group G = (G,⊙,≤), 
w = (w1,w2,⋯ ,wn) , wi ∈ G, be a priority vector, � ∈ [0;1].

We say that the vector w is � -coherent vector of FPC matrixÃ ( �-CV) if for all 
i, j ∈ N

Moreover, the vector w is coherent vector of FPC matrix Ã (or, CV) if for all 
i, j, k ∈ N

Definition 4.3 Let Ã = {ãij} be a FPC matrix on the alo-group G = (G,⊙,≤), 
w = (w1,w2,⋯ ,wn) , wi ∈ G, be a priority vector, � ∈ [0;1].

We say that the vector w is � -intensity vector of FPC matrix Ã ( �-IV) if for all 
i, j, k ∈ N

Moreover, the vector w is intensity vector of FPC matrix Ã (or, IV) if for all 
i, j, k ∈ N

Remark 4.4 Notice, that the concepts of the � - IV/CV is introduced for a given FPC 
matrix Ã and given priority vector w. If Ã = {ãij} is a crisp FPC matrix, then the 
priority vectors IV/CV introduced in Definitions 4.2 and 4.3 coincide with the usual 
IV/CV vectors defined by Definition 4.1. Clearly, by setting k = l in Definition 4.3, 
each �-intensity vector of FPC matrix Ã is also an �-coherent vector of FPC matrix 
Ã, see also [27]. The same is true for each intensity vector of Ã versus a coherent 
vector of FPC matrix Ã. Moreover, by Proposition 3.2 and Definition 4.1, each �
-consistent vector of FPC matrix Ã is also an �-intensity vector of FPC matrix Ã, 
and, consequently, an �-coherent vector of FPC matrix Ã.

Notice that the property of �-consistency depends on the left end aL
ij
(�) of the �-

cut of Ã, whereas �-coherence property depends on the right end aR
ij
(�). This prop-

(12)aR
ij
(𝛼) > e iff wi > wj.

(13)aR
ij
(𝛽) > e iff wi > wj for all 𝛽 ∈ [0;1].

(14)aL
ij
(𝛼) > aR

kl
(𝛼) iff wi ÷ wj > wk ÷ wl.

(15)aL
ij
(𝛽) > aR

kl
(𝛽) iff wi ÷ wj > wk ÷ wl for all 𝛽 ∈ [0;1].
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erty will be essential in deriving the priority vectors with the given properties, see 
Sect. 5.

In what follows we introduce the local error indexes and global error index based on 
the end points of �-cuts of the fuzzy elements of the FPCM.

Definition 4.5 Let Ã = {ãij} be an FPC matrix on alo-group G = (G,⊙,≤). For each 
pair i, j ∈ N , and a priority vector w = (w1,w2,⋯ ,wn) , wi ∈ G, � ∈ [0;1], let us 
denote

Moreover, define the n × n matrix �(w, �) of local error indexes as

Definition 4.6 Let � ∈ [0;1] . The global error index E(Ã,w, 𝛼), for a FPC matrix 
Ã = {ãij} and a priority vector w = (w1,… ,wn) is defined as the maximal element 
of matrix of local errors �(w, �), i.e.

Proposition 4.7 Let Ã = {ãij} be an FPC matrix and w = (w1,… ,wn) be a priority 
vector, � ∈ [0;1]. Then the global error index satisfies

Moreover,

iff Ã = {ãij} is �-⊙-consistent.

Proof Inequality (19) follows directly from definitions (16), (17) and (18).
Now, let E(Ã,w, 𝛼) = e . Then for all i, j ∈ {1,… , n} it holds

or, in other words

hence, by Proposition 3.2, Ã is �-⊙-consistent.
On the other hand, let Ã be mean �-⊙-consistent. Then, by Proposition 3.2, (22) 

holds for all i, j ∈ {1,… , n}, therefore, (21) is true for all i, j ∈ {1,… , n}.

