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Abstract The highly dispersive optical solitons with gen-
eralized quadratic—cubic nonlinear self—phase modulation
are the subject of this research. The governing model was
reduced to an ordinary differential equation using the Sardar
sub-equation method, which was then examined in two dif-
ferent ways. To provide a strong framework for the answers,
the parameter limits were also listed.
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Introduction

The concept of highly dispersive (HD) solitons was con-
ceived just a few years ago [1-3]. It is out of extreme
necessity that the concept of highly dispersive solitons has
emerged [4-6]. Solitons are the outcome of a delicate bal-
ance that exists between chromatic dispersion (CD) and
self-phase modulation (SPM) effect [7-9]. Occasionally
during intercontinental transmission, CD can run low and
thus the balance is compromised [10—-12]. This can lead to
catastrophic situations. Thus, to replenish the low count of
CD, one needs to introduce higher-order dispersive effects
[13-15]. This would enable the balance between CD and
SPM to be maintained, which in turn would ensure the sta-
ble transmission of pulses across intercontinental distances
[16—18]. The additional dispersive effects that are typically
taken into account stem from inter-modal dispersion (IMD),
third-order (30D), fourth-order (40D), fifth-order (50D),
and sixth-order (60D) dispersions and were consequently
included [19-21]. These dispersive effects collectively form
the HD optical solitons [22-24]. A couple of negatively
impacted features are inevitable with the presence of the
higher-order dispersion terms [25-27]. The soliton veloc-
ity drastically slows down with such higher-order dispersive
effects [28-31]. The other aspect of negativity is the heavy
soliton radiation. This paper addresses the highly dispersive
optical solitons after neglecting the effects of soliton velocity
and the soliton radiation. The governing model is the non-
linear Schrodinger’s equation (NLSE), which is considered
with the generalized quadratic-cubic (QC) form of SPM. The
model with the QC form of SPM has been recently studied
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[1]. The paper focuses on the retrieval of optical soliton solu-
tions to the model with the generalized form of the QC form
of SPM by the aid of Sardar’s sub-equation scheme. This
would lead to the recovery of optical solitons and complexi-
tons that are enumerated in the work. The existence criteria
of such solitons are also presented.

Governing model

Within the context of [1], the HD-NLSE is characterized by
its generalized QC nonlinearity:

iqt + iale + Arq + ia3qxxx + A4 xexx

. 1
+la5qxxxxx+a6qxx_xxxx+ (b1|q|n+h2|Q|2n)q: 0. ( )

Equation (1) introduces g = ¢(x, t), a complex-valued func-
tion representing the optical wave. Here, x signifies the prop-
agation distance along the optical medium, while ¢ denotes
the time variable. The refractive index structure adheres to a
generalized QC form, with SPM effects stemming from the

coefficients of bj for j = 1, 2, thereby introducing quadratic and
cubic effects sequentially. The power-law nonlinearity param-
eter is denoted by n. The term ig, illustrates the optical wave’s
temporal evolution within the nonlinear medium. Additionally,
the coefficients of a; for j = 1 — 6 contribute to inter-modal
dispersion, chromatic dispersion, third-order, fourth-order,
fifth-order, and sixth-order dispersions, respectively.

Travelling wave solution

The solutions to Eq. (1) are considered as:

q(x, ) = u(&)e’™" 2)

Here, £ = x — yt represents the wave variable, and
0(x,t) = —kx + wt + 6, stands for the phase component
of the soliton. The amplitude component of the soliton is
denoted by u(&), with y representing its speed. Furthermore,
k refers to the soliton frequency, w signifies its wavenumber,
and 6, is the phase constant. By utilizing Eq. (2) and its
derivatives, Eq. (1) undergoes transformation to:

(ay + 3ask — 6k*a, — 10k as + 15k ag)u” + i(a, — y — 2a,k — 3azk* + da,k® + 5k'as — 6K ag)u'—
(0 —kay + KPay + Kay — ak* — Kas + kag)u + i(ay — dak — 10k2as + 20ik’ag)u® + (a, + Skas — 15K%aq)u®+  (3)

i(as — 6agk)u® + agu® + by + byu*+ = 0.

