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Abstract
The retailers’ goals to maximize the profit of the products in stores are realized on 
the planogram shelves. In this paper, we investigated a practical shelf space allo-
cation model with a visible horizontal and vertical grouping of products into cat-
egories, which takes into account the number of facings, capping and nesting of a 
product. The result is four groups of constraints, such as shelf constraints, product 
constraints, multi-shelves constraints, and category constraints that are used in the 
model. We proposed 6 heuristics to solve the planogram profit maximization prob-
lem. The developed techniques on which heuristics are based may be applied to 
other category of management shelf space allocation problems because all of them 
share the same nature of the problem, i.e., the initial step of creating the allocation 
of products on the shelf and steps in which shelves are combined. Experiments were 
based on data sets generated according to contemporary real retail conditions. The 
efficiency of the designed heuristics has been estimated using the CPLEX solver.
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1 Introduction

For successful merchandising decisions in traditional space management, a specific 
tool called a planogram is widely used by retailers. It illustrates the layout of the 
products on the fixtures. Creating effective visual plans is very important for sup-
porting the retailers’ decisions related to shelf space allocation. It allows for maxi-
mizing the store profits [5, 30] and, consequently, more effective functioning of the 
entire organization. The retail shelf space allocation problem (SSAP) is well-known 
in the literature. The examination of software applications in assortment and shelf 
space management, as well as quantitative models, has been presented by Hübner 
and Kuhn [27].

In this research, we formulate the SSAP according to the merchandising rules 
that specify vertical and horizontal groups of products and the division of the prod-
ucts based on sales potentials. Merchandising generalizes any techniques or prac-
tices of visual representation of products in the retail store. Dependencies between 
the customers’ buying behaviour, product categorization, shelf location, and visual 
representation of them can be found in the research of Anic et al. [1], Desrochers 
and Nelson [17], Elbers [19].

The research by Gabrielli and Cavazza [22] deepened the knowledge about plac-
ing products at the end of an aisle. They studied brand appreciation on low, medium, 
and high levels. They concluded that the location of the product to be exposed is 
very powerful for brand recognition. Bianchi-Aguiar et  al. [6] studied the catego-
rization of product families and allocating them into blocks as well as a multi-level 
hierarchical structure. They proposed a method of decomposing the main prob-
lem into sub-problems and applying specific methods to solve them. Düsterhöft 
et  al. [18] studied various shelf segments of different attractiveness with the aim 
of appropriately assigning available shelf space between lots of brands, consider-
ing optimum replenishment decisions. The concept of shelf segments of flexible 
size (named “virtual”) was defined by Czerniachowska [10], Czerniachowska and 
Hernes [12] and Czerniachowska et  al. [15, 16]. Several types of segments with 
regard to product types included local or regional and convenience or complemen-
tary products. Other types of segments allocated near the aisles included products, 
taking into account store customer traffic flow. The research by Czerniachowska [10] 
most widely explains the evidence regarding shelf levels and shelf segment usage in 
the SSAP models and gives a wide variety of solution tricks specifically to this prob-
lem. Metaheuristics [10, 15, 16] and hyper-heuristics [12] were adopted to solve the 
SSAP with shelf segments.

The objective of this paper is to present a real retail shelf space allocation model 
and to develop efficient heuristic algorithms that can allow for obtaining good prac-
tical results in a very short time, the ideas of which can also be used in other shelf 
space allocation models. The mathematical model, which was first presented in 
Czerniachowska and Hernes [13] includes vertical product allocation constraints 
as well as horizontal categories grouping, which are very important in visual 
merchandising.
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One of the key limitations of the SSAP literature is not taking into account 
merchandising rules based on the frequency of product movement and product 
price. In the model by Czerniachowska and Hernes [13], a method of dividing 
products and allocating them to different vertical shelf levels based on their sales 
potential is proposed. Valenzuela and Raghubir [36] concluded that cheaper 
brands should be located on the bottom shelves, and the best place for luxury 
brands is on the top shelves. Therefore, in the model, Czerniachowska and Hernes 
[13] differentiated products based on their sales potential in order to locate them 
correctly on the bottom or top shelves.

In many studies, different approaches have been developed for shelf space allo-
cation. Because of the NP-hard nature of the shelf space allocation problem, heu-
ristic algorithms are needed for the solution of large instances of real-world prob-
lems. On this basis, many approaches have been proposed, including:

• Simulated annealing [2, 4, 7, 12, 37],
• Genetic algorithms [8–11, 15, 16, 20, 21, 24–26, 28, 29, 31–35],
• Gradient search heuristic [3, 4, 28],
• Dynamic programming [10, 14, 23].

There are two concepts taken into account in this paper: capping and nesting. 
Capping means an allocation of a product on top of another product with a rota-
tion of the product on the top in order to push in more products on the shelf if 
there is no space to duplicate a product row one more time on the first product 
orientation. Nesting means an allocation of a product into another product, such 
as a basket or a plate.

2  Paper contributions

We develop heuristics and test them on different practical problem instances of 
different sizes and compare our solution with the CPLEX solver. The proposed 
techniques may be used to allow retailers to make category management deci-
sions faster and to obtain higher profits. The proposed methods construct solu-
tions incrementally, which has the following advantages:

• Only feasible candidate solutions are considered. Hence, no repair operator is 
required as opposed to metaheuristics (e.g. [8–11, 15, 16, 20, 21, 24–26, 28, 
29, 31–35]), such as evolutionary algorithms, in which random local search, 
crossover, and mutation operations can turn a correct solution into an infeasi-
ble one.

• If constraints cannot be satisfied, the user can be notified to change the prod-
uct grouping method, increase the minimum category size and tolerance, reas-
sign sales potentials, etc.
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• Each step filters out infeasible candidate solutions, so in the following steps, the 
search space is smaller than in the case of non-deterministic algorithms, such as 
evolutionary algorithms.

• The proposed heuristics are better than the neighbourhood search approaches 
(e.g. [4], low-level heuristics (e.g. [2] or simulated annealing (e.g. [ 2, 4, 7, 12, 
37] because they do not need an initial solution to start with or neighbourhood 
preferences for constructing a possible solution.

• The proposed approach presents considerable competitiveness over metaheuris-
tics and hyper-heuristics proposed by other researchers, as in the proposed 
approach, the total number of product allocations could be calculated and com-
pared to the general case. This is extremely valuable in case of time-saving while 
processing large datasets.

In the experiments, the proposed method was tested on data sets that were gener-
ated on the basis of real-life data. In the tests, the heuristics found the solution for 11 
SSAP instances for which CPLEX was not able to find one, which motivates the use 
of heuristics and suggests further development towards hybrid methods.

The paper is organized as follows. Problem formulation and its mathematical 
model are presented in Sect. 3. A detailed description of proposed heuristics is pre-
sented in Sect. 4. Next, in Sect. 5, the results of computational experiments are pre-
sented. The article is concluded in Sect. 6.

3  Statement of the problem

3.1  Creation of a planogram

The Shelf Space Allocation Problem (SSAP) consists in constructing a plano-
gram that is divided horizontally into categories and vertically into subcategories. 
The problem can be formulated as follows [13]: there is a given number of prod-
ucts P that must be displayed on S shelves of a planogram. The products 1, ...,P are 
assigned to K product categories. On the planogram, there are also initially assigned 
spaces for the K product categories, i.e., the minimum possible size of the category 
allowing it to be visually attractive for the customers. The problem is to define the 
appropriate shelf space for each product category K with regard to the quantity of 
each product with the objective of maximizing retailers’ profit.

