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Abstract
In India, the number of infections is rapidly increased with a mounting death toll 
during the second wave of Coronavirus disease (COVID-19). To measure the sever-
ity of the said disease, the mortality rate plays an important role. In this research 
work, the mortality rate of COVID-19 is estimated by using the Susceptible-
Exposed-Infected-Recovered-Dead (SEIRD) epidemiological model. As the dis-
ease contains a significant amount of uncertainty, a fundamental SEIRD model with 
minimal assumptions is employed. Further, a basic method is proposed to obtain 
time-dependent estimations of the parameters of the SEIRD model by using histori-
cal data. From our proposed model and with the predictive analysis, it is expected 
that the infection may go rise in the month of May-2021 and the mortality rate could 
go as high as 1.8%. Such high rates of mortality may be used as a measure to under-
stand the severity of the situation.

Keywords COVID-19 · SEIRD model · Mortality rate · Parameter estimation

1 Introduction

The number of infections of COVID-19 in India has put it as the second-worst 
affected country in the world with more than 350,000 reported cases. There is a 
notable imbalance between the supply and the demand of medicines and oxygen cyl-
inders in the healthcare system. With every passing day, the death toll rises with 
3000 deaths reported every day due to COVID-19 pandemic. This infectious disease 
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is historically different in the following ways. The asymptomatic cases, one of the 
cause of virus transmission among the healthy population, are practically unno-
ticed by the healthcare system. Also, the government policies, social movements 
and actions by healthcare departments of any country are not yet well studied in 
epidemiology.

In the literature, a variety of stochastic and mathematical models with different 
complexity levels were presented and discussed ( [1–4], etc.). Few of them vali-
dated the COVID-19 pandemic results and predicted the trajectory of COVID-19 
in order to match the available data of the region under consideration ([1–3], etc.). 
Note that all these models follow one common approach, i.e., introducing distin-
guishable compartments to all the possible states of a person living in an affected 
region. Stanford Model [5] assumed different compartments such as exposed, symp-
tomatic, pre-symptomatic, hospitalized, and recovered for a COVID-19 patient’s 
journey from beginning to end. This assumption led to a large number of unpredict-
able interactions when the parameters of the mathematical models are tuned accord-
ingly. With every single moment, the rapid rise in COVID-19 cases caused the exact 
data recording task challenging and unreliable. Consequently, mathematical model-
ling with such data may be questionable and the confidence interval of the obtained 
results may be uncertain. Thus, the trade-off between the description and accuracy 
of the mathematical model should be given the the greatest preference.

The best way to measure mortality is by calculating rate of mortality rather than 
counting the number of deaths as the number of deaths is heavily influenced by 
the number of people who are at the risk of dying. Therefore, the mortality rate is 
considered as the fundamental criterion to assess the state of any disease. In this 
research work, the mortality rate is estimated with the historical data. It is observed 
that the results shown in this work are significantly relevant to the actual data and 
contain less absolute percentage of error.

The rest of this paper is organized as follows: Sect. 2 represents a review over the 
relevant mathematical models developed for COVID-19 outbreak. The Susceptible-
Exposed-Infected-Recovered-Dead (SEIRD) model is proposed and the mechanism 
of mortality rate calculation is described in Sect. 3. Further, case study of COVID-
19 pandemic by using India data is discussed in Sect. 4. Finally, concluding remarks 
are summarized in Sect. 5.

2  Literature review

During COVID-19 pandemic, the prediction and the mortality rate may be estimated 
by using various epidemiological models, namely, Susceptible-Infected-Recovered 
(SIR), Susceptible-Exposed-Infectious-Removed (SEIR), Susceptible-Exposed-
Infectious-Removed-Death (SEIRD), etc. In the last three decades, a lot of research 
works were carried out to measure the mortality rate. A few relevant ones are as 
follows, Piccolomin and Zama [6] proposed a forced SEIRD model for analysis and 
forecast of the COVID-19 spread in the Italian region. By comparing the predicted 
results with the actual data, it was concluded that the model is quickly adapted to 
monitor various infected areas at different epidemic stages.
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To predict about the COVID-19 outbreak, its dynamic behaviour should be con-
sidered as the major factor. Therefore, Rapolu et  al. [7] studied a time-dependent 
SEIRD model to anticipate the COVID-19 transmission. A SEIRD model based 
on partial differential equations was studied by Viguerie et al. [8]. They presented 
a strong qualitative agreement between the simulated data of the spatio-temporal 
COVID-19 spread and epidemiological data for the Italian region of Lombardy. The 
identification and estimation of the SEIRD model for COVID-19 are discussed in 
[9]. The identification of the model from the observed number of deaths and con-
firmed cases is not up to the mark. Thus, by using the Monte Carlo method, Korolev 
[9] finds some fairly accurate estimations for reproduction numbers. Ala’raj et  al. 
[10] developed a dynamic hybrid model based on SEIRD and studied the properties 
related to the COVID-19 pandemic. Their model analyzed the real-time data and 
provided long-term and short-term forecasts with confidence intervals.