Equation (3) can be decomposed into its real and imagi-
nary parts, expressed as follows:
(ay + 3ask — 6k*a, — 10k a5 + 15k ag)u”
- (w — ka, + K*a, + Kay — a,k* — Kas + k6a6)u
2 (C)) 6 “)
+ (a4 + Skas — 15k a6)u + agu
+ b]un+] + b2M2n+l — 0’

and

(a1 = v = 2ark = 3a3k> + 4a,k° + 5k*as — 6k ag)ut
+ (a; — 4a,k — 10K%as + 20ik3ag)u® )
+ (a5 - 606/() M(S) = 0

From Eq. (5), we get

y = a, — 2ka, — 8a,k*> — 96azk’ (6)
whenever
az = (4azk + 40agk™) (7

@ Springer

and
as = (6agk) ®)

Equation (4) can be written as:

c;u® + agu® + (blu'”'1 + b2u2”+1) =0 )
where

o = ka, — 3a,k* — 40a4kS (10)
a, = —k*(6a, + 75a5k*) an
and

3 = (a4 + 15ak*) (12)

Setting
w=vr 13)

Equation (4) becomes:
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1-nl1-2n1-3n
+
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"2

-n
/4] +ag [V + 6 vh/y®
n

+151 noa (4)+151—n1 2”312(4)++10 N a2
n n n n
-nl- -nl- - 14
+ 601 nl va3v,v,,v(3) + 201 nl 2n 1 31’1\}2\},3\}(3) ( )
n n n n n
+ 151 -nl-— 2nv3v,,3 +451 -nl-=-2n1- 3nv2v,2v,,2
n n n n n
+151 n1—2n1—3n1—4nw,,v,4+ 1 —n1—2n1—3n1—4n1—5nv,6]
n n n n n n n n n
+ n(blv7 + bzvs) =0.
Sardar sub-equation method (SSEM) CaseI: 5, = 0.
If#, > 0 and 5, # O, then we get:
The SSEM offers a significant advantage in its ability to
generate a wide array of soliton solutions, ranging from dark ~ P*(£) = +, /— M h ( ) <0
. . ’ > j 1 5 -+t P4 sec Pq \/’7_15 > (17)
and bright to singular forms, as well as more intricate com- (b
binations like mixed dark-bright, dark-singular, bright-sin- and
gular, and mixed singular solutions. Furthermore, it extends
its utility by providing rational, periodic, trigonometric, and N m
various other solution types. VO ==x4/-p qn—zcschpq(\/n_lé), >0 18
In this approach, to address Eq. (14), we adopt the
assumption that the solution follows the format proposed in ~ Where
references [14, 15]: 2
h = ——— ,csch
. ety (VE) = et sy ()
(&) = ) A4,P"(E), Ay # 0. (15) ) (19)
n=0 = pe\/’l_lf _ qe_\/'i—lé
Here, A, (n =0, 1, ..., N) represents constants to be deter- ,
mined subsequently. The integer N is established using the Case II: 1, = iZ—‘ and n, > 0.
homogeneous balance method, balancing the nonlinear term If 7, < 0, then we arrive at:
and the highest-order derivative in Eq. (15). Additionally, the
function W"(¢) in Eq. (15) must fulfill the following equation: . n n
WE(E) = +4 /—jtanhpq —51.»: (20)
, 2
W (&) = \/mP©* + n e+, (16)
where 1, (I = 0, 1, 2) are constant values. . m m,
Based on the parameters #;, Eq. (16) yields different Y@ == _2_,120 othy, -5 ¢ 2D
known solutions, as outlined below [12, 13]:
WEE) = 24 - 5 (tanh (\/—2;715) + iy/pgsech, <\/—2n1§)) 22)
2
WEE) = 44 /- T (coth (\/—2;715) + \/pqcschpq<\/—2nl§>> 23)
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and

. 1 M m M
Y6 = iz —2—]12<tanhpq( _§§> icothm< Té)) (24)
where /¢ with the nonlinear linear term v® in Eq. (14). This yields

6N + 6 = 8N, resulting in N = 3. Consequently, Eq. (15)
transforms to:

Ve _ e
e e
tanh,, (y/76) = 529
peVE 4 geVme > 3
_ (25 v©®) = (A+ LY+ LY+ 1397) (26)
h pe‘/af + ge Ve
t =
cothy, (v/1€) peVmE _ geVne For Ay = 4, = 4, = 0, we get:
V(&) = A3 @7
Application of the modified sardar sub-equation

By substituting Eq. (27) and its derivatives, along with
method y g Eq. (27) g

Eq. (16), into Eq. (14), we derive:

We initiated our analysis by applying the principle of the
homogeneous balance method, balancing the nonlinear term

S4aq

”lyl“(;hlp“ + 1Y + 1) (840m,> W0 + 680m,1, W* + (252501, + 81n,%)¥*

+20mym ) + 3(4ﬂ\1ﬂz3t}'2c3 4+ 60q =11 =21
n n n
1—2n1-3
B ISR (O (W + R+ 1) 3Y2) (200 + 9,2 20 ) (¥

1-nl=2n; 4 2 5 3
— W (W + V2 + 1) (4m, ¥ + 3,9 + 2n9)

1
n

WO3W2 (3 (41,97 + 3n, ¥ + 25,V |

+20a, -
n

+mP% + 1) + 3[162 -

+27. ~ D92 [ (40,9 + 30,9 + 21, %) + 81 1 p " —nzn : :13’1‘1"4('72‘?4 + 18+ )]
+ag[10 0 (20, + 9y ¥ + 2m)” (my ¥+ ¥ 4 )
+15 1 ; n%qﬁ [3 (4’72lPS + 3;7]lP3 + 2’70T)]3

1—n1—2n1—3an6(
n n n

+45 OV (1, W + 1 W2 + 1) ) [3(4m % + 3, W3 + 200W) |

+ 151 ;n ! —nZn ! —n3n ! _’14”1113 [3(4’12‘115 +3n, P + 2’70‘11)] (9T4(”2T4 +m P+ ”0))(9T4(”2T4 +m P+ ’70))
1-n1-2n1-3nl1-4n1->5n
+ (
n n n n n

+n(b A3 + by A7) = 0.

0P (my P + m¥? + 1)) (99 (¥ + m P2 + 1) ) (9 (m,P* + 1 W2 + 1) )]

(28)

Through collecting and setting the coefficients of the inde- Casel:n; =0,4,=0,4,=0,4,=0,%, <0.
pendent functions ¥/(&) in Eq. (28) to zero, we deduce the Thus, Eq. (28) reduces to the following equation:
following scenarios:
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54a6 (8401123‘1’21 + 15207, 7," " + 7615, 21, P + 815, °¥1)

+ 3(c3 (120;722‘1'19 + 136m,n, P +277,7¥")

p13siznl=2n (1207, ¥ + 256n,17,29"° + 163n,21,%"7 + 27;11311115)%)
( 5(20m, 29" + 299, 1, P + 95 21

+45a6 —2n 2 (80m, W2 + 176m,1,2 W' + 12392, %'7 + 270, ¥)

+45a, ) a1 (200,921 + 497, 8 + 380, 2,017 + 0, 2919) )

+1 ; " ei1162 ! _nz" (4n,29" + Ty, ¥V + 30, 2919)

1-2n1-3n
n n

(29)

+27(167,> " + 2411, 9" + 95, 7P"5) + 81 (™" + 2, "7 + 1, 29)]

+91

L 10(400n,*¥*' + 760n,n,> " + 44101, ¥"7 + 815, P"%)

2n (64;723‘P2‘ + 144,70, %' + 1087,7, "7 + 277,° ")

n I’l

160, W'+ 40m,7," 9" + 330, W' + 95> ¥P)
1—2n1—3n1—4n(

+405 4n WP+ 1y, + 100,20, ¥ + 35, W)
n n

n
1—2n1—3n1—4n1—5n(
n n n n

+n(b AP + by 4579 =0.