Consequently, by Definition 4.6, we obtain E(Ã,w, 𝛼) = e.   ◻

(16)𝜀(i, j,w, 𝛼) = max

{
aL
ij
(𝛼)⊙ wj ÷ wi, (a

L
ij
(𝛼)⊙ wj ÷ wi)

(−1)
}
,

(17)�(w, �) = {�(i, j,w, �)}.

(18)E(Ã,w, 𝛼) = max
i,j∈N

𝜀(i, j,w, 𝛼).

(19)E(Ã,w, 𝛼) ≥ e.

(20)E(Ã,w, 𝛼) = e

(21)aL
ij
(𝛼)⊙ wj ÷ wi = e,

(22)aL
ij
(�) = wi ÷ wj,
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5  Deriving priority vectors and measuring inconsistency of FPC 
matrices

In this section we consider a given FPC matrix Ã = {ãij}. Here, we propose a couple 
of methods for calculating the priority vector of Ã = {ãij} for the purpose of rating the 
alternatives c1, ..., cn ∈ C . We do not follow the way of calculating the fuzzy priority 
vector as it is proposed e.g. in [4], and others. Here, we shall generate a crisp priority 
vector, therefore, no defuzzification is necessary for final ranking of the alternatives. 
The proposed methods for calculating the priority vector satisfying the formerly defined 
desirable properties can be divided into several corresponding categories. Moreover, 
we look for priority vector for various given possibility degrees � ∈ [0;1], eventually 
we shall look for the maximal such �. Let us start with a suitable notation.

Definition 5.1 Given a FPC matrix Ã = {ãij}, let � ∈ [0;1]. Denote the sets of �
-priority vectors of corresponding desirable properties of FPC Ã. Firstly, we denote 
the basic set of normalized n-vectors, possible priority vectors with no other 
requirements.

Now, for given � ∈ [0;1], we denote the sets of priority vectors satisfying specific 
desirable properties.

Proposition 5.2 Let Ã = {ãij} be a FPC matrix, let � ∈ [0;1]. Then

Proof Suppose that w = (w1,w2,⋯ ,wn) ∈ WCSV (Ã, 𝛼). Then by Proposition 3.2 it 
holds aL

ik
(�) ≤ wi ÷ wk for all i, j ∈ {1,… , n}. By Definition 4.3, formula (14), then 

for some i, j, k, l it holds wi ÷ wj > wk ÷ wl, therefore, w is an �-IV priority vector of 
Ã.

By setting k = l, we obtain that w is an �-CV priority vector of Ã. See also 
Remark 4.4.   ◻

Let Ã = {ãij} , � ∈ [0;1]. We denote

(23)W(Ã) = {w|w = (w1,w2,⋯ ,wn),

n⨀
k=1

wk,wk ∈ G, for all k ∈ N}.

(24)WCSV (Ã, 𝛼) = {w|w ∈ W(Ã),w is 𝛼 − CSVpriority vector ofÃ},

(25)WIV (Ã, 𝛼) = {w|w ∈ W(Ã),w is 𝛼 − IVpriority vector ofÃ},

(26)WCV (Ã, 𝛼) = {w|w ∈ W(Ã),w is 𝛼 − CVpriority vector ofÃ}.

(27)WCSV (Ã, 𝛼) ⊂ WIV (𝛼, Ã) ⊂ WCV (Ã, 𝛼).

(28)I(2)(Ã, 𝛼) = {(i, j)|i, j ∈ N, aR
ij
(𝛼) > e},
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Proposition 5.3 Let Ã = {ãij} be a FPC matrix, let � ∈ [0;1], let 𝜂, 𝜂 > e be a “suffi-
ciently small” number converting the strict inequality > to the non-strict one, i.e. ≥ .

