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Abstract This paper is about the retrieval of highly dis-
persive optical solitons for Sasa-Satsuma equation with dif-
ferential group delay in presence of white noise. There are
four integration schemes that make this retrieval possible.
A full spectrum of optical solitons have been revealed from
these schemes. The parametric restrictions for the existence
of such solitons are also presented. The displayed surface
plots support the analytical findings.
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Introduction

Sasa-Satsuma equation (SSE) was formulated as the per-
turbed version of the well-known nonlinear Schrédinger’s
equation about three decades ago. This proposed model
provided an accurate description of the soliton propagation
through optical fibers. The three Hamiltonian perturbative
effects are from soliton self-frequency shifts and the self-
steepening effects. This model gained popularity and exten-
sive research was conducted with it for decades. While it is
only the scalar version of the model that was mostly studied
thus far, it is about time to consider SSE further along with
a freshly new perspective.

While a plethora of studies have been conducted with
regards to stochastic nonlinear evolution equation, the cur-
rent paper turns the page to give the model an effect of
unprecedented novelty [1-30]. The model is first considered
with higher order dispersions, namely the dispersive effects
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are from first order to sixth order with the effect of chro-
matic dispersion (CD) being included. Thus, the dispersive
effects stem from inter-model dispersion, CD, third-order
dispersion (30D), fourth-order dispersion (40D) and fifth-
order dispersion (50D) and finally the sixth-order disper-
sion (60D). These dispersive effects together constitute the
highly dispersive optical solitons. The self-phase modulation
is from Kerr law. Next, this SSE is considered with differ-
ential group delay and thus the two-component model is
considered. Finally, from a practical perspective, The effect
of white noise is included. The resulting coupled stochastic
differential equation is studied in fiber optics and its soliton
solutions are retrieved.

The coupled model is addressed using a few integration
algorithms this led to the retrieval of a full spectrum of opti-
cal solitons. It will be observed that the effect of white noise
is only present in the phase component of the solitons and
not in the amplitude part. The details are all enumerated in
the rest of the paper after the model is presented with the
technicalities as stated are illustrated.

Governing model

Highly dispersive stochastic in dimensionless form for the
first time, the SSE in birefringent fibers with Kerr law non-
linearity, and multiplicative white noise in the It6 sense is
expressed as:
iut + iallux + AUy + ialS”xxx + A48y
. 2 2
+ A 5U e T Q168 T (C] lu|” +d;|v| )u
. 2 2
+ l(ellul +f11vl )ux
. 2 2
+ 1(81 (|M| )X + h1(|V| )x)

+ aw,(t) 0
u Glu dt =V,

ey

and
w, + Wy vy, + Ay Vs + 13V
+ A4 Vxxxx + 125V xxxx + 26V xxxxxx
2 2
+ (VP + dyul?)v

. 5 ) 2
+ 1(62|V| + f5|u| )vx

dw, (1) -0

+ i(g2(|V|2))C + hz(lulz)x)v + o,V o

In the prior system, u(x,t) and v(x,t) are complex-valued
functions that reflect the wave profiles & i> = —1. The first
terms in the above system represent the linear temporal evo-
lution. The constants (a;, [ = 1,2,k = 1,2, ..., 6) correspond
to the coefficients of IMD, CD, 30D, 40D, 50D and 60D
respectively. The parameters Cjs dj, (j = 1,2) are the coeffi-
cients of SPM and cross-phase modulation respectively. The
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coefficients of nonlinear dispersion terms are denoted by the
constants e;, f-, g hj, (G = 1,2) Finally, ojs (G = 1,2) represent
the noises strength coefficients & W;(2), (j = 1,2) give the
standard Wiener processes, such that de(t) /dt, j=1,2)
represent white noise. Also, the terms de(t) Jdt, (G =1,2)
are the temporal derivative of the standard Wiener processes.

Mathematical preliminaries

To analyze the stochastic systems (1) and (2), we make the
following assumption (3):
u(x, 1) = PI(Z)ei[r/](x,t)+5|W| (t)—n'lzt]’

V(x, t) — PZ(Z)ei[nz(x,t)+62Wz(t)—dgt]’
and
z=x=V,qx, 1) = —Kkx + Qt, 3)

where «;,Q,, (I =1,2) & V are nonzero real-valued con-
stants. The frequencies of the solitons may be calculated
from the phase component «;, (! = 1, 2), while Q;, (Il = 1,2)
arise the wave numbers and the velocity soliton is denoted
by V. The functions P,(z), P,(z) & n,(x, t) are real functions
that reflect the amplitude and phase components of solitons,
respectively. Inputting (3) into Eqgs. (1) and (2) yields the
following:
. 6 4

ml . a16P(1 ) + (al4 + 51(16115 - 15a16K12)P(1 )

+ (a12 +3Kk,a,3 — 6K12a14 - 101(135115 + lSKfalﬁ)P'l'