Products 1, ...,P are divided into K categories based on their types (product fami-
lies) and into G subcategories based on their sales potential. Each category is verti-
cal, i.e., the products are placed on all shelves i (i = 1, ..., S) within one category k
(k = 1, ...,K) . In this paper, we assume that more general categories (such as milk) 
can be extended to the vertical spaces allocated to more specific categories (such as 
yoghurt and cheese). This follows the practice observed in real-life applications.

The sales potential subcategory g (g = 1, ...,G) is horizontal, i. e. the products are 
placed on one shelf i (i = 1, ..., S) within one subcategory g (g = 1, ...,G) , but the same 
sales potential subcategory g (g = 1, ...,G) exists in all categories k (k = 1, ...,K) . The 
higher the sales potential subcategory of the product, the more expensive it is and, 
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therefore, the better level position on the shelf it receives. Obviously, the eye-level 
shelf for branded or expensive products is the best option.

The products with the lowest sales potential are located on the lowest shelf but 
can also be located on higher shelves. On the other hand, the products with the high-
est sales potential are located on the highest shelf (at eye level) and can’t be located 
on other shelves. Products of the same category k (k = 1, ...,K) must be located 
together. This means that the category can’t be split or interrupted with products 
from another category.

3.2  Planogram rules for categories and sales potential subcategories

Table 1 shows the rules for allocating products on shelves. Products from category 
A and subcategory 10 can be allocated to the shelves for categories A, B, C and sub-
categories 10, 20, 30. Products from category C and subcategory 30 can’t be allo-
cated to the shelves for other categories and subcategories. Another example, B20 
can be placed in B20, B30, C20, C30. Sales potentials are assigned with the interval 
10 for practical reasons. For example, if in the general assortment set, products are 
assigned to 10 and 20 sales subcategories, but one seasonal or promotional shelf is 
added only for 2-week intervals, it is easier to assign seasonal or promo products to 
15 sales potential without the reassignment of the general assortment. Figures 1 and 
2 present possible category sizes on the shelves with different sales potentials. The 
borderline between the categories may be flexible (Fig. 1) or strict (Fig. 2).

Table 1  Categories and sales potential subcategory allocation rules

 Category A (milk) B (yoghurts) C (cheese) 

Category Subcategory 10 20 30 10 20 30 10 20 30 

A (milk) 

10 (cheap products) ● ● ● ● ● ● ● ● ● 

20 (more expensive products)  ● ●  ● ●  ● ● 

30 (brand products)   ●   ●   ● 

B (yoghurts) 

10 (cheap products)    ● ● ● ● ● ● 

20 (more expensive products)     ● ●  ● ● 

30 (brand products)      ●   ● 

C (cheese) 

10 (cheap products)       ● ● ● 

20 (more expensive products)        ● ● 

30 (brand products)         ● 

A20

fruit milk

B20

fruit yoghurt

C20

fruit cheese
C10B10

A10

natural milk

B10

natural yoghurt

C10

cottage cheese

A (milk) B (yoghurts) C (cheese)

30

(desserts)

20

(fruit flavors)

10

(natural)

A20

fruit milk

A30

pudding

B30

kefir dessert

C30

dessert
C20B10

Fig. 1  Possible categories and sales potential subcategory allocation with the flexible border between 
vertical categories
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3.3  Explanation of other parameters used in the model

In the remaining part of the paper, the following notation is used. Due to a large num-
ber of problem parameters, in the given paper, subscripts are used for variable indexes. 
Superscripts are set for a variable’s clarification and mustn’t be interpreted as indexes.

A parameter defining the minimum category size is the mk per cent of the shelf 
length, i.e., each category must exist on the planogram, and the products in this cat-
egory must be noticeable. The coefficient tk per cent of the shelf length limits the maxi-
mum category size tolerance between shelves in the category. This parameter is used to 
create visually attractive vertical category shapes with a well-defined border between 
the categories.

Each shelf i (i = 1, ..., S) has a different length capacity sl
i
 , shelf height sh

i
 , shelf 

depth capacity sd
i
 , product weight bound sb

i
 , and shelf sales potential subcategory sg

i
 . 

In the analyzed model, all shelves are assigned to each of the categories; a subcate-
gory g (g = 1, ...,G) is assigned to the shelf, and products from each subcategory g 
(g = 1, ...,G) are also allocated to a certain category k (k = 1, ...,K) (Figs. 1, 2).

In the given problem, the product j has width pw
j
 , height ph

j
 , depth pd

j
 , and weight 

pb
j
 . Out-of-stock situations are avoided by the retailer with the control of the supply 

limit parameter of the product ps
j
 , which indicates the maximum possible number of 

product items displayed. The product item profit pu
j
 characterizes the profit gained from 

the product if it is displayed. The category of the product is expressed by pk
j
 , and its 

sales potential subcategory is pg
j
.

Generally, each product is placed on the shelf in the front orientation, but for some 
products, the secondary side orientation (90 degrees) is also available. Binary parame-
ters of a product po1

j
 and po2

j
 reflect if the front and side orientation are available for the 

product j . For the front orientation,po1
j

 we take product width pw
j
 as the width of the 

product on the shelf and depth pd
j
 as the depth of the product on the shelf. For side ori-

entation,po2
j

 we take its depth pd
j
 as the width of the product on the shelf and width pw

j
 

as the depth of the product on the shelf.

p
o1
j
=

{
1, if front orientation is available for the product j

0, otherwise
, j = 1, ...,P.

A30

pudding

A20

fruit milk

A10

natural milk

B30

dessert

B20

fruit yoghurt

B10

natural yoghurt

C30

dessert

C20

fruit cheese

C10

cottage cheese

30

(desserts)

20

(fruit flavors)

10

(natural)

A20

fruit milk

C10

C20
fruit cheese

B10

B10

A (milk) B (yoghurts) C (cheese)

Fig. 2  Possible categories and sales potential subcategory allocation with the strict border between verti-
cal categories
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To ensure a substitution effect, the products are grouped into clusters pl
j
 . If the 

product is out-of-stock or delisted from the assortment, the customer can choose a 
similar product (with the same characteristics, functions, and tastes) from another 
brand. Moreover, when one product is delisted, to prevent the loss of profit, retailers 
ensure the availability of another substitutive product on the shelf. Cluster parameter 
pl
j
 means the similar substitution product group. Products from the same cluster 

must be placed together on the same shelf next to one another.