Then

Proof Formula (30) is evident by Proposition 3.2.
Formula (31) follows from the fact that wi ÷ wj ≥ wk ÷ wl ⊙ 𝜂 iff wi ÷ wj > wk ÷ wl 

for some 𝜂 > e, for all (i, j, k, l) ∈ I(4)(Ã, 𝛼).
The similar argument can be used for proving (32).   ◻

The following proposition says that a "monotonicity" property of the individ-
ual sets of priority vectors is true. Later on, this property enables us to find out 
the �-PV with the maximal � ∈ [0;1].

Proposition 5.4 Let Ã = {ãij} be a FPC matrix, let �, � ∈ [0;1], � ≤ �. Then

Proof 

 (i) S u p p o s e  t h a t  w ∈ WCSV (Ã, 𝛽), 𝛼, 𝛽 ∈ [0;1], 𝛽 ≤ 𝛼.  T h e n 
aL
ij
(�) ≤ wi ÷ wj for all i, j ∈ N. Moreover, by monotonicity of aL

ij
, we obtain 

aL
ij
(�) ≤ aL

ij
(�) for � ≤ �. Hence, aL

ij
(�) ≤ aL

ij
(�) for all i, j ∈ N. Consequently, 

w ∈ WCSV (Ã, 𝛼) and (33) holds.
 (ii) Suppose that w ∈ WCV (Ã, 𝛽), 𝛼, 𝛽 ∈ [0;1], 𝛽 ≤ 𝛼, and let aR

ij
(𝛼) > e. By mono-

tonicity of aR
ij
, we obtain aR

ij
(�) ≥ aR

ij
(�) for � ≤ �. Hence, aR

ij
(𝛽) > e, conse-

quently, wi ÷ wj > e, therefore, w ∈ WCV (Ã, 𝛼) and (35) holds.
 (iii) By arguments similar to (ii) we obtain (34).

(29)I(4)(Ã, 𝛼) = {(i, j, k, l)|i, j, k, l ∈ N, aL
ij
(𝛼) > aR

kl
(𝛼)}.

(30)WCSV (Ã, 𝛼) = {w|w ∈ W(Ã), aL
ij
(𝛼) ≤ wi ÷ wj,wk ∈ G, for all i, j ∈ N},

(31)WIV (Ã, 𝛼) = {w|w ∈ W(Ã),wi ÷ wj ≥ wk ÷ wl ⊙ 𝜂 , (i, j, k, l) ∈ I(4)(Ã, 𝛼)},

(32)WCV(Ã, �) = {w| ∈ W(Ã),wi ≥ wj ⊙ � for all (i, j) ∈ I(2)(�, Ã)}.

(33)WCSV (Ã, 𝛽) ⊂ WCSV (Ã, 𝛼),

(34)WIV (Ã, 𝛽) ⊂ WIV (Ã, 𝛼),

(35)WCV (Ã, 𝛽) ⊂ WCV (Ã, 𝛼).
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  ◻

Let Ã = {ãij} be a FPC matrix, let � ∈ [0;1]. Now, we propose three methods for 
finding priority vectors with a specific desirable properties for a given � ∈ [0;1] ∶ 
consistency, intensity and coherence.

5.1  Finding ̨ ‑CSV priority vector of Ã

(P-CSV):

subject to

5.2  Finding ̨ ‑IV priority vector of Ã

(P-IV):

subject to

5.3  Finding ̨ ‑CV priority vector of Ã

(P-CV):

subject to

Remark 5.5 It is evident that any � − CV  priority vector w of Ã has the property, 
that the alternative with the highest weight of CV w corresponding to DM’s alterna-
tive ci0 is always non-dominated, see [26]. The similar property holds for any IV w, 
resp. of a crisp PC matrix A. Another problem is to find a priority vector with spe-
cific desirable properties (consistency, intensity and coherence) with the maximal 
� ∈ [0;1].

5.4  Finding ̨ CSV‑CSV priority vector of Ã

(36)E(Ã,w, 𝛼) ⟶ min;

(37)w ∈ WCSV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).

(38)E(Ã,w, 𝛼) ⟶ min;

(39)w ∈ WIV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).