+ [auxl - a121<12 - aBKf + aMKf “@

+a151<15 - 016K16 - (Ql - o’f)]P1

R, : a26P(26) + (a24 + SKya,5 — 15(126K§)P(24)
+ (ax + 3K,a55 — 6k2a5, — 10k3a55 + 15k ay ) P
+ [a21K2 - azng - (123K§ + a24K; 5)
+a25K§ - azﬁKg - (Qz - o-%)]P2
+ (¢ + K263 ) P + (dy + Koy ) P, P2 = 0,

and

S (a5 — 6K1016)P(15) + (a3 —4xjay,
—10x7as +20x7a,,) P’
+ layy = 2a5K; = 3agk; +dayk; (6)
+5a,5k] — 6ak; — V|P

+ (ey +28,)PiP| +f, P3P} + 21, PP,P, =0,



J Opt

. (5)
S, (ays — 61<2a26)P2 + (ay; — 450y,
—10K§(125 + 20K§a26)P/2”
+ [a21 —2ay,k, — 3a231<2 + 4a241<§ @)

+5ay5x5 — V|P,
+ (e, +28,) P3P, + foP1 P} + 2h,P,P, P} = 0.

60, K‘2

Setting
Py(z) = pP(2), (8)

where f is a non zero constant, such thatf # 1. Now, Egs.
(3)-(6) become

. (6)
R, : a6P,
+ (a12 + 3Kk,a,3 —

15a16Kf)P(14)

10k} a5 + 15k} a,6) P
12_‘11%’(i3 +a141<f ©)]
a161< (.Ql o’f)]P1

+ [cl + ke, + (dl + Klfl)]P? =0,

+ (al4 + 5K,a;5 —
2

bKxyay, —

+ [a”Kl —apk

+a15rc5

. (6)
R, L ayP,” +

+ (a22 + 3K,0y5 —

15a26K§)P(14)
10K ay5 + 15K5ay6 ) P

(ags + Skpttps —
61(%6124 -
a231<3 + a24lc§
ast (Qz %)]Pl

+ [ﬂ2(02 + K2€2) +d, + K'sz]P:z =0,

2
+ [a21K2 —apnk; —

5
+a,s Ky —

(10
and

. 5
S, (a]5 - 6K1(1]6)P(1 )+ (a13 —dKayy
—10x7a,s + 20K’ a, ) P’
= 3ay3k; +4a,k] (11)
6a16K V]P'
(fi +2h,)p*| P3P, =0,

+ [a” —2a,,k,;
+5a151c
+ [el +2g, +

S, (ays— 6K2a26)P(15) + (ay; — 4,0y,
—10K5ay5 + 20K ay, ) P’
+ [a21 —2ayk, — 3a231<§ + 4a241<§’ (12)
+5a,5K5 — -V|P,
+ [ (es +28,) + /> + 21y | PLP| = 0.

5
6ayek;

Equations (10) and (11), when integrated with zero-integra-
tion constants, provide the following

4_ 4 3 3 2 2
15(K1 —K, )a16a26_10(K1 a5y —K, a15a25)—6(xl A14dr6—K; a16“24)+3(’f1“13“26_"2“16‘123)*'”12“26

. (4)
S 1 (a5 —6ra56) PL7 + (a3 — 4xjay,
—10x7as +20K7a,5) P

3
+ [a“ —2a,,k,

—3(113K2+4a]4l(i (13)

+5015K 6(1161( V]Pl

1
* 5[61 +2g; + (fy +2h)) ?| P} =

. “4)
S, (ays — 61<2a26)P1 + (ay; — 450y,
—10K§(125 + 20K§a26)P/1/
+ [a21 —2ayk, — 3a231<2 + 4a241<23 (14)
+5a25K2 6a261<2 V]Pl

+ g[ﬂ (e, +28,) +/fo +2h,| PP =0.

When we use Eqs. (12) and (13), which are linearly inde-
pendent functions, and we set their coefficients to zero, we
obtain

K = alS,,l-lZ (15)
6a,c

a13 = 4Klal4 + 10K12a15 - 20](;@16, l = 1, 2, (16)
also, we gain the velocity of the soliton

- 2
V= (a,l —2apk; — 3apk;

17
+4al41< + SaZSK — 6ak; ) =12, 17)
and the constraints conditions
e; +28, + (fi +2h,) 8 =0, (18)
B (ey+28,) +f, +2hy, =0, (19)

where a5, a4, b;, b, are nonzero constants. Under the con-
straint conditions, Egs. (8) and (9) are equal:

2
aje @4 +5K1a;5 — 15a56K;

- 2
Q6 Gy + 5K2ap5 — 15ay5K5

2 3 4
ap, +3kya,3 — 6k7a1, — 10k7a;s + 15k]a;q

ayy + 3K,0y5 — 61(%(124 - lOKSa25 + 151(;‘5126

2 6 2
a; k| —apk; — — ajek| — (Ql —0'1)