+ 81 ’7231{121 + 3’71’122\1119 + 3’712’72\1'17 + 7713qj15)]

For W with j =15, 17, 19, 21, we derive the following b, =0,
system of algebraic equations:
Y g d P2 1b aéMO(n)r/z + /13 =0,
Y1 1 aM, (), + nN,(n)c; = 0,
W72 agn, My(n) + nN,(n)e; = 0,
WIS agn M5 (n) + nN;(n)c; = 0

(30)

where

My(n) =

(227120 —-2n +10801—2n1—3n+16201—2nl—3n1—4n+811—2n1—3n1—4n1—5n>] 31)
n n n n

n n n n n n

M, (n) =[27360 + 1196001 =2 4 264601 =21 1 =31 (32)
n

+3<76OO+655201 +162001—2nl—3n 44551—2n1—3n1—4n 2431—2n1—3n1—4n1—5n)]
n

n n n n n n

2}1+202051—2n1—3n+40501—2nl—3n1—4n+2431—2n1—3n1—4n1—5n] (33)
n n n

n n n n n n

M,(n) =9[8976 + 78615 !
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Fig. 1 Profile of a bright
soliton solution
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Mi(n) =[11564 + 165312
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n n

+109351—2n1—3n1—4n
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Fig. 2 Profile of a bright
soliton solution
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n

Upon solving the system of algebrai
obtain:

(d) 2D plot for n
2 1-2n1-3
481 1 1 )1 1 My(n)agn,
n n M =F—[—————m,
(37) n b,
c Eqgs. (30), we
nN.(n)C
Ny = —#0,0 oforj =123

- agM;(n)

(38)

(39)
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Thus, bright and singular soliton solutions come out as:

1

q,/(x, 1) = <—PCI—2> [43 (—pq%)scch3pq<\/ﬂ(x— yt))]”exp[i(—xx+wt+90)], 0
and

g, j(x, 1) = <—PCI’1—> [4s <—PQ%>csh3pq<\/ﬂ(x—yt))]iexp[i(—l(x+wt+90)] @b
respectively. Thus, Eq. (28) is reduced to the following equation:

2
CaseIl: 1, = %Z—‘Z,AO =0,4,=0,4,=0,7,>0.

5
54 a4 <840 023912 + 1520 1,1, 2%20 + 1034 12, W8 + 31993W6 + 41 Zl p 4 4:1 llﬂ>
2

1-2n
+ 1620 aq <80 N3 + 176 711,210 + 155020, %8 + 69 n3We

4 5
nt 7 n3 1 m)
+16—¥* + - — 2
2 4 n? 1673
1-2n1-3n 97 49
+ 1620 ag (20 N3P + 49 0,210 + - 20,98 + < 3y

Eﬁqﬂ 13 711 w2 in_f
21, 16 1,2 327,83

29 11 n3 1 nt
20 2P0+ 29 W8 + Wl + — — wt w2
+36C3<0772 T 29 ¥+ =i T, +87]2

1-2n° 9 5 1
+es [162 <4 12910 + 7, W + 2w 4+ = T ey 100 svz)

4 41 81,2
1
+27 <16 0,2W10 4 24 0,7, W8 + 1372W6 + 3 Zl w4 4:1 l;ﬂ) (42)
2

1-2n1-3n
+ 81

3 11} 1
(nzzwlo + 2 oW 4 Lty kY wz)l

2 21, 1617

69
+ ag [90 (400 127 W12 + 760 117, #10 + 5610779 + 200 39+~ —ly‘*
2

4
+ 405 <64- N3P + 144 11, 2P0 + 24020, W8 + 36 WO + 62—1?'4
2

1 6
+_'7_1>

81;°

1-2n1-3n 61

+ 45 81 <16 723W12 + 40 11, 2W10 + 32021, Y8 + - n3ye

43} n 1 nf)
+ =Pt ——
8 1, 1,2 161,3

1-2n1-3n1-4n

25 15
81 <4nz3‘l’“ + 11 um? W10+ —nin, W0 + = nive

51t 70 1 78
2 e w2 4 — 1L
+2n2 +16r] +32r]23

1-n1-2n1-3n1-4n1-5n 15
+729— (nf W+ 3mump W0 + i, WP

n n n n
4

5 157} 3 1 1 ns n?
3wé w4 — T w2 1 - 9 212
+5 Y +1677 Wy +165n22w +64?723 +1_n(b1,13sv + by " P12)
=0.
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For W with j = 2,4,6,8, 10, 12, we obtain the following
system of algebraic equations:

n

2
W12 1, agKy(n) + — ~b, 157 =0,

1

WO gon K (n) + 5 [1152 + 1220 <648 +811= 3”)1 =0,
n n
_ _ (43)
WS 1 agn Ky(n) + c3[1692 + 1 2”(1134+ 1621 3”)] -0,
n n
WO 1 agn,Ky(n) + c5[873 + L= 21 (364 +121l= 3"’)1 =0,
n n
W g Ky(n) + c5 [180 + 1_2”(202+401 _3”)1 =0,
n n
W2 oy Ky(n) + o311 + 1_,12"’(2o+51 _’13”)] =0,
where
1-2n 1-3n 1—4n 1-5n (44
Ky(n) = (90840 + <155520 ¥ (90720 + (14580 +729 ))))
n n n
K,(n) = (136800 iz (3434401 = 3n <+225180 4 1zdn (40095 +21871= 5")))) 45)
n n n
Ky(n) = (106326 fl=2n (251505 413 (195210 4 1z4n (45562 4273312 5”)))) (46)
n n n n
Ky(n) = (32355 iz <126360 4 1z3n (95276 4 lzdn (27337 +18221= 5”)))) (47)
n n n n
K,(n) = (5319+ 1= 2n (28350+ 1= 3n (30121 + 1_4n<9112+6831 _5”))>) 48)
n n n
and
Ks(n) = (292+ 1=2n (4455 413 <4961 + 1 _4”(1594+ 131= 5")))) (49)
n n n
c3[1152+6481_72” +81%‘—nﬂ]
Upon solving the system of algebraic Eqgs. (43), we arrive at: Mmi=- agK,(n) Gh
2
1M 1 (I = m)agKy(n)n,
=g hB=F gl-———f (50) 311692 + 1134122 4 162 1222 12317
’12 n 2 ’112 - _ n n n (52)

agk,(n)
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c3[873 + 3642 4 12122 1221 - and
M3 ==
- asKs(n) ey [11 420122 4 51220 13 55
s = agKs(n)
51180 + 20212227 4 40 1=2 1=3n
Mg =— n n_n (54) Therefore, for j = 1,2, 3,4, 5, soliton solutions come out
’ agKy(n) as.
Dark soliton solution:
LI -
N a1 N "
qs(x. 1) = <—ﬁ> Al ftanhg’pq( —%(x - yt))] exp [i(—Kx + ot + 90)] (56)
2
Singular soliton solution:
3 1
’7 3 P ’1 . n
qq (X, 1) = <—ﬁ> Al fcoth3pq( —%(x - yt))] exp [i(—Kx + wt + 00)] (57)
2
Straddled dark-bright soliton solution:
tanhy, (=201,0270) 3Tt r 4 0y)] (58)
+ _pqseChpq< V _2’71‘/‘()6 - 7[))
Straddled singular-singular soliton solution:
(59
3
COth‘”’( V=2, yt)) 1 exp [i(—Kx + wt + 90)]
+4/=pgcsch,, (1/=2n, j(x — y1))
(60)

z]’]f)] exp [i(—Kx + wt + 90)]

Results and discussion

Figures 1, 2 and 3 explore the characteristics and evolution
of an optical bright soliton solution described by Eq. (40)
with specific parameter values: k = 1.1,0, = 1.7, p = 1.4,
q=18n=-17,b,=32,a,=18,a,=22,a5=-1.5,
a, = 4.3, and k = 1. These parameters are crucial in deter-
mining the behavior of the bright soliton solutions. The
results are presented through surface plots, contour plots,
and 2D plots. These figures offer insights into the behav-
ior of the bright soliton solution under different conditions.