(40)E(Ã,w, 𝛼) ⟶ min;

(41)w ∈ WCV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).

(42)� ⟶ max;
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subject to

The optimal solution w(CSV) ∈ G of problem (42), (43) is an �(CSV)-CSV priority vec-
tor of Ã.

5.5  Finding ̨ (IV)‑IV priority vector of Ã

subject to

The optimal solution w(IV) ∈ G of problem (42), (45) is an �(IV)-IV priority vector of 
Ã.

5.6  Finding ̨ (CV)‑CV priority vector of Ã

subject to

The optimal solution w(CV) ∈ G of problem (42), (47) is an �(CV)-CV priority vector 
of Ã.

Remark 5.6 In general, problem (P-T) where T ∈ {CSV , IV ,CV}, are nonlinear 
optimization problems that may be solved by a numerical method, e.g. by the well 
known dichotomy method, which is a sequence of relatively simple optimization 
problems, or by one of other available optimization methods, see e.g. [2].

Remark 5.7 Notice that here, strict inequalities have been changed to non-strict ones 
by including a sufficient constant 𝜀 > e. The objective function of (36) is the global 
error index, which is minimized with respect to w,  subject to the given constraints.

Remark 5.8 Evidently, for a given FPC matrix Ã, eventually, � ∈ [0;1], some, and/or 
all sets of priority vectors WT (Ã, 𝛼), T ∈ {CSV , IV ,CV}, in Subsects. 5.1–5.6, could 
be empty, i.e. the corresponding optimization problems are infeasible. If this situ-
ation happens for all T ∈ {CSV , IV ,CV}, then the DM should reconsider the ele-
ments of original FPC matrix Ã, eventually, should redesign it in some sense.

Remark 5.9 In general, the uniqueness of optimal solution of (36) and/or (42) sub-
ject to the given constraint is not saved. Depending on the particular operation ⊙ , 
these problems may have multiple optimal solutions which is an unfavorable fact 

(43)w ∈ WCSV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).

(44)� ⟶ max;

(45)w ∈ WIV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).

(46)� ⟶ max;

(47)w ∈ WCV (Ã, 𝛼) ∩ E(Ã,w, 𝛼).
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from the point of view of the DM. In this case, the DM should reconsider particular 
(fuzzy) evaluations in the original fuzzy pairwise comparison matrix.

Finally, we illustrate the above mentioned methods of calculating priority vectors 
with desirable properties by two examples.

Example 5.10 Consider the usual multiplicative alo-group R+ = (R+, ∙,≤) with 
⊙ = ∙ , see Example 2.2. Let Ã1 = {ã1ij} be given by triangular fuzzy number ele-
ments as follows:

or, equivalently, by �-cut notation, for � ∈ [0;1] , we obtain

Here, Ã1 is a 3 × 3 matrix with triangular fuzzy number elements and the corre-
sponding piece-wise linear membership functions.

By solving problem (P-CSV), see Subsect.  5.1, we obtain the maximal 
�(CSV) = 0.683 and minimal global error index E(Ã1,w

(CSV), 0.683) = 1.378. Hence, 
Ã1 is �-∙-consistent for all 0 ≤ � ≤ 0.683.

The priority vector of Ã1 is obtained as the optimal solution of problem (P-CSV), 
particularly, w(CSV) = (w∗

1
,w∗

2
,w∗

3
) = (2.611, 1.127, 0.340).

Moreover, by solving problem (P-CV), see Subsect. 5.3, we obtain the maximal 
�(CV) = 1.000 and minimal global error index E(Ã1,w

(CV), 1.000) = 1.101. Hence, Ã1 
is �-∙-coherent for all 0 ≤ � ≤ 1.000 , i.e. it is ∙-coherent.

The coherent priority vector of Ã1 is obtained as the optimal solution of problem 
(P-CV), particularly, w(CV) = (w∗∗

1
,w∗∗

2
,w∗∗

3
) = (2.520, 1.145, 0.347).

