
Vol:.(1234567890)

OPSEARCH (2020) 57:376–390
https://doi.org/10.1007/s12597-019-00403-1

1 3

APPLICATION ARTICLE

Implementing fries model for the fixed lifetime inventory
system

O. Izevbizua1 · J. S. Apanapudor2

Accepted: 11 August 2019 / Published online: 28 August 2019
© The Author(s) 2019

Abstract
Many methods have being used for finding optimal ordering policy for the fixed life-
time inventory system. The dynamic programming approach is one of such methods.
Hitherto, the claim is that the approach is not applicable to systems with lifetime
greater than two periods. In this work, we used a total cost function in the litera-
ture to derive the equations for the ordered quantity in each period, for a products
with lifetime greater than two periods. MATHEMATICA 8 was used to solve the
equations.

Keywords Inventory · Dynamic programming · Fixed lifetime · Useful lifetime ·
Ordering policy

1 Introduction

The dynamic programming approach is one of the methods used in obtaining opti-
mal solution for multi-stage inventory problems (other methods were discussed in
[1, 2]). Fixed lifetime inventory model which include the assumptions that orders
are placed every period can be formulated as a dynamic programming problem. This
is exemplified by the works in [3, 4]. To use the method, the associated cost func-
tion is formulated as a recursive equation. The dynamic programming approach for
the fixed lifetime inventory problem was extensively discussed in [4] and concluded
that “Because the dimension of the state variable is proportional to the lifetime
of the stock in periods, computing an optimal policy is feasible only for relatively
short lifetimes. One quickly faces the “curse of dimensionality” that plagues many
dynamic programming formulations. We re-examine the dynamic programming
approach for the fixed lifetime inventory system using the model in [4] as a case

 * O. Izevbizua
 orobosa.izevbizua@uniben.edu; maorobo@yahoo.com

1 Department of Mathematics, University of Benin, Benin City, Nigeria
2 Department of Mathematics, Delta State University, Abraka, Nigeria

http://orcid.org/0000-0003-0693-0180
http://crossmark.crossref.org/dialog/?doi=10.1007/s12597-019-00403-1&domain=pdf

377

1 3

OPSEARCH (2020) 57:376–390

study. Ordering policies were obtained for each period and the resulting equations
were solved using MATHEMATICA 8. Numerical examples was carried out for
items with lifetime between 3 and 21 periods.

1.1 Problems with existing

Obtaining optimal ordering policy for products whose lifetime is more than two
periods was difficult because of the dimension of the state variables. The higher the
lifetime of the product the more state variables to deal with. Too many variables
complicate the computation of optimal policy. Fries introduce the dynamic program-
ming method to handle this situation. Dynamic programming methods can be used
to obtain optimal policy for products whose lifetimes are greater than two periods.

1.2 Fries model

Assumptions of Fries model.

 (i) Time is divided into discrete periods that are numbered backwards from the
planning horizon.

 (ii) Units expire at the end of period m
 (iii) Leadtime is zero
 (iv) New order are placed depending on unexpired inventory
 (v) Expired units are removed from inventory
 (vi) No backlogging of demand.
 (vii) Issuing policy is FIFO.

The dynamic programming approach is applicable whenever we order m times in
m periods. For example, if m = 4, m is lifetime of product , we order four times in

Table 1 Model outlook for
m = 4

Period 1 2 3 4 5 6 7 8 9 10 11 12

y1 x12 x13 x14

y2 x22 x23 x24

y3 x32 x33 x34

y4 x42 x43 x44

y5 x52 x53 x54

y6 x62 x63 x64

y7 x72 x73 x74

y8 x82 x83 x84

y9 x92 x93 x94

y10 x10,2 x10,3

y11 x11,2

y12

378 OPSEARCH (2020) 57:376–390

1 3

four periods. The number of useful periods remaining on the items brought forward
after their first period in inventory is n = 3 . New orders are received every period
and items are issued from inventory following FIFO (oldest units first). Table 1
gives the model outlook for m = 4.