He et al. [2] proposed a SEIR model based on the conditions of hospitals, quaran-
tine, and external inputs for COVID-19 spread. Lopez and Rodo [11] presented the 
modified SEIR compartmental model by incorporating the effects of varying propor-
tions of lock-downs responsible for minimizing the COVID-19 infection. Further, 
Carcione et al. [12] extended a SEIR epidemiological model to analyze the tailored 
measures of epidemic control. The tailored measures of epidemic control contained 
group-specific protection and the use of tracing apps.

Roda et  al. [13] investigated that a SIR model performed better than a SEIR 
model in representing the confirmed-case data using the Akaike Information Cri-
terion (AIC) for COVID-19. Mondal and Antonopoulo [14] adapted SIR modelling 
for the prediction of the novel COVID-19 disease and studied its functionality. To 
track the transmission and recovering rate at time t, Chen et al. [1] performed a time-
dependent SIR model for COVID-19.

Okuonghaea and Omame [15] discussed the impact of various non- pharmaceu-
tical control measures (government and personal) on the population dynamics of 
COVID-19 for Lagos and Nigeria. Through the numerical simulations, they showed 
the effect of control measures such as common social distancing, use of face mask, 
and case detection on the dynamics of COVID-19 spread.

Several other researchers discussed different approaches to predict the COVID-19 
outbreak and to capture the trend of various COVID-19 cases. Singhal et al. [4] stud-
ied two different models; the first model is the parametric model for various parame-
ters relating to the spread of the virus, while the second one is a non-parametric model 
based on the Fourier decomposition method (FDM), fitted on the available data. They 
provided the results for India, Italy, and the United States of America (USA). The 
cases of COVID-19 were compressed into a short period and were strongly shaped 
by population aggregation and heterogeneity by Rader et  al. [16]. By pairing their 
estimates with globally comprehensive data on human mobility, they predicted that 
crowded cities worldwide could experience more prolonged epidemics. Different 
models on Auto-Regressive Integrated Moving Average (ARIMA) were developed to 
predict the epidemiological behavior of COVID-19 in Italy, Spain, and France [3].

All over the world, during January 2020–June 2021, mortality is mostly affected 
by COVID-19, analyzed by John Hopkins University & Medicine [17]. Liang et  al. 
[18] studied the factors related to cross-country variation in COVID-19 mortality. The 
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COVID-19 mortality rate is positively related to the proportion of the population aged 
65 or older and transport infrastructure quality. However, it is negatively related to the 
COVID-19 test number per 100 people, government effectiveness, and the number of 
hospital beds. An optimal control model for the spreading of the COVID-19 pandemic 
was discussed by Dhaiban and Jabbar [19]. The effect of population density on COVID-
19 spread and related mortality in India was investigated by Bhadra et al. [20]. By using 
correlation and regression analysis of infection and mortality rates due to COVID-19, 
they found moderate relation between COVID-19 spread and population density.

3  Model description

In this section, a variant of the SEIR epidemiological model is used, namely, 
SEIRD, which computes the number of people infected (or dead) with a contagious 
illness for a total population at a given time.

The total population, say N, is partitioned into five compartments:

• Dn ∶ The number of deceased individuals till the nth day.
• Rn ∶ The number of recovered individuals till the nth day.
• In ∶ The number of infectious individuals on the nth day. These individuals may 

infect others. This compartment is called the infectious individuals compartment.
• En ∶ The number of exposed individuals on the nth day. These individuals are 

already infected with the virus but are not yet infectious. This compartment is 
called the exposed individuals compartment. Over the time, these individuals 
may become cause of spreading the disease while transitioning into the infec-
tious individuals compartment.