The corresponding ranking of alternatives is in both cases c1 > c2 > c3.

Example 5.11 Consider the multiplicative alo-group R+ = (R+, ∙,≤) with ⊙ = ∙ (see 
Example 2.2). Let Ã2 = {ã2ij} be given by triangular fuzzy number elements as

or, equivalently, by �-cut notation, for � ∈ [0;1] , we obtain

Ã1 =

⎡
⎢⎢⎣

[1, 1, 1] [1, 2, 3] [7, 8, 9]

[
1

3
,
1

2
, 1] [1, 1, 1] [2, 3, 4]

[
1

9
,
1

8
,
1

7
] [

1

4
,
1

3
,
1

2
] [1, 1, 1]

⎤
⎥⎥⎦
,

Ã1 =

⎡⎢⎢⎣

[1;1] [1 + 𝛼;3 − 𝛼] [7 + 𝛼;9 − 𝛼]

[
1

3−𝛼
;

1

1+𝛼
] [1;1] [2 + 𝛼;4 − 𝛼]

1

9−𝛼
;

1

7+𝛼
] [

1

4−𝛼
;

1

2+𝛼
] [1;1]

⎤⎥⎥⎦
.

Ã2 =

⎡
⎢⎢⎢⎣

[1, 1, 1] [1,
3

2
, 2] [7, 8, 9]

[
1

3
,
2

3
, 1] [1, 1, 1] [2,

5

2
, 3]

[
1

9
,
1

8
,
1

7
] [

1

3
,
2

5
,
1

2
] [1, 1, 1]

⎤
⎥⎥⎥⎦
,
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Here, problem (P-CSV) has no feasible solution, hence, Ã2 is ∙-inconsistent.
Moreover, by solving problem (P-CV), see Subsect. 5.3, we obtain the maximal 

�(CV) = 1.000 and minimal global error index E(Ã2,w
(CV), 1.000) = 1.287. Hence, Ã2 

is �-∙-coherent for all 0 ≤ � ≤ 1.000 , i.e., it is ∙-coherent.
The coherent priority vector of Ã2 is obtained as the optimal solution of problem 

(P-CV), particularly, w(CV) = (w∗∗∗
1

,w∗∗∗
2

,w∗∗∗
3

) = (2.289, 1.186, 0.368).

The corresponding ranking of alternatives is in both cases c1 > c2 > c3.

6  Conclusion

This paper deals with PC matrices with fuzzy elements and it solves an important 
problem of finding their priority vectors having the desirable properties of consist-
ency, intensity and coherence. In comparison with PC matrices investigated in the 
literature, here we investigate PCMs with elements from abelian linearly ordered 
group (alo-group) over a real interval. We also define the concept of crisp priority 
vector which is an extension of the well known concept in crisp case and is used 
for ranking of the given alternatives. Such an approach allows for extending vari-
ous approaches known from the literature and enables practical computations of 
the priority vectors. Here, we derive new sufficient conditions for the existence of 
consistent vector, coherent vector, intensity vector of a FPCM. Then, we formulate 
special optimization problems and algorithms for deriving the priority vector satis-
fying the desirable properties under appropriate assumptions. Furthermore, the pro-
posed methods solve the problem of finding a priority vector satisfying the desirable 
properties by minimizing the corresponding global error index, formerly proposed 
in [13]. Finally, we give some numerical examples in order to illustrate the new con-
cepts, their properties and the algorithms for solving the problem.

In the future, we shall focus our research to the problems of non-reciprocal pair-
wise comparisons matrices being also frequent in the practice of MCDM. Without 
the assumption of reciprocity some interesting results can be achieved and corre-
sponding algorithms for finding priority vectors can be verified. There is also an 
interesting problem of under what conditions the classical priority vectors generated 
by the Eigenvector method and/or Geometric average method could become inten-
sity and/or coherent PVs. Up till now, sufficient theoretical results are not known, 
hence simulation experiments should be performed and analyzed.
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