3.4  Product item representation

In this paper, we take into account not only the facings of the products but also cap-
pings and nestings, which is an extension with respect to models typically used in 
the literature, which only consider facings. Capping means that products, such as 
rectangular packages, can be put on top of each other in a rotated orientation. Nest-
ing means that products, such as buckets, can be put inside each other. Depending on 
the product package’s physical characteristics, cappings can be placed above the fac-
ings of the product rotated 90 degrees (e.g., tea boxes), and nesting is placed inside 
the facings (e.g., bowls or plates). To describe the product nesting possibilities, the 
nesting coefficient pn

j
 
(
pn
j
< 1

)
 signifies additional height for one nested item (e.g., 

the additional bowl height if bowls are placed inside each other). Regular products 
that can’t be nested pn

j
= 0 because products that can’t be nested are represented as 

another row of facings.
The lower fmin

j
 and upper fmax

j
 bounds of facings of the products that should be 

placed on the shelves are defined by the retailer at the store. Furthermore, the lower 
cmin
j

 and upper cmax
j

 bounds of side cappings per position can also be restricted for 
each product. The parameter cmax

j
 means the maximum number of cappings that can 

actually be placed above the facings sequence of items without destroying them 
because of the weight of the capping items. The mandatory number of sequences of 
facings in one capped group is 

⌈
ph
j
∕pw

j

⌉
 for products with front orientation and ⌈

ph
j
∕pd

j

⌉
 for products with secondary side orientation, which describes the possibility 

of holding up the cappings above. Let’s consider an example. If more than cmax
j

 tea 
boxes are put above the tea box facings sequence, the boxes on the bottom level may 
be broken or destroyed, or tea boxes on the top level could fall off the shelf.

The lower nmin
j

 and upper nmax
j

 bounds of the side nestings per position can also be 
restricted for each product. The parameter nmax

j
 indicates the maximum number of 

nestings that can actually be placed above one facing item without destroying it. 
Let’s consider another example. If more than nmax

j
 the bowls are put inside the lower 

bowl on the shelf, the lowest bowl may be broken or destroyed, or the bowls on the 
top level could fall off the shelf. The multi-shelf product placement possibility is 

p
o2
j
=

{
1, if side orientation is available for the product j

0, otherwise
, j = 1, ...,P.
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defined by the minimum smin
j

 and the maximum smax
j

 number of shelves on which it 
can be placed. Based on the introductory definitions of facings, cappings and nest-
ings above, the total number of items of the product is the sum of facings fij , cap-
pings cij and nesting numbers nij of a product. All of the aforementioned parameters 
( fij,cij,nij ) represent the number of product items. Figures 3 and 4 represent the cap-
pings and nestings allocation methods.

3.5  The idea of a solution to the problem

In this paper, the number of facings in the vertical dimension is not considered. It 
is assumed that shelf height and product supply limit is given only for one topmost 
sequence of facings with capping or nesting on it, i.e., only one horizontal sequence 
of facings is analyzed. The same case goes with the depth of the products and the 
depth of the shelf, which is also given for one front sequence of facings. If the depth 
of the investigated part of the shelf is exceeded, and if the product could be placed 
on both front and side orientations, it is possible to rotate it so that it could fit the 
depth limitations.

Fig. 3  Cappings allocation

max

jf

 

 

 

 

 

 

        

h
jp

 

h
jp  

ijf  

max

jc  
w
jp  

w
jp  

cappings 

facings 

Fig. 4  Nestings allocation

max

jn

max

jf

ijf

h
jp

h n
j jp p

nestings

facings
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Based on the above-mentioned suppositions, in order to solve the problem, the 
task is to calculate the number of facings fij , cappings cij and nestings nij of a product 
j which is allowed to be placed on the shelf i with regard to different constraints 
which, for clearness, can be grouped into 4 classes: shelf constraints, product con-
straints, multi-shelves constraints, and category constraints, in order to maximize 
the total retailer’s profit.

3.6  Problem formulation
Given the assumptions stated above, the shelf space management problem can be 
summarized as a following non-linear integer programming model. The model was 
first presented by Czerniachowska and Hernes [13].

fij—the number of facings of the product j (j = 1, ...,P) on the shelf i (i = 1, ..., S).cij
—the number of cappings of the product j  (j = 1, ...,P) on the shelf i (i = 1, ..., S)

.nij—the number of nestings of the product j (j = 1, ...,P) on the shelf i (i = 1, ..., S).

The formula (1) multiplies the profit from one product item pu
j
 by the number of 

the product items (fij + cij + nij) , thereby representing the total profit gained by the 
retailer.

3.7  Shelf constraints

(1)max

P∑
j=1

S∑
i=1

xijp
u
j
(fij + cij + nij)

xij =

{{
1, if product j is put to the shelf i

0, otherwise

}
, j = 1,… ,P, i = 1,… , S.

y
o1
ij
=

{
1, if product j is put to the shelf i on front orientation

0, otherwise

}
, j = 1, ...,P, i = 1, ..., S.

y
o2
ij
=

{
1, if product j is put to the shelf i on side orientation

0, otherwise

}
, j = 1,… ,P, i = 1,… , S.

(2)
P∑
j=1

fij

(
y
o1
ij
pw
j
+ y

o2
ij
pd
j

)
≤ sl

i
, i = 1, ..., S

xij

⎛
⎜⎜⎜⎜⎝
ph
j
+

⎡
⎢⎢⎢⎢⎢

cijxij

max

��
fij(y

o1
ij
pw
j
+y

o2
ij
pd
j
)

ph
j

�
, 1

�
⎤
⎥⎥⎥⎥⎥

⋅

�
y
o1
ij
pw
j
+ y

o2
ij
pd
j

�
+

�
nijxij

max
�
fij, 1

�
�
⋅ ph

j
pn
j

⎞
⎟⎟⎟⎟⎠
≤ sh

i
,

(3)j = 1, ...,P, i = 1, ..., S
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Constraint (2) restricts the shelf length. Constraint (3) assures that the height of each 
product on a shelf satisfies the shelf height limit. Capped products with front orienta-
tion ( po1

j
= 1 ) are placed in a way that their width results in additional height to the fac-

ings of the product. Capped products with side orientation ( po2
j
= 1 ) are placed in such 

a way that their depth results in additional height to the facings of the product. The total 
height equals the sum of the product height, cappings (Fig.  3) height and nestings 
(Fig. 4) height. Constructions xij∕max(fij, 1) are used for omitting cases with the divi-
sion by 0 if a product is not placed on the shelf. Constraint (4) restricts the shelf depth 
limit. Constraint (5) imposes the shelf weight limit.

3.8  Product constraints

(4)xij

(
y
o1
ij
pd
j
+ y

o2
ij
pw
j

)
≤ sd

i
, j = 1, ...,P, i = 1, ..., S

(5)
P∑
j=1

(
fij + cij + nij

)
pb
j
≤ sb

i
, i = 1, ..., S

(6)
S∑
i=1

xij ≥ smin
j

, j = 1, ...,P

(7)
S∑
i=1

xij ≤ smax
j

, j = 1, ...,P

(8)
S∑
i=1

(
fij + cij + nij

)
≤ ps

j
, j = 1, ...,P

(9)
S∑
i=1

fij ≥ fmin
j

, j = 1, ...,P

(10)
S∑
i=1

fij ≤ fmax
j

, j = 1, ...,P

(11)cij ≥ cmin
j

, j = 1, ...,P, i = 1, ..., S

(12)cij ≤ cmax
j

⋅

⎢⎢⎢⎢⎣

fij

�
y
o1
ij
pw
j
+ y

o2
ij
pd
j

�

ph
j

⎥⎥⎥⎥⎦
, j = 1,… ,P, i = 1,… , S
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Constraints (6) and (7) restrict for the multi-shelf products, the minimum and 
the maximum number of shelves where these products should be placed. Con-
straint (8) imposes the available supply limit for a product. Constraints (9) and 
(10) impose the product facings lower and upper bound. Constraints (11) and (12) 
provide the lower and upper bounds of cappings per position. Constraint (12) 
ensures that the number of product facings is enough for the capping, i.e., the 
product may be capped. Constraints (13) and (14) guarantee the lower and upper 
bounds of nestings per facing position. Constraint (15) ensures the presentation of 
either cappings or nestings for a product, but not both of them at the same time.