• Sn ∶ The number of susceptible individuals on the nth day. When a susceptible 
person comes in close contact with an infectious one, he may contract the virus 
and will be transitioned into the exposed individuals compartment.

Therefore, for a given nth day, we have Sn + En + In +Rn +Dn = N . While transi-
tioning from one compartment to another, individuals behavior will be governed by 
the following system of equations:
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where

– �i
n
 is the number of individuals that are currently in Sn and will be infected by 

the ith individual of In on the nth day. These will be transitioning into En+1.
– �i

n
 is 1 or 0 depending on whether an ith individual of En will go to In+1 (and 

hence become infectious) or not.
– � i

n
 is 1 or 0 depending on whether an ith individual of In will transition to Rn+1 

(after recovering from the disease).
– �i

n
 is 1 if the virus results in the death of the ith of In , thereby transitioning to 

Dn+1 ; otherwise 0.

Here, for n, i ∈ ℕ , �i
n
 , � i

n
 , and �i

n
 are assumed to be independently and identically 

distributed random variables. Let � , � and � be the respective expectations of �i
n
 , 

� i
n
 , and �i

n
 . Here, � represent the rate of exposed becoming infectious, � represent 

the probability of an infectious individual recovering in a day and � represent the 
probability of an infectious individual dying in a day. Another variable � represent 
the number of infectious people interact with others per day. Though the case of 
�i

n
 is more subtle than it seems, ∀ n , i ∈ ℕ , these are assumed to be independently 

and identically distributed if the population is infinite. Due to the finite population, 
infectious individuals are bound to make contact with those who have already recov-
ered and hence are immune for the time. Since � can be considered as the number of 
infectious people interact with others per day and the probability of the occurrence 
of �i

n
 is given by Sn

N
 , it is observed that �i

n
 is a binomial distributed random variable 

with parameters � and Sn
N

 . Thus, the expression for expectation of �i
n
 becomes:

Let E[Sn] = Sn, E[En] = En, E[In] = In, E[Rn] = Rn and E[Dn] = Dn. Using the 
process governing equations, the expectation for the random sum of �i

n
 , by Wald’s 

equation, is given by [21]
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Similarly, the expectation for the random sum of other random variables are [21]

Thus, the expected number of individuals in different compartments are as follows 
[21]:

In the proposed model, the values of the parameters are taken as � = 0.2 as men-
tioned in [22] and � = 0.1 as mentioned in [22]. The parameters � and � will be esti-
mated by using the historical data in Sect. 4.

3.1  Mortality rate

The mortality rate on the nth day, say MRn , which depends on the ratio of the number 
of people who died due to COVID-19 and the number of people who got infected on 
that day, is calculated as

(3)E
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∑

i=0

�i
n

]

=E[In]E[�
i
n
] = �In

Sn

N
.

(4)E

[

En
∑

i=0

�i
n

]

=E[En]E[�
i
n
] = �En

(5)E

[

In
∑

i=1

� i
n

]

=E[In]E[�
i
n
] = �In

(6)E

[

In
∑

i=1

�i
n

]

=E[In]E[�
i
n
] = �In.
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N
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(9)In+1 =In + �En − �In − �In

(10)Rn+1 =Rn + �In

(11)Dn+1 =Dn + �In.

(12)MRn =
Dn − Dn−1

In
, ∀ n ∈ ℕ.
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This may provide inaccurate results. The reason is that patients, who died on a par-
ticular day, were infected by the virus roughly two weeks before. To obtain the bet-
ter results, it should be considered into account. Backer et al. [23] mentioned that 
the time between the contraction of the virus and the onset of symptoms is approxi-
mately 14 days. On the other side, Huang et al. [24] and Wang et al. [25] reported 
that the median time from the onset of the symptoms to being admitted into the 
intensive care unit (ICU) is near about ten days. Additionally, the World Health 
Organization (WHO) mentioned that the time between the onset of symptoms and 
death ranges from two weeks to 8 weeks [26]. Hence, there is a requirement to intro-
duce mortality rate based on the ratio of the number of people who died and the 
number of people who got infected few days back.

Therefore, true mortality rate, say TMRn , which is obtained by dividing the num-
ber of deaths on nth day by the number of confirmed COVID-19 infections kth days 
before of that nth day, is defined as

where k ∈ ℕ . This calculation counts k as 14 as mentioned in [23].