3 4 5
|~ a3k, +a]4l<1 +a151<1

2 3 4 5 6 2
Ay Ky — ApKy — Apzky + ApuKy + aosky — Apek, — (Qz - az)
2
o+ Key + P (dy + Kk fp)

- B2(cy + kyey) +dy + Kofy

(20)

From (19), we gain the following:

; @n

dy = e
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provided a4 # 0. You may rewrite equation (8) as follows:

PP+ 8P @ + AP (2)

3 (22)
+ AP1(2) + A3P(2) =0,
where
ay +5ka,5 — 1551161(12
0= e |
ay, +3Kka,3 — 6](']20[4 - lOI<l3a]5 + 151{‘1‘11]6
16 '
A ay Kk —a12K12 —11131(? +a14kf +a15Kf —alelc;’ - (91 - 012) A
2 = o3
16
Tk +/32(d1 +K1f1)
16 ’
(23)

provided a4 # 0. The balance number N = 3 is obtained by
balancing P(lé)(z) and P? (z)in Eq. (21). The following meth-
ods are implemented in the next sections to discuss Eq. (21).

Integration approaches applied to the model

This section implements the basic mathematical founda-
tions laid down in the previous section to integrate the
governing model using four of the integration algorithms
that are present in the literature.

Simplest equation method

Equation (21) enables the exact solution:

Pi(2) = A+ A FQ) + A F2(0) + A2, A3 20, (24)
and F(z) fulfil the Bernoulli’s equation

F'(z) = aF(2) + bF*(2), (25)
or the Riccati equation

F'(z) = o + FX(2), (26)

in which Ay, A, A,, As, a, b & o are future-determined con-
stants. Equation (24) has the solutions as:

aexp [a(z+z)]

F(2) = , ifa>0, b<0, 27
© 1—bexpla(z+z)] ne @9
and
+
Fo) = —— P CIGRE)) I 28)

1+ bexp [a(z +zo)]

in which z is an integration constant, and if ¢ < 0, the fol-
lowing soliton solution structures emerge:

@ Springer

F(z) = —\/—_acoth( —O'Z), (29)

or

F(z) = —/=o tanh ( —az>, (30)

which are singular and dark soliton solutions respectively.
The remaining cases when ¢ > 0 and ¢ = 0 are excluded
since tey do not yield soliton solutions.

Bernoulli’s equation approach

The results are obtained by inserting (24) and (25) into
Eq. (21), collecting all the coefficients of each power
F*(2),(s =0, 1,..,9),and setting these coefficients to zero:

Ay =0.4, = 124, [-33 4, =36a1?
A3
(€29)]
‘/—ﬁ,/g = 24b31/—3—5,
A3 A3

Ag=0,A, = 21a*, A, = 20a5,

provided A; < 0.
(D Ifa>0,b <0,one gains

uet) = 12a3b -2 | P (= + )]
Az | 1-bexpla(z+2z)]

l 3bexp [a(z +Z0)] 2b% exp [Za(z + ZO)] ]
1—bexp[a(z+2)] (1-bexp [a(z+zo)])2

i 2
et[—/(]x+£2| t+o, W, (1)—0o; t] ,

(32)

v(x,1) = 12a°bp

_3s l exp [a (2 +2)] ]

A | 1—bexpla(z+z)]

l1+ 3bexp[a<z+zo)] 2bzeXP[2a(Z+Z0)] ]
1—bexpla(z+z)] (l—bexp[a(2+zo)])2

ei[—K2x+Qzl+02 Wz(l)—azzl] .

(33)
D) Ifa < 0,b > 0, we obtain

u(x, ) = —12a’b _33 exp la(z+ )]
’ Az [ 1+bexpla(z+2)]

ll _ 3bexp [a(z+2)] 2b% exp [2a(z + z)] ]
1+bexpla(z+z)] (1+bexp [a(z+zo)])2

. 2
el[—K1X+Ql t+o, W, (l‘)—o’l t] ,

(34
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v(x, 1) = —12a°bp

exp [a(z +2)] ]

35

A, l1+bexp la(z+2)]

ll— 3bexp [a(z+2)] 2b% exp [2a(z +2)] ]
1+bexpfa(z+z)] (1+bexp[a(z+zo)])2

ol [—rox4 Qs 140, Wy (0)—021] .
(35)
For example, ifa =1,b = —-1ora = —1,b = 1, the combo

dark soliton solutions are available:

u(x,t) = 31/—2—53 [tanh <Z+TZO> — tanh? <Z+TZO>] 36)

ei[—r(]x+§ll t+o, W, (t)—o’lzt]
Z+z
anh® [ —=2
2

v(x, 1) =3p —2—5 [tanh <Z ZZ()) -
V 3
(37

ol [+ Qs 140, Wy (0)—021]

Riccati equation scheme

The following results are obtained by inserting (24