3.9  Multi‑shelves constraints

For multi-shelf products, the requirement is to put the product on all shelves 
in the same orientation in order to make it noticeable in the same way on all the 
shelves. Constraints (16)–(17) indicate that only one orientation (front or side) 
is available for each product. Constraint (18)ensures the same orientation of the 
product on all shelves. Constraints (19)–(20) ensure the possibility of the front or 
side orientation, respectively. Constraint (21) allows the product to be placed only 
on adjacent shelves. Constraint (22) ensures that the products in the same cluster 
are placed together on the same shelf.

(13)nij ≥ nmin
j

, j = 1, ...,P, i = 1, ..., S

(14)nij ≤ nmax
j

fij, j = 1, ...,P, i = 1, ..., S

(15)cij ⋅ nij = 0, j = 1, ...,P, i = 1, ..., S

(16)y
o1
ij
⋅ y

o2
ij
= 0, j = 1, ...,P, i = 1, ..., S

(17)y
o1
ij
+ y

o2
ij
= 1, j = 1, ...,P, i = 1, ..., S

(18)max
i=1,...,S

(y
o1
ij
) ≠ max

i=1,...,S
(y

o2
ij
), j = 1, ...,P

(19)y
o1
ij
≤ p

o1
j
, j = 1, ...,P, i = 1, ..., S

(20)y
o2
ij
≤ p

o2
j
, j = 1, ...,P, i = 1, ..., S

(21)∀(a, b ∶ |a − b| ≠ 1 ∧ a < b, a, b = 1, ..., S)[xaj ⋅ xbj = 0], j = 1, ...,P

(22)∀
(
a, b ∶ pl

a
= pl

b
, a, b = 1, ...,P

)[
xia = xib

]
, i = 1, ..., S
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3.9.1  Category constraints

Constraint (23) guarantees the minimum category size if the products of this cat-
egory exist on the shelf. Constraint (24) restricts the category tolerance between 
different shelves of the category in order to form the border between neighbouring 
categories. [...] denotes rounding to the nearest integer. Constraint (25) ensures the 
allocation of the products based on their sales potential subcategories. Products with 
lower sales potential can be placed on shelves with greater sales potential. Products 
with greater sales potential cannot be placed on shelves with lower sales potential.

3.9.2  Integrity constraints

(23)

⎛
⎜⎜⎜⎜⎝

P�
j=1,

pk
j
=k

fij(y
o1
ij
pw
j
+ y

o2
ij
pd
j
) ≥

�
sl
i
⋅ mk

�
⎞
⎟⎟⎟⎟⎠
∨

⎛
⎜⎜⎜⎜⎝

P�
j=1,

pk
j
=k

fij = 0

⎞
⎟⎟⎟⎟⎠
, i = 1, ..., S, k = 1, ...,K

(24)
max
i=1,...,S

⎛

⎜

⎜

⎜
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P
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j
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⎞
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⎟

⎟

⎟
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max
i=1,...,S

(sli) ⋅ tk

]

, k = 1, ...,K

(25)xij ≤ min(max(s
g

i
− p
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j
, 0), 1), j = 1, ...,P, i = 1, ..., S

(26)xij ⋅ s
l
i
⋅

(
y
o1
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+
y
o2
ij

pd
j

)
≥ fij, j = 1, ...,P, i = 1, ..., S

(27)xij ≤ fij ⋅
(
y
o1
ij
+ y

o2
ij

)
, j = 1, ...,P, i = 1, ..., S

(28)cij ≤ xij ⋅ c
max
j

⋅

⌊
fij(y

o1
ij
pw
j
+ y

o2
ij
pd
j
)

ph
j

⌋
, j = 1, ...,P, i = 1, ..., S

(29)nij ≤ xij ⋅ n
max
j

⋅ fij, j = 1, ...,P, i = 1, ..., S
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Constraints (26) and (27) ensure that when a product is placed on a shelf, the 
number of facings is non-zero and vice versa. Constraint (28) signifies capping rela-
tionships. Constraint (29) guarantees nesting relationships.

3.9.3  Decision variables

The binary decision variable (30) shows if the product j is placed on the shelf i . 
Decision variables (31)–(33) represent the number of facings, cappings and nestings of 
the product j on the shelf i , which are integers bounded by the given upper bound val-
ues. Binary decision variables (34)–(35) show if the product j is placed on the shelf i in 
the front or side orientation accordingly.

4  New SSAP heuristics

In this section, we propose heuristics that can be applied to the variety of SSAP 
instances with different product and shelf constraints specific to each shelf.

4.1  Main steps

The proposed algorithm can be represented along these lines. The main goal of this 
algorithm is to create all possible product allocations with regard to all constraints. In 
the beginning, the algorithm does not specify the number of facings, cappings and nest-
ings. It only determines if the product can be placed on the shelf. Next, the numeric val-
ues for facings, cappings and nestings are found based on the allocations received from 
the first procedures of the algorithm. Among the received allocations with facings, cap-
pings and nestings specified, the most profitable solution is selected.

(30)xij ∈ {0, 1}j = 1, ...,P, i = 1, ..., S

(31)fij = {fmin
j

...fmax
j

}j = 1, ...,P, i = 1, ..., S

(32)cij =

{
cmin
j

...cmax
j

⋅

⌊
fij(y

o1
ij
pw
j
+ y

o2
ij
pd
j
)

ph
j

⌋}
, j = 1, ...,P, i = 1, ..., S

(33)nij = {nmin
j

...nmax
j

⋅ fmax
j

}j = 1, ...,P, i = 1, ..., S

(34)y
o1
ij
∈ {0, 1}j = 1, ...,P, i = 1, ..., S

(35)y
o2
ij
∈ {0, 1}j = 1, ...,P, i = 1, ..., S
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Below the following notations are used. “Product sequence” means the 
sequence of products on one shelf with no regard as to which level this shelf will 
be situated ( s1 , s2 or s3 ). “Shelf sequence” means the simultaneous sequences for 
all of the shelves ( s1 , s2 and s3 ), created on the basis of the product sequences, 
the level of each shelf is known.

4.1.1  Main procedure GenerateProductOnShelfAllocations

This procedure selects the products from each category 
{j ∶ pk

j
= k, j = 1, ...,P, k = 1, ...,K} and generates possible product to shelf allo-

cations (whether a product is placed on the shelf or not) with regard to the con-
straints. All the sequential steps of the remaining procedures are explained 
below.
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4.1.2  GenerateTernaryValues procedure

This procedure constructs all sequences consisting of those product orientations 
which are allowed by product orientation constraints. The number of sequences is 
limited because, while generating, many allocations are excluded by the constraints 
which determine if a given product can be placed on the shelf or not. The allocations 
that do not satisfy all constraints can be excluded, which substantially reduces the 
number of generated sequences with respect to all possible ternary sequences.