@ Springer

Figures 1(a), 2(a), and 3(a) depict surface plots showcasing
the spatial-temporal dynamics of the bright soliton solution.
These plots reveal the amplitude and shape of the soliton as
it propagates through the medium. The bright soliton main-
tains its characteristic intensity profile over time, indica-
tive of its stable propagation behavior. In Figs. 1(b), 2(b),
and 3(b), contour plots illustrate the contours of constant
intensity of the bright soliton solution. These plots provide
a detailed view of the soliton’s shape and intensity distribu-
tion. The contour plots demonstrate the robustness of the
soliton structure, which remains well-defined even as it
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Fig. 3 Profile of a bright
soliton solution
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travels through the medium. Figures 1(c) to 3 (c) display 2D
plots illustrating the evolution of the bright soliton solution
under the influence of the Kerr law of nonlinearity (n=1).
These plots reveal how the soliton’s profile changes over
time, with the soliton maintaining its characteristic shape
and intensity as it propagates. By varying the time variable,

-2.5

-2.0 -1.5
X

-1.0 -0.5 0.0

(d) 2D plot for n

the plots provide insights into the temporal evolution of the
bright soliton solution. Figures 1(d) to 3 (d) investigate the
impact of the power-law nonlinearity parameter (n) on the
evolution of the bright soliton solution. By varying n from
1 to 2.1, these plots examine how the soliton’s behavior is
influenced by changes in the nonlinearity parameter. The
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Fig. 4 Profile of a dark soliton
solution
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results highlight the sensitivity of the soliton dynamics to
variations in the nonlinearity parameter, with different val-
ues of n leading to distinct evolution patterns.

Figures 4, 5 and 6 focus on the properties and evolution
of an optical dark soliton solution described by Eq. (56) with

@ Springer

(d) 2D plot for n

the specific parameter values: k = 1.1, 6, = 1.7, p = 1.4,
q=18n=-17,b,=32,a,=18,a, =2.2,a, =-1.5,
a, = 4.3, and k = 1. These parameter values play a crucial
role in shaping the behavior of dark soliton solutions. Simi-
lar to the bright soliton analysis, these figures utilize surface
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Fig. 5 Profile of a dark soliton
solution
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plots, contour plots, and 2D plots to characterize the behav-
ior of the dark soliton solution. Figures 4(a), 5(a), and 6(a)
present surface plots illustrating the spatiotemporal dynam-
ics of the dark soliton solution. These plots depict the evo-
lution of the soliton’s amplitude and shape as it propagates
through the medium. Unlike bright solitons, dark solitons
exhibit localized intensity minima, maintaining their char-
acteristic dark profile over time. In Figs. 4(b), 5(b), and 6(b),

(d) 2D plot for n

contour plots are used to visualize the intensity contours
of the dark soliton solution. These plots provide detailed
information about the soliton’s shape and intensity distribu-
tion, emphasizing the presence of the dark notch within the
soliton profile. The contour plots demonstrate the stability
of the dark soliton structure during propagation. Figures 4(c)
to 6(c) depict 2D plots showing the evolution of the dark
soliton solution under the Kerr law of nonlinearity (n=1).
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Fig. 6 Profile of a dark soliton
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These plots demonstrate how the dark soliton maintains its
characteristic profile over time, exhibiting stable propagation
behavior. Additionally, Figs. 4(d) to 6(d) examine the influ-
ence of the nonlinearity parameter (n) on the dark soliton’s
evolution. By varying n, these plots highlight the sensitivity
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(d) 2D plot for n

of the dark soliton dynamics to changes in the nonlinear-
ity parameter, with different values of n leading to distinct
evolution patterns.

As aresult, the results presented in Figs. 1,2, 3,4,5 and 6
offer comprehensive insights into the properties and behavior
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of both bright and dark soliton solutions under various condi-
tions, providing valuable information for the understanding
and manipulation of soliton-based optical systems.

Conclusions

This paper presents the recovery of highly dispersive optical
soliton solutions to the NLSE with a generalized quadratic-
cubic form of SPM using Sardar’s sub-equation approach.
A wide range of soliton solutions has been recovered and
exhibited. Additionally, complexiton solutions emerged as
a byproduct of the integration scheme. The soliton solu-
tions encompass single solitons as well as straddled soli-
tons. Consequently, the results provide an exhaustive display
of soliton solutions stemming from the model, retrievable
through the utilization of Sardar’s sub-equation approach.
The paper holds significant promise. The integration
scheme will next be applied to the NLSE with additional forms
of SPM, offering new perspectives to the model not reported
earlier. Subsequently, the model will be extended to include
differential group delay and, ultimately, dispersion-flattened
fibers. These awaited results will be sequentially reported once
organized, following the structure of the cited works [32—43].
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