In Table 1, y1 arrives in period 1. At the start of period 2, items from the first
order reduces to x12 and y2 arrives. At the start of period 3, items from the first and
second orders reduces to x13 and x22 and y3 arrives. At the start of period 4, items
from the first, second and third orders reduces to x14 , x23 and x32 and y4 arrives. The
items from the first order will not go beyond period 4 since the lifetime of the prod-
uct is 4. Any item from the first order not used to meet demand at the end of period
4 outdate and must be discarded. The process continues for the remaining orders.
This was the dynamic process considered in [4]. The total cost function obtained is;

The model in [4] has a parameter x , that determine whether to order or not to
order. x is defined as the positive solution to the equations

or

(1)

fn(w) = min
y≥0 {−cW1 + V(wm−1) + Gn−1(w, y)}, w ≥ 0, (n = 1, 2, 3,…)

where

Gn−1(w, y) = cy + L(y) + �

∞

�
0

fn−1(z) �(t) dt

L(y) = h

y

�
0

(y − t)f (t)dt + p

∞

�
y

(t − y)f (t)dt

V(x) = v

x

�
0

(x − t)f (t)dt

c = ordering cos t

h = holding cos t

p = shortage cos t

v = outdate cos t

𝛼 = discounting factor, 0 < 𝛼 < 1

m = lifetime

y = order quantity

wj = w1 + w2 +⋯ + wm−1 on hand inventory

w = (w1,w2,…wm−1) ≥ 0

(2)L1(x) + c = 0

(3)L1(x) + c − �cF(x) = 0

379

1 3

OPSEARCH (2020) 57:376–390

If x < x , where x = x1 + x2 +⋯ + xm−1 , we order y . Where y is the solution to
the equation

If x ≥ x we do not order.
The time horizon in [4] is divided into three time eras, namely:

The decision to order or not to order in each era depends on whether or not the total
inventory on hand is less than the critical number. For each time era in Eq. (1), we
derive an equation for the critical number and the ordered quantity.

(4)G1

n−1
(w, y) = cy + L(y) + �

∞

∫
0

fn−1(z)�(t)dt

n = 1, 1 < n < m and n ≥ m

L(y) = h

y

�
0

(y − t)f (t)dt + p

∞

�
y

(t − y)f (t)dt

V(x) = v

x

�
0

(x − t)f (t)dt

fn(w) = min
y≥0

{
−cW1 + V(wm−1) + Gn−1(w, y)

}

Gn−1(w, y) = cy + L(y) + �

∞

�
0

fn−1(z)�(t)dt

f0(w) = 0

fn(w) = −cW1 + V(wm−1) + cy + L(y) + �

∞

�
0

fn−1(z)�(t)dt ; n = 1, 2, 3,…m − 1

f1(w) = −cW1 + V(wm−1) + cy + L(y)

f2(w) = −cW1 + V(wm−1) + cy + L(y) + �

∞

�
0

f1(z)�(t)dt

f3(w) = −cW1 + V(wm−1) + cy + L(y) + �

∞

�
0

f2(z)�(t)dt

.

.

.

fm−1(w) = −cW1 + V(wm−1) + cy + L(y) + �

∞

�
0

fm−2(z)�(t)dt

380 OPSEARCH (2020) 57:376–390

1 3

Case 1 n = 1

If W1 < x∗ , order up to x∗ , otherwise, do not order; where x∗ is the unique
solution to the equation

This shows we can only proceed if c < p.
To obtain W1 , we differentiate f1(w) with respect to y and evaluate at y = W1 There-

after we compare the value of x from Eq. (5) with W1 obtained. If W1 obtained is less
than x then we order up to x that is order y1 = x −W1 otherwise we do not order. Now

(5)