4  Results and discussion

The model described in Sect. 3 will be employed to obtain the results for the predic-
tion of the mortality rate with the India data [27].

4.1  India data

Figure 1 depicts the variation in daily confirmed cases in India during the past 
few months. While India was celebrating its success in combating the first wave 
of COVID-19, the number of COVID-19 infections again began to increase in 

(13)TMRn =
Dn − Dn−1

In−k

Fig. 1  Daily confirmed cases 
in India
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March 2021 and afterwards. The number of infections per day was more in com-
parison with the earlier reported cases in India. Consequently, India unexpectedly 
entered deep into the second wave of coronavirus. In the total tally of infections, 
India reached at the second position after USA.

The main cause of this sudden surge was considered as a mutant of the earlier 
version, commonly known as the double mutant. This particular strain was found 
in many countries, like, UK, South Africa, etc., other than India. Though it has 
been a subject of global interest, but it is still not confirmed scientifically. The 
transmission of the virus from an infected person to a susceptible one is very 
much similar as it happened in the first wave (Oct 2020). Since the spread of 
this virus is dependent on location, person, etc., it is difficult to characterize the 
behavior of this virus at the equal level all over India. One other prime factor 
behind the massive increase in the number of cases is the increased testing drive.

4.2  Parameter estimation

It is very important that parameter values should be estimated appropriately and 
efficiently. Values of the parameters � and � are considered as provided by Kuniya 
et al. [22]. This section is devoted for estimating the values of � and � by using 
the historical data for India [28]. These parameters are prone to fluctuate due to 
their correlation with the political state of the region. Though the lockdown is 
supposed to be the best way to reduce the virus transmission, uplifting the previ-
ously imposed restrictions may tend to increase the people’s interaction in per-
son. Further, it is also observable that these parameters are different for dispa-
rate regions. Therefore, the parameters should be estimated based on the data to 
relate the model with the actual senario. Kuniya et al. [22] proposed an estima-
tion method in which the parameter is a simple random variable and the estimate 
is a single value. Since such methods may be inaccurate at times, a basic method 
to find a time-dependent estimate for the parameters � and � using historical data 
is intended to present in this paper to improve the accuracy of the model.

The parameter � is estimated by taking the average of �̂n , where by using Eq. 
(11), �̂n is calculated as follows

Here, �Dn represents the difference between the number of deceased individuals on 
n − 1th day and nth day, i.e., �Dn = Dn − Dn−1 and, In−1 represents the data of the 
number of infected individuals on n − 1th day. By using the historical data, � is esti-
mated as 0.0012.

Further, the following steps are for the estimation of � , say �̂n . 

Step 1: By using Eq. (9) and using the data of the number of infected individuals till 
the nth day, the number of exposed individuals may be calculated by 

�̂n =
�Dn

In−1
.
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where �In represents the difference between the number of infected individu-
als on the n − 1th day and nth day, i.e., �In = In − In−1 , � = 0.1 [22] and � = 0.2 
[22].

Step 2: By using Eq. (8), the estimate for � is made from the exposed individuals as 

where �En−1 represents the difference between the number of exposed individu-
als on the n − 2

th day and n − 1
th day, i.e., �En−1 = En−1 − En−2.

Results of the proposed estimation process of � and � are shown in Figs. 2 and  3, 
respectively.

En−1 =
1

�
(�In + (� + �)In−1)

(14)�̂n =
N

In−2Sn−2
(�En−1 + �En−2)

Fig. 2  Estimate for �
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These estimations are for the first wave in India. Notice that there is an over-
all downward trend with seasonal fluctuations. Such behavior may be attributed 
to the overall incessant efforts of the authorities and public to keep the virus in 
check. The second wave, as discussed earlier, is assumed to follow similar transi-
tion patterns as the first wave. The next section discusses the predictions made for 
the second wave.

4.3  Model predictions

The expected number of infectious and deceased individuals are predicted using 
the model (Eq. (1)) and data [27] provided in the previous sections. Infectious 
means the total number of active infections at a point of time, which is equal to 
the cumulative sum of all daily reported infections minus the cumulative sum of 
daily removals (removals include both the recovered and deceased individuals). 
For deceased individuals, the average daily number of deaths is predicted.