According to the constraint (19) for the products with possible front orientation 
( po1

j
= 1 ) it generates ternary allocations using ‘0’s and ‘1’s. The number of such 

sequences is |||{j ∶ pk
j
= k, p

o1
j
= 1, j = 1, ...,P, k = 1, ...,K}

||| . E.g., 01,010—there are 
5 products in the category, the 2nd and the 4th product is put on the shelf in front 
orientation. In this sequence, the following notations are used: 0—not placed, 1—
front orientation, 2—side orientation.

Because the side orientation is the secondary one, all products have a front orien-
tation ( po1

j
= 1 ), but only a few of them have the additional side orientation 

( po2
j
= 1 ). Next, the procedure generates ternary allocations using ‘0’s and ‘2’s for 

products with possible side orientation ( po2
j
= 1 ) according to the constraint (20). 

The number of such sequences is |||{j ∶ pk
j
= k, p

o2
j
= 1, j = 1, ...,P, k = 1, ...,K}

||| . For 
example, if the sequence is 20110—there are 5 products in the category, the 1st 
product is put on the shelf in the side orientation, the 3rd and the 4this put on the 
shelf in the front orientation.

Obviously, this procedure generates sequences in a way that excludes duplica-
tions, i.e., ternary sequences must be generated for each product considering its 
orientation.

4.1.3  GenerateProductSequences procedure

According to the constraint (22), all cluster products must be put together on the 
shelf, so this procedure excludes the incorrect sequences from the set of ternary 
sequences. Only correct sequences are left so that.
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Which means that cluster products may be placed on the shelf together or may 
not be placed on the shelf at all.

In order to differentiate cluster and non-cluster products, the next parameter is 
defined.

Claim. In this step, the number of possible product on shelf allocations equals:

(36)

∀(k:k = 1, ...,K)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢

⎣

∑

j, a = 1, ...,P,

pkj = k,

plj = pla,

j ≠ a

xij =
|

|

|

{j:pkj = k, plj = pla, j ≠ a, j, a = 1, ...,P}||
|

⎤

⎥

⎥

⎥

⎥

⎥
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⎢
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j, a = 1, ...,P,

pkj = k,

plj = pla,

j ≠ a

xij = 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, i = 1, ..., S,

zj = min
j,a=1,...,P

(|||{j ∶ pk
j
= k, pl

j
= pl

a
, j ≠ a}

||| − 1, 1
)

zj =

{
1, if product j is in a cluster

0, otherwise

}
, j = 1, ...,P.
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Proof. For non-cluster products, take the total possible variations with repetitions. 
For cluster products, calculate variations with repetitions only for one product in a 
cluster (because cluster products cannot be placed separately).

4.1.4  GenerateShelfValues procedure

This procedure constructs sequences for products that must be allocated on shelves 
taking into account the sales potentials subcategory constraint (25). It generates 
sequences specifically for each shelf on the basis of the sequences from the proce-
dure GenerateProductSequences, i.e., for each shelf i (i = 1, ..., S) , only ternary 
sequences are left so that (pg

j
≤ s

g

i
).

4.1.5  GenerateShelfSequences procedure

From the sequences generated by the procedure GenerateShelfValues, this proce-
dure excludes the ones that do not satisfy the minimum and maximum shelf num-
ber limit (constraints (6)–(7)). In order to take into account how many shelves the 
product can be allocated on, a parameter is provided.sreal

j
—the real number of 

shelves to which a product can be allocated considering the shelf and the product 
sales potential subcategory sg

i
 and pg

j
 , the maximum number of shelves, which it 

can be allocated on is smax
j

.

(37)

∀(k ∶ k = 1, ...,K)

⎛
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Claim. The number of possible product on shelf allocations with regard to the 
minimum and the maximum number of shelves (constraints (6)–(7)) for the multi-
shelf products and sales potentials subcategory (constraint (25)) equals:

Proof. For non-cluster products, take all the possible variations with repeti-
tions from (37), leave only those where the product sales potential subcategory 
does not exceed the shelf sales potential subcategory (pg

j
≤ s

g

i
) . For cluster prod-

ucts, leave only those where the minimal sales potential subcategory in the clus-
ter does not exceed the shelf sales potential subcategory:

∀(k ∶ k = 1, ...,K)∀
�
j, a = 1, ...,P ∶ pk

j
= k, zj = 1, pl

j
= pl

a
, j ≠ a

�
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a
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p
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⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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If the products in a cluster have different sales potential subcategories, they must 
be put on the shelf with the sales potential subcategory equal or greater than the 
maximum sales potential subcategory in the cluster. If a product is placed on the 
shelf, it cannot be placed on another shelf, so we sum up only those sequences where ∑
i=1,...,S
p
g

j
≤s

g

i

1 ≤ smax
j

.

Claim. The total number of possible product on shelf allocations considering all 
categories equals:

Proof. The total number of possible products on shelf allocations considering all 
categories is a multiplication of previously found values for each category (formula 
(38)).

Claim. The total number of product allocations in a general case is

Number 3 represents the possible allocations of the product: (1) if it is not placed 
on the shelf, (2) if it is placed on the shelf in the front orientation, (3) if it is placed 
on the shelf in the side orientation. All products may be placed on all shelves 
simultaneously.

Claim. The total number of product allocations in a general case that takes cat-
egories into account is:

(39)
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In this formula, the total number of products P equals the sum of the number of 
products in each category, i.e. P =

∑
k=1,...,K

pk
j
=k

���{j ∶ pk
j
= k, j = 1, ...,P}

���.

Claim. The total number of product allocations in our case, which takes the cur-
rent constraints into account, can be reduced to:

The next steps of the procedure are as follows:

1. Exclude from the generated sequences the sequences with an incorrect orientation 
(constraints (16)–(18)).

2. Exclude from the generated sequences the sequences where the shelf depth limit 
is exceeded (constraint (4)).

3. Generate sequences with regard to the next shelf constraint (21). After this step, 
shelf permutations may be reduced. The number of shelf permutations may be 
left the same if there are no products allocated to multiple shelves in the given 
category.

4. From the generated set of sequences, exclude ones where the total width of facings 
lower bound on one shelf exceeds the total width of facings upper bound. Leave 
only those sequences that satisfy category tolerance between different shelves 
(constraint (24)).

5. Based on the {fmin
j

...fmax
j

} if, in the result, the empty shelves are not expected 
within the category, at this step, the sequences with all ‘0’s (empty shelf) and 

(42)
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consequently the sequences with all ‘1’s or ‘2’s (all products are put on this shelf) 
can be excluded.

6. Based on the assumption provided in step (5), get single shelf sequences and 
exclude empty and full shelves from them. In this step, we obtain the shelf 
sequences, which combine sequences for all shelves.

4.1.6  GenerateProductWidthSequences procedure

This procedure calculates the product sequence. The main steps of such a procedure are as 
follows:

(n)

{

   for 1 to 

GenerateProductWidthSequences

( )

( )

( )

( )

(

)

)

(

i n

CreateItems
FindWidthLB
GenerateVariableWidths
CalculateProfit
CalculateTo

FindSpaceCategory i
i
i

i
i
itals

Out

=

( )

   end

}

iputWidths

4.1.7  FindSpaceCategory procedure

In this procedure, the remaining length for a category is calculated based on the con-
straint (23). The same actions are done for weight.

The following notations will be used.bbin
j

—binary (0/1) value for the product j 
(j = 1, ...,P) in the current category in the sequence.bter

j
—ternary (0/2) value for the 

product j (j = 1, ...,P) in the current category in the sequence.clmin
k

—the minimum 
length of the category k (k = 1, ...,K).clmax

k
—the maximum length of the category k 

(k = 1, ...,K).cbmin
k

—the minimum weight of the category k (k = 1, ...,K).cbmax
k

—the 
maximum weight of the category k (k = 1, ...,K).ch

k
—the height of the category k 

(k = 1, ...,K).cd
k
—the depth of the category k (k = 1, ...,K).rj—the number of remain-

ing available items of the product j (j = 1, ...,P).

(44)xij = max
�
bbin
j
, bter

j
, 1
�√

b2 − 4ac, j = 1,… ,P, i = 1,… , S
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The formula (44) indicates if the product is put on the shelf in the investigated 
category in the current product sequence. Formulas (45) and (46) show if the prod-
uct is put on the shelf in the investigated category in the front (45) or side (46) ori-
entation. Formulas (47) and (48) represent the minimum and maximum category 
length on the shelf calculated on the facings from the given product sequence. For-
mulas (49) and (50) calculate the minimum and the maximum category weight. The 
category’s height (51) and depth (52) equal the corresponding shelf values.

4.1.8  CreateItems procedure

We model the problem as a knapsack with internal sections, each section of which is 
dedicated to the product of the defined type. Because all the products, according to 
the generated sequence, must be placed into the knapsack, each section must exist. 
The goal is to define the number of items of each product (fmax

j
+ cmax

j
+ nmax

j
) and in 

consequence, the size of the section.

(45)y
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}
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=

{
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)
= 2
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k

⋅ sb
i

sl
i

]
, i = 1, ..., S, k = 1, ...,K

(51)ch
k
= sh

i
, i = 1,… , S, k = 1,… ,K

(52)cd
k
= sd

i
, i = 1,… , S, k = 1,… ,K
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In this procedure, the items which will be later put in the knapsack are created in 
the following way. We have a bounded 0–1 knapsack, the set and the number of 
items (fmax

j
+ cmax

j
+ nmax

j
) which can be put into it is known. For each product in the 

current product sequence, we check if it is capped (cmax
j

> 0) or nested (nmax
j

> 0) . If 
not, we add all fmax

j
 items to the set. The number of items that are added to the set is 

calculated with regard to the supply limit (constraint (8)), lower and upper bound of 
product facings (constraints (9) and (10)), cappings per position (constraints (11) 
and (12)), nestings per facing (constraints (13) and (14)). The available number of 
nests per face is also under the control of the height limit (constraint (3)). The prod-
ucts that are added to the items are marked with a groupID given at the step of item 
creation. One capped (nested) item is assigned a groupID . The separate items which 
are included in this capped (nested) group have the same groupID . This means that 
separate items and capped (nested) items cannot be taken simultaneously. Therefore, 
the items which can be taken simultaneously have different groupID , otherwise 
capped (nested) items, and corresponding not capped (not nested) items have the 
same groupID , which means that we can take either capped (nested) or not capped 
(not nested) items in the same group, but not both of them.

4.1.9  FindWidthLB procedure

We represent the knapsack as a knapsack with sections inside; in each section, differ-
ent number of product items of the given type can be put. The total knapsack size is 
fixed; we modify only the size of the interior sections. In order to solve the knapsack 
problem later, this procedure defines the step stepp with which the section size will be 
increased or decreased, i.e., the greatest common divisor gcd for each product in the 
category, i.e., the smallest item width of the given product type in the item set. From 
the previous procedure where items have been created, it is known that items may be 
represented as single product facing or merged from some facings with capping above 
or nestings inside. So, the width of an item (both for capped and nested ones) and 
weight (only for capped items) will be different. Therefore, in this case,gcd equals the 
minimum width of the product in the group with the same index j , i.e., all products 
with the same index j have width divisible by the minimum width in the group.

In the next listing, the following notations are used:stepj—gcd of items in the group 
with the same j (j = 1, ...,P).startj—start width of the knapsack for items with index 
j (j = 1, ...,P).endj—end width of the knapsack for items with index j (j = 1, ...,P).t
—input parameter, a common multiple for stepp , used to take not one gcd but t ⋅ gcd of 
the product j (j = 1, ...,P) in order to perform local search faster.

The future width dimension for the product j will be [0, startj , startj + stepj … endj].

4.1.10  GenerateVariableWidths procedure

In this procedure, we define the multisection knapsacks variants of the total section 
number |||{j ∶ pk

j
= k, j = 1, ...,P, k = 1, ...,K}

||| . The widths of sections vary from startj 
to endj with the step stepj . All generated solutions are saved for later analysis.
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4.1.11  CalculateProfit procedure

In this procedure, we sort items by profit in non-ascending order. Next, we add items 
to the knapsack section one by one if its width does not exceed the section size, sup-
ply limit ps

j
 of the product j (also summing up cappings and nestings) is satisfied, 

and groupID for capped and nested items is the same.

4.1.12  CalculateTotals procedure

After the items have been chosen for each section of the knapsack, this procedure 
calculates facings, cappings, nestings, profit, width, weight, height, depth of each 
section of the knapsack.

4.1.13  OutputWidths procedure

In this procedure, we create a quality report for each width of the sections of the 
knapsack. Obviously, for each knapsack section size, different variants of totals will 
appear. Thus, for each binary bbin

j
 or ternary bter

j
 value of product allocations, for 

each total knapsack width and weight, take items set with maximum profit.

4.1.14  GetMaxProfitSolution procedure

This procedure selects the sequence with the appropriate numbers of facings fij , cap-
pings cij and nestings nij for the given product, which gives the maximum total profit. 
This is the best solution for the given product.

4.2  Proposed heuristics explanation

All heuristics described in this paper combine generated product sequences from 
4.1.3 (GenerateProductSequences procedure), shelf sequences from 4.1.5  (Gener-
ateShelfSequences procedure) and category totals (profit, width, weight, binary or 
ternary values of product allocations) from 4.1.14  (GetMaxProfitSolution proce-
dure). All heuristics search only for an appropriate solution based on a formula (42). 
Figure 5 illustrates common and distinct steps in all proposed heuristics.

5  Computational Experiment

The computational experiments evaluate the performance of the solutions of the 
developed heuristics for the presented shelf space allocation problem. As there is 
neither real-world data available due to commercial confidentiality nor any bench-
mark found in literature or available from open sources, simulated test problems 
were generated. All of their data is based on real-life data.

The computational experiments were implemented in Visual C# 2015 and MS 
SQL Server 2014.
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Fig. 5  Heuristics steps
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Language: Visual C# 2015
Microsoft Visual Studio Community 2015
Version 14.0.25431.01 Update 3
Microsoft.NET Framework
Version 4.6.01055
Microsoft SQL Server Management Studio12.0.2269.0
An optimal (or maximum feasible in some cases) solution to compare with has 

been found using commercial solver IBM ILOG CPLEX Optimization Studio Version: 
12.7.1.0.

5.1  Heuristics performance

Some of the advantages of the presented algorithms are:

• Lack of randomly selected elements, so there is no need to run it several times;
• Data is visible in each step and can be easily checked;
• The coefficient parameters that can also be easily estimated while watching the data.

Table 2 summarizes the number of solutions found by all heuristics where the heu-
ristics solution was the best (most profitable) feasible solution among those that were 
found by a given heuristic. Heuristic H3 was the best among all of them, finding the 
maximum solution in 20 cases. But as we see in Table 3, other heuristics found the 
maximum feasible solution also in cases where H3 cannot achieve this. So there is defi-
nitely a necessity for other implemented ones. Compared to the CPLEX solver, heu-
ristics found the solution in 34 cases while CPLEX in 23 cases only. In Table 3, we do 
not differentiate which of these solutions was better. Table 3 presents the total number 
of feasible solutions received. This observation proves the necessity of the heuristics 
because, clearly, instances for which CPLEX did not find a feasible solution do exist.

In order to estimate the performance of the heuristics, the following notations will 
be used.

Uh—the profit of the heuristics (calculated in formula (1)).
Uo—the profit of the CPLEX solution.

Table 3  Number of solutions 
found by Heuristics and by 
CPLEX Solver

Solution exists Heuristics CPLEX

Number of solutions 34 23

Table 2  Number of solutions found by Heuristics where Heuristics solution is a maximum feasible solu-
tion

Heuristics solution is a maximum feasi-
ble solution

Heuris-
tic H1

Heuristic  
H

2

Heuristic 
H

3

Heuris-
tic H

4

Heuristic 
H

5

Heuristic H
6

Number of solutions 4 18 20 5 5 9
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Uh∕Uo—the profit ratio of the heuristics to the optimal (or maximum feasible in 
some cases) solution.

Table  4 presents the quality of solutions found by heuristics compared to the 
CPLEX solver and to the results reported by Czerniachowska and Hernes [13]. It could 
be observed that the average profit ratio of the best heuristic is 95.25%, with minimal 
and maximal values of 87.78% and 99.84%, respectively. Not bad, but this situation 
should be improved in the future. As we remember from 4.1.13  we took items set 
with maximum profit for each equal width and weight. At this step, the less profitable 
sequences were excluded, only the best ones for each width and weight were taken, but 
later these best ones were excluded because of not satisfy other constraints. As we see, 
the CPLEX solver created a better solution on the basis of a not profitable sequence. 
So in future research, the method of including the worst sequences without increas-
ing their number so much should be proposed. Nevertheless, as we see, there are some 
advantages of the proposed approach. In 11 cases, heuristics found the solution, but 
CPLEX did not because there were few sequences to be analyzed, so taking the best 
sequences in 4.1.13 helped to create a feasible solution fast. It could be noticed that 
there was no reverse situation where CPLEX found the solution, but heuristics did 
not. In 11 cases, the solution was found neither by heuristics nor by CPLEX. This case 
illustrates a situation from the real world where retailers order something that cannot 
be implemented, e.g., there are too many products in the category that they cannot be 
placed in beautiful columns, it is better to divide them in some other way, minimum 
category size or category tolerance should be changed, the shelf weight or length does 
not fit, or the sales potentials of the products are incorrect so that on there are too many 
products one shelf and too few on another. All these errors are visible and could be 
analyzed at each described step. As we remember, if product sequences ( 4.1.3) or shelf 
sequences ( 4.1.5) could not be generated, there is no reason to waste time trying to find 
the solution to this data. In such a situation, a hint should be given to space planners 
explaining what constraint is not met and why and what should be corrected. The same 
thing happens if we receive too many sequences in one category and too few in another. 
As we see, the profit ratio does not depend on product number or on the shelf length, 
compared to the previous research. Based on the nature of the problem, CPLEX could 
find the solution neither for small instances (15 products) nor for large instances (50 
products). This depends on the category parameters, such as tolerance and minimum 
category size, as well as the number of possible product and shelf sequences to be gen-
erated. If the input data is too complicated, the solution could not be found by CPLEX, 
if the input data is less complicated, the solution could be found, but in this case, heu-
ristics would be slightly worse.

Comparing the obtained quality results with the results by Czerniachowska and 
Hernes [13], we can observe that the minimum and average profit ratios of the 
proposed heuristics are a bit higher. The minimum profit ratio is 87.78% (Table 4) 
compared to 86.80% of the mentioned research. The average profit ratio is 95.25% 
(Table 4) compared to 94.57% of the mentioned research. The maximum profit ratio 
is the same and equals 99.84%. The standard deviation of the proposed heuristics is 
3.93% (Table 4) compared to 4.17%, which makes them more stable.
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Table 4  The quality of the heuristics solution compared to CPLEX and the latest research

Products Shelf width Profit ratio Profit ratio reported by Czernia-
chowska and Hernes [13]

Solution exists

10 250 99.00% 98.30% Heuristics, CPLEX
375 98.52% 98.52% Heuristics, CPLEX
500 98.60% 97.93% Heuristics, CPLEX
625 97.49% 97.01% Heuristics, CPLEX
750 97.74% 97.31% Heuristics, CPLEX

15 250 Heuristics
375 Heuristics
500 Heuristics
625 Heuristics
750 Heuristics

20 250
375 99.84% 99.84% Heuristics, CPLEX
500 97.72% 97.72% Heuristics, CPLEX
625 92.68% 92.68% Heuristics, CPLEX
750 88.07% 88.07% Heuristics, CPLEX

25 250 99.20% 97.95% Heuristics, CPLEX
375 99.40% 98.77% Heuristics, CPLEX
500 90.19% 89.58% Heuristics, CPLEX
625 90.17% 89.16% Heuristics, CPLEX
750 93.67% 93.60% Heuristics, CPLEX

30 250
375
500
625
750

35 250
375 97.02% 97.34% Heuristics, CPLEX
500 91.49% 86.80% Heuristics, CPLEX
625 94.76% 90.87% Heuristics, CPLEX
750 93.30% 93.09% Heuristics, CPLEX

40 250
375 99.20% 97.40% Heuristics, CPLEX
500 90.88% 91.30% Heuristics, CPLEX
625 Heuristics
750 Heuristics

45 250
375 87.78% 87.87% Heuristics, CPLEX
500 95.86% 95.86% Heuristics, CPLEX
625 Heuristics
750 98.04% 98.08% Heuristics, CPLEX
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The processing time for searching for the maximum feasible solution, which on 
average varies from 16.79 up to 54.55 s comparing all heuristics. The heuristic H5 
was the fastest. The heuristic H6 was the slowest.

Table  5 compares the total time of execution of heuristics in the proposed 
approach and in the research by Czerniachowska and Hernes [13]. Total time for 
our approach means the sum of execution times of all 6 heuristics. The total time for 
the research by Czerniachowska and Hernes [13] means the sum of execution times 
of both 2 heuristics that they proposed. We used such a measure of the total time 
because we needed to run all 6 heuristics before we got the answer or decided which 
heuristics was the best.

Comparing the achieved time results with the results by Czerniachowska and 
Hernes [13], we can notice that proposed heuristics, on average, found the solu-
tion slower (15.36 min), compared to 10.82 min in previous research. But total time 
combines the time of all 6 heuristics. On average, the execution time of one heu-
ristics is less than a minute, so it is faster than the average execution time of a sin-
gle heuristics in the previous research. The time limit for CPLEX was set to 2 min 
because it is slightly more than the average execution time of a single heuristics in 
our research. But in most cases, CPLEX spent for solution significantly less than 
2 min.

The heuristic H1 is used for initial space searching when neither the solution 
range nor approximate profit for each category is known. The heuristic H2 is used 
for the improvement of the solution, which was found by the heuristic H1 . Steer-
ing parameters of the heuristic H2 help to improve the total solution because they 
improve the partition solutions for each category. The heuristic H3 is also used for 
the improvement of the solution, which was found by heuristic H1 , but it is used 
when there are too many results to check that heuristic H2 cannot do this in a rea-
sonable time. The heuristics H4 , H5 , H6 are appropriate for large instances and can 

Table 4  (continued)

Products Shelf width Profit ratio Profit ratio reported by Czernia-
chowska and Hernes [13]

Solution exists

50 250

375

500 Heuristics

625 Heuristics

750 Heuristics
Min 87.78% 86.80%
Avg 95.25% 94.57%
Max 99.84% 99.84%
St.Dev 3.93% 4.17%
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Table 5  Total time of execution of heuristics in the proposed approach and in the research by Czernia-
chowska and Hernes [13]

Products Shelf width Total time [min] of the 
proposed 6 heuristics

Total time [min] of the 2 heuristics 
reported by Czerniachowska and Hernes 
[13]

10 250 4.23 3.17
375 6.23 1.68
500 5.59 2.33
625 9.81 4.66
750 4.82 4.44

15 250 6.01 2.06
375 5.27 1.49
500 7.35 1.50
625 20.63 1.45
750 10.30 1.07

20 250 12.41 0.00
375 28.41 21.96
500 10.59 12.27
625 31.56 7.78
750 31.25 16.59

25 250 10.00 19.55
375 28.38 35.62
500 10.53 3.22
625 7.71 2.91
750 22.38 18.63

30 250 10.48 0.00
375 24.79 0.00
500 46.59 0.00
625 8.47 0.00
750 5.34 0.00

35 250 9.88 0.00
375 14.89 50.32
500 14.19 4.42
625 15.70 19.41
750 12.26 6.03

40 250 5.96 0.00
375 12.37 46.26
500 8.51 3.86
625 11.54 6.13
750 33.74 25.35

45 250 20.02 0.00
375 22.92 5.07
500 26.52 15.79
625 22.15 13.23
750 27.51 25.40
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process a large amount of data very fast. They differ from each other by steering 
parameters, grouping methods, and sorting order.

Table 6 shows the total number of product allocations in the general case (formu-
las (40) or (41)) and the total number of product allocations of the proposed solu-
tion by authors (formula (42)) calculated on the basis of the test data. As can be 
observed, there is a huge difference between the general case and our method. It 
should be highlighted that in our proposed heuristics, only data that satisfy all the 
constraints is taken in each step. That is why the reduction in the number of solu-
tions is so visible and so high.

Table 5  (continued)

Products Shelf width Total time [min] of the 
proposed 6 heuristics

Total time [min] of the 2 heuristics 
reported by Czerniachowska and Hernes 
[13]

50 250 7.15 0.00

375 9.96 0.00

500 25.43 5.45

625 11.75 8.39

750 9.70 89.29
Min 4.23 0.00
Avg 15.36 10.82
Max 46.59 89.29
St.Dev 9.78 17.03

Table 6  The total number 
of product allocations in the 
general case compared to the 
proposed solution

Products Number of product alloca-
tions in the general case

Authors’ proposed num-
ber of product allocations

10 2.06·1014 7.68·102

15 2.95·1021 3.69·104

20 4.24·1028 9.83·104

25 6.08·1035 2.36·106

30 8.73·1042 2.83·107

35 1.25·1050 4.72·106

40 1.80·1057 4.35·1010

45 2.58·1064 9.66·109

50 3.70·1071 6.68·1013
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6  Conclusion

This paper focuses on the SSAP in order to maximize the total profit. Retailers are 
looking for expert solutions or advice on how to differentiate and allocate prod-
ucts while minimizing lost revenue, maximizing profit, find a balance between 
meeting customer needs and multiple inputs. Based on the NP-hard nature of the 
problem examined, which is an extension of a knapsack problem and is difficult 
to be solved, there is a growing interest of scientists in developing heuristics and 
metaheuristics for the SSAP.

We proposed 6 heuristics and gave detailed practical algorithms with enough 
explanation, which are ready to be implemented in other category management 
problems. The first 3 heuristics are better for small instances. The last 3 ones are 
designed especially for large instances, as they process large amounts of data in 
a very short time. Examples of implementation and changing steering parameters 
are also included. The new practicable mathematical model was developed with 
the objective of maximizing the retailer’s profit, which takes into account mer-
chandising visual products display, i.e., horizontal products grouped into catego-
ries and vertical shelf levels based on the products’ values and sales potentials.

To examine the performance of the proposed heuristics, 45 test cases were 
investigated. Among them, heuristics found solutions in 34 cases while CPLEX 
in 23 only. The profit ratio of the developed heuristics in the best case on average 
is 95.25%, with its minimal and maximal values 87.78% and 99.84%, accordingly.

The main characteristics which differentiate the proposed solution techniques 
from the previous ones are the lack of randomly generated or randomly selected ele-
ments and the fact that data in all described steps is visible and can be easily ana-
lyzed or adjusted by the coefficient steering parameters. In 11 cases where a solution 
was not found, the bits of advice of changing data could be given to category plan-
ners, i.e., changing the product grouping method, increase the minimum category 
size and tolerance, and reassign sales potentials. Very frequently, it occurs that the 
category planner cannot estimate if the solution exists. In the simplest case, the pro-
posed steps of product and shelf sequence generation help him with this task. This 
detail also differentiates our research from the previous ones because it has a method 
of checking constraints quickly. The next steps could show which category does not 
meet constraints if the solution is not found. Heuristics execute in a couple of sec-
onds or minutes, depending on the instance and heuristic type. A shorter calculation 
time is achieved because, in the beginning, we reduce the search space, generating 
only the possible product and shelf sequences, and then only the correct single parts 
of the future solution are taken, excluding the combinations which do not satisfy the 
constraints. So in all steps of the proposed algorithm, only the correct parts of the 
constructed solutions are considered. In most metaheuristics, there are random local 
searches, crossovers, and mutation operations that can make a correct solution infea-
sible, and thus, repair procedures have to be used. For example, Czerniachowska 
[10] developed a correction and solution improvement procedure in order to obtain 
the appropriate solution after each GA step. She also excluded a shelf with large 
packaged products from GA implementation and adopted dynamic programming to 
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solve it optimally. Thus, different methods were used for solution correction. But in 
the current research, the heuristics generate only appropriate solutions which do not 
need to be corrected.

As for the limitation of the proposed heuristic approach, there is no solution com-
ponent evaluation while composing the whole solution. For example, in a genetic 
algorithm, highly rated components can be selected for crossover and solution crea-
tion at further steps. In the proposed approach, we can control the number of solu-
tions generated and evaluate the total solution.

The results of the research can be used, for example, in order to implement a shelf 
space allocation module in retail information systems. There are several interesting, 
practically relevant questions and directions available for future investigation. We 
recommend the shelf space allocation model with included constraints of store lay-
out for future research. It would be interesting and practically relevant to expand 
the proposed mathematical model with the goal of maximizing customer traffic. In 
addition, the model should consider clockwise or anti-clockwise customer direction.
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