L1(x∗) + c = 0 and the demand density is f (t) = �e−�t

where

L(x∗) = h�

x∗

∫
0

(x∗ − t)e−�tdt + p�

∞

∫
x

(t − x)e−�tdt

L(x∗) = h�

⎧⎪⎨⎪⎩

x

∫
0

xe−�tdt −

x

∫
0

te−�tdt

⎫⎪⎬⎪⎭
+ p�

⎧⎪⎨⎪⎩

∞

∫
x

te−�tdt −

∞

∫
x

xe−�tdt

⎫⎪⎬⎪⎭

= h�

�
−xe−�t

�

����
t=x

t=0

+ (
te−�t

�
+

e−�t

�2
)
����
t=x

t=0

�
+ p�

�
(
−te−�t

�
−

e−�t

�2
)
����
t=∞

t=x

+
ye−�t

�

�����

t=∞

t=x

�

= h�

�
−xe−x�

�
+

x

�
+

xe−x�

�
+

e−x�

�2
−

1

�2

�
+ p�

�
xe−x�

�
+

e−x�

�2
−

xe−x�

�

�

= h�

�
−xe−x�

�
+

x

�
+

xe−x�

�
+

e−x�

�2
−

1

�2

�
+ p�

�
xe−x�

�
+

e−x�

�2
−

xe−x�

�

�

= hx +
he−x�

�
−

h

�
+

pe−x�

�

= e−x�
�
h

�
+

p

�

�
+ hx −

h

�

so that

dL

dx∗
+ c = 0, yields

− e−x�{h + p} + h + c = 0

e−x�(h + p) = h + c

e−x� =
h + c

h + p

x∗ =

Log
�
h+c

h+p

�

−�

381

1 3

OPSEARCH (2020) 57:376–390

W1 is the solution to the equation

Case 2 1 < n < m.

If w ∈ An, (where An,is the ordering region) order up to y∗
n
(w) > W1 ; otherwise, do

not order; where y∗
n
(w) solves.

G1

n−1
{w, y∗

n
(w)} = 0 and y∗

n
(w) ≤ x , and x is the solution to the equation

f1(w) = −cW1 + V(wm−1) + cy + L(y) + �

∞

∫
0

f0(w)�(t)dt

but f0(w) = 0, so we have

f1(w) = −cW1 + V(wm−1) + cy + L(y)

�f1

�y

||||y=W1

= L1(W1) + c

(5.1)

L1(W1) + c = 0

− e−W1�
(
h

�
+

p

�

)
+ h + c = 0

e−W1�(h + p) = h + c

e−W1� =
h + c

h + p

W1 =

Log
[
h+c

h+p

]

−�

(6)

L1(x) + c − �cF(x) = 0

where

F(x) = 1 − e−�t

L(x) = h�

x

∫
0

(x − t)e−�tdt + p�

∞

∫
x

(t − y)e−�tdt

L(x) = e−x�
{
h

�
+

p

�

}
+ hx −

h

�

dL

dx
= −e−x�(h + p) + h

so that

dL

dx
+ c − �cF(x) = 0, yields

− e−x�(h + p) + h + c − �c(1 − e−x�) = 0

− e−x�(h + p) + h + c − �c + �ce−x� = 0

e−x�(h + p − �c) = h + c − �c

e−x� =
h + c − �c

h + p − �c

x∗ =

Log
[
h+c−�c

h+p−�c

]

−�

382 OPSEARCH (2020) 57:376–390

1 3

For each n = 2, 3,…m − 1 , we compute yn(w) from G1

n−1
{w, yn(w)} = 0 and

We compare yn(w) with x obtained from (6). Tables 2 and 3 gives the required

Table 2 Gn−1(w, y), for some values of n

n Gn−1(w, y)

2
G1(w, y) = cy + L(y) + �

∞∫
0

f1(w)�(t)dt

3
G2(w, y) = cy + L(y) + �

∞∫
0

f2(w)�(t)dt

4
G3(w, y) = cy + L(y) + �

∞∫
0

f3(w)�(t)dt

5
G4(w, y) = cy + L(y) + �

∞∫
0

f4(w)�(t)dt

Table 3 Gn−1(w, y), for some values of n

n Gn−1(w, y)

2
G1(w, y) = cy + L(y) + ��

∞∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt

3 G2(w, y) = cy + L(y) + ��

{∞∫
0

(
−cW1 + V(wm−1) + cy + L(y) +

[
��

(∞∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt

)])
e−�tdt

}

4 G3(w, y) = cy + L(y)

+ ��

⎧⎪⎨⎪⎩

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y) + [��(

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y)

+ [��(

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt)])e−�tdt])e−�tdt

⎫
⎪⎬⎪⎭

5
G4(w, y) = cy + L(y) + ��{

∞∫
0

(−cW1 + V(wm−1) + cy + L(y) + [��(

∞∫
0

(−cW1 + V(wm−1) + cy + L(y)+

[��(

∞∫
0

(−cW1 + V(wm−1) + cy + L(y) + [��(

∞∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt])e−�tdt])e−�tdt)e−�tdt}

383

1 3

OPSEARCH (2020) 57:376–390

equations for computing yn(w).

y2 is obtained from G1

1
(w, y) = 0

Now

G1(w, y) = cy + L(y) + ��

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt

G1(w, y) = cy + e−�y(
h

�
+

p

�
) + hy −

h

�
− cW1� + cy� + vx� − vx�e−x� −

v�

�
+

v�e−x�

�
+ vx�e−x�

+
�e−�y(h + p)

�
+ h�y −

h�

�2

so that

�G1

�y
= c� − �e−�y(h + p) + h� + c − e−�y(h + p) + h = 0

e−�y(�(h + p) + (h + p)) = c + h + c� + h�

e−�y =
c + h + c� + h�

�(h + p) + h + p

y2 =

Log
[
c+h+c�+h�

�(h+p)+h+p

]

−�

y2 =

Log
[

c+h)(1+�)

(h+p)(1+�)

]

−�

384 OPSEARCH (2020) 57:376–390

1 3

y3 is obtained from G1

2
(w, y) = 0

Now

G2(w, y) = cy + L(y) + ��

⎧⎪⎨⎪⎩

∞

∫
0

⎛
⎜⎜⎝
−cW1 + V(wm−1) + cy + L(y)

+

⎡
⎢⎢⎣
��(

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt)

⎤
⎥⎥⎦

⎞
⎟⎟⎠
e−�tdt

⎫
⎪⎬⎪⎭

G2(w, y) = cy +
e−�y

�
(h + p) + hy −

h

�
− cW1� + cy� + vx� − vx�e−x�

−
v�

�
+

v�e−x�

�
+

�e−�y(h + p)

�
+ hy� −

h�

�
− cW1�

2

+ cy�2 + vx�2 + vx�2e−x� −
v�2

�
+

v�2e−x�

�
+ v�2xe−x�

+
�2e−y�(h + p)

�
+ h�2y +

h�

�2

so that

�G2

�y
= c − e−�y(h + p) + h + c� − �e−�y(h + p) + h� + c�2

− �2e−�y(h + p) + h�2 = 0

e−�y(h + p + �(h + p) + �2(h + p)) = c + h + c� + h� + c�2 + h�2

y3 =

Log
�
c+h+c�+h�+c�2+h�2

h+p+�(h+p)+�2(h+p)

�

−�

y3 =

Log
�
c(1+�+�2)+h(1+�+�2)

h+p(1+�+�2)

�

−�

y3 =

Log
�
(c+h)(1+�+�2)

(h+p)(1+�+�2)

�

−�

385

1 3

OPSEARCH (2020) 57:376–390

y4 is obtained from G1

3
(w, y) = 0

G3(w, y) = cy + L(y)

+ ��

⎧⎪⎨⎪⎩

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y) +

⎡⎢⎢⎣
��

⎛⎜⎜⎝

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y)

+[��(

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt)

⎤⎥⎥⎦

⎞⎟⎟⎠
e−�tdt])e−�tdt

⎫⎪⎬⎪⎭
so that

�G3

�y
= c� − �e−�y(h + p) + h� + c�2 − �2e−�y(h + p) + h�2 + c�3 − �3e−�y(h + p)

+ h�3 + c − e−�y(h + p) + h = 0

e−y� =
h + c + h� + c� + h�2 + c�2 + h�3 + c�3

h + p + �(h + p) + �2(h + p) + �3(h + p)

y4 =

Log
�
h+c+h�+c�+h�2+c�2+h�3+c�3

h+p+�(h+p)+�2(h+p)+�3(h+p)

�

−�

y4 =

Log
�
(h+c)(1+�+�2+�3)

(h+p)(1+�+�2+�3)

�

−�

y5 is obtained from G1

4
= 0

G4(w, y) = cy + L(y)

+ ��

⎧⎪⎨⎪⎩

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y) +

⎡⎢⎢⎣
��

⎛⎜⎜⎝

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))

+

⎡⎢⎢⎣
��

⎛⎜⎜⎝

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))

+

⎡⎢⎢⎣
��

⎛⎜⎜⎝

∞

∫
0

(−cW1 + V(wm−1) + cy + L(y))e−�tdt

⎞⎟⎟⎠

⎤⎥⎥⎦
e−�tdt

⎞⎟⎟⎠

⎤⎥⎥⎦
e−�tdt

⎤⎥⎥⎦

⎞⎟⎟⎠
e−�tdt

⎫⎪⎬⎪⎭
G1

4
(w, y) = 0, yields

y5 =

Log
�
h+c+h�+c�+h�2+c�2+h�3+c�3+h�4+c�4

h+p+�(h+p)+�2(h+p)+�3(h+p)+�4(h+p)

�

−�

y5 =

Log
�
(h+c)(1+�+�2+�3+�4)

(h+p)(1+�+�2+�3+�4)

�

−�

386 OPSEARCH (2020) 57:376–390

1 3

A careful observation shows that the pattern for obtaining the order quantities can
be generalized using Eq. (7)

(7)
yn =

Log

�
h+c+

∑n−1

i=1
h�i+c�i

h+p+
∑n−1

i=1
�i(h+p)

�

−�
, n = 2.3.4,…m − 1

Table 4 Ordering policy for a
product with 3 useful lifetime

Time era x∗ W1 y

n = 1 78.4839 78.4839 –
1 < n < m 79.8595 78.4839
n ≥ m 78.4839

78.4839
78.4839

Table 5 Ordering policy for a
product with 4 useful lifetime

Time era x∗ W1 y

n = 1 69.1485 69.1485 –
1 < n < m 84.4766 69.1485

69.1485
n ≥ m 69.1485

69.1485
69.1485
69.1485

Table 6 Ordering policy for a
product with 12 useful lifetime

Time era x∗ W1 y

n = 1 95.3011 95.3011 –
1 < n < m 97.6289 95.3007

95.3007
95.3007
95.3007
95.3007
95.3007
95.3007
95.3007
95.3007
95.3007

n ≥ m 95.3007
95.3007
95.3007
95.3007
95.3007

387

1 3

OPSEARCH (2020) 57:376–390

Case 3 n ≥ m.

If W1 < x , order up to yn(w) > W1 ; otherwise do not order, where
yn(w) solves G1

n−1
{w, yn(w)} = 0 and yn(w) ≤ x . The x∗ in Eq. (6) for case 2 is the

same for case 3.

1.3 Problem with Fries model

The application of Fries model is dependent on the availability and knowledge
of computer. Inventory managers with little or no knowledge of the comput-
ers cannot apply the model. The model places new order every period, if the
demand is low the amount of items outdating may be high and this is a major
problem for the fixed lifetime inventory system.

Table 7 Ordering policy for a
product with 21 useful lifetime

Time era x∗ W1 y

n = 1 95.2799 95.2799 –
1 < n < m 97.6067 95.2799

95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799
95.2799

n ≥ m 95.2799
95.2799
95.2799
95.2799
95.2799
95.2799

388 OPSEARCH (2020) 57:376–390

1 3

2 Numerical examples

In this section, we give numerical examples for fixed lifetime products whose
useful lifetimes are 3, 4, 12 and 21 periods. The results for each product is shown
in Tables 4, 5, 6, and 7.

Example 1 Lifetime of product is 3. Using Eqs. (5) and (6) we obtain x∗ for time era
n = 1 and 1 < n < m.

Table 8 Ordering policy for
bread

Period Time era x∗ W1 y

1 n = 1 98.2280 98.2280 –
2 1 < n < m 120.5866 98.2280
3 98.2280
4 n ≥ m 98.2280
5 98.2280
6 98.2280
7 98.2280

Table 9 Lifetime and CPU time
for some fixed lifetime products

S/n Lifetime of product CPU time (s)

1 3 0.485
2 4 0.532
3 5 0.554
4 12 0.63
5 21 0.685

m

CPU time.
0.50 0.55 0.60 0.65

5

10

15

20

Fig. 1 Lifetime versus computer time

389

1 3

OPSEARCH (2020) 57:376–390

Analysis We don’t order in period 1 because W1 = x∗ . We order 78.4839 in periods
2, 3, 4, and 5 since y < x∗ . The CPU time is 0.48 s.

Example 2 Lifetime of product is 4. Using Eqs. (5) and (6) we obtain x∗ for time era
n = 1 and 1 < n < m.

Analysis We don’t order in period 1 because W1 = x∗ . We order 69.1485 in periods
2, 3, 4, 5, 6 and 7 respectively. The CPU time is 0.532 s.

Example 3 Lifetime of product is 12. Using Eqs. (5) and (6) we obtain x∗ for time era
n = 1 and 1 < n < m.

Analysis We don’t order in period 1 because W1 = x∗ . We order 95.3007 in peri-
ods 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 respectively. The CPU time is
0.63 s.

Example 4 Lifetime of product is 21. Using Eqs. (5) and (6) we obtain x∗ for time era
n = 1 and 1 < n < m.

Analysis we don’t order in period 1 because W1 = x∗ . We order 95.2799 in periods
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and
26 respectively. The CPU time is 0.685 s.

2.1 Application to real life problem

The dynamic programming method was applied to bread inventory by an inventory
manager in Benin City, Nigeria. Bread is a fixed lifetime product with a useful life of
4 days. The result for a period of seven (7) days is shown in Table 8.

Lifetime of bread is 4 days. Using Eqs. (5) and (6) we obtain x∗ for time era
n = 1 and 1 < n < m.

Analysis We don’t order in period 1 because W1 = x∗ . We order 98 breads in
periods 2, 3, 4, 5, 6 and 7 respectively. The CPU time is 0.532 s.

2.2 Computer time

Table 9 shows the CPU time for some values of m . Clearly, the CPU time
increases with increasing m. For m = 21, the computer time is 0.685 s. Figure 1
shows the computer time reported in Table 9.

390 OPSEARCH (2020) 57:376–390

1 3

3 Conclusion

For m > 2 , the dimension of the dynamic programing approach is high and dif-
ficult to handle. This is why the prevailing view on the dynamic programing
approach is that it is unrealizable in practice when the dimension exceed 2 peri-
ods. However, the use of computer programmes makes it easy and the computing
time is fast. For f = � e−�t which is the widely used distribution in the literature,
we found the computer time in seconds for products with fixed lifetime between
3 and 21 periods. The computing process is routine and does not require spe-
cial techniques. Using the model in [4], we computed ordering policy for prod-
ucts with lifetime 3, 4, 12, and 21 periods. For the four products considered, we
observed that the quantity ordered is the same in all the periods except period
one. The implication of this is that outdating may be high when the demand is
low, since the same quantity of items arrives inventory every period. Finally, the
model was applied by an inventory manager to bread inventory.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. Nahmias, S., Pierskalla, W.P.: Optimal ordering policies for a product that perishes in two peri-
ods subject to stochastic demand. Nav. Res. Logist. Q. 20(2), 207–229 (1973)

 2. Izevbizua, O., Omosigho, S.E.: A review of the fixed lifetime inventory system. J. Math. Assoc.
Niger. 2, 188–198 (2017)

 3. Fries, B.E.: Optimal ordering policy for a perishable commodity with fixed lifetime. Oper. Res.
23(1), 46–61 (1975)

 4. Nahmias, S.: Perishable inventory systems. Int. Ser. Oper. Res. Manag. Sci. (2011). https ://doi.
org/10.1007/978-1-4419-7999-5_1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4419-7999-5_1
https://doi.org/10.1007/978-1-4419-7999-5_1

	Implementing fries model for the fixed lifetime inventory system
	Abstract
	1 Introduction
	1.1 Problems with existing
	1.2 Fries model
	1.3 Problem with Fries model

	2 Numerical examples
	2.1 Application to real life problem
	2.2 Computer time

	3 Conclusion
	References