To run the model and simulate the number of infectious individuals, a starting 
point is needed. This work makes predictions starting from April 2021 till August 
2021. Naturally, 1st April 2021 is chosen as the initial point and the model is run 
using Eq. (9). Figure 4 exhibits the predictions for several active infections. It is 
observed from Fig. 4 that in the one-month prediction, i.e., in May 2021 the abso-
lute percentage error for infectious individuals (calculated as 
∣In(actual)−In(predicted)∣

In(actual)
× 100%) is less than 20% . After the one-month prediction, the 

absolute percentage error increases, and from June 15, 2021 onwards the absolute 
percentage error decreases.

The second wave of coronavirus in India looks much harsher than the first one. 
The peak infections are much ahead and the daily impending death toll is creating 
havoc within the country.

From the predictions, it is inferred that the peak of the second wave is expected 
to occur somewhere in May 2021 with expected active infections of well over 4 mil-
lion. The second wave is higher than the first one but it is expected that the number 
of infections returning to a manageable scale by August 2021.

The predictions for the number of daily deceased individuals are shown in Fig. 5. 
It is noticed from Fig. 5 that in the one-month prediction, i.e., in May 2021 the abso-
lute percentage error is less than 30% . The absolute percentage error for the number 
of daily deceased individuals is calculated as

After the one-month prediction, the absolute percentage error slightly increases and 
decreases but the fluctuation is less than 37% and from June 23, 2021, onwards the 
absolute percentage error decreases.

The daily count for the deaths due to COVID-19 is expected to peak near the end 
of May 2021 with the count going as high as 5000. In the next section, mortality rate 
is estimated and predicted using the results obtained here.

∣ (Dn − Dn−1)(actual) − (Dn − Dn−1)(predicted) ∣

(Dn − Dn−1)(actual)
× 100%.
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4.4  Estimation of true mortality rate

As mentioned earlier, the way usual mortality rate calculated using Eq. (12) is 
fundamentally inaccurate because of the lag between the time of infection and the 
time of death. Figure 6 shows the estimates for mortality rate.

Further, the TMR formula is used to obtain the accurate mortality rate and the 
results are shown in Fig. 7.

TMR is found to somewhat higher than the usual one. TMR shows high death 
rates and an upward trend during the period March-April, 2021, which seems 
realistic. It is claimed that TMR provides a more accurate picture of the disease.

Further, Eq. (13) is applied to the predicted number of infections and deaths 
from the model, depicted in Fig. 8. It predicts that the mortality rate is expected 
to stay high (more than 1%) for most of the time post-March 2021, while peaking 
with a value of almost 1.8% near the beginning of May 2021. The absolute per-
centage error for TMR is calculated as ∣TMR(actual)−TMR(predicted)∣

TMR(actual)
× 100% . Also, in 

the initial predicted month for TMR, i.e., in May 2021, the absolute percentage 
error is less than 30% . After the one-month prediction, the absolute percentage 
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error increases, and from June 26, 2021, onwards the absolute percentage error 
decreases.

5  Conclusions and future work

In this paper, the SEIRD model is presented as a tool to predict the dynamic behav-
ior of COVID-19 cases in India using available data of the reported cases of his-
torical data. The SEIRD or SEIR model consists of  susceptible, exposed, infectious, 
recovered and dead cases while  SIR model is restricted to susceptible, infectious 
and recovered cases. Since SIR model does not consider the  latent stage (the 
exposed individuals), it will be an  inappropriate model to employ in the proposed 
scenario. Therefore, SEIR \& SEIRD models can provide better approximation as 
compare to  SIR model [12]. The mortality rate of COVID-19 is estimated by taking 

Fig. 7  True mortality rate
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into account the dynamic behavior of the spread of the disease. It was inferred that 
the infections are expected to peak in May-2021 and the mortality rate could go as 
high as 1.8%. Such high rates may be used as a measure to understand the sever-
ity of the pandemic. There is an advantage that this predictive methodology can be 
applied in any region, if the historical data is available. This analysis will be useful 
in making important decisions such as health care policies in India. In future work, 
the estimated results can be validated by the simulation model. In future, our pro-
posed model can also be extended by obtaining well established reproduction rate 
(R) along with mortality rate. Also, the scenarios effects (base, best, worst, etc.) on 
a monthly basis helping policies on restrictions like lock down can also be incorpo-
rated in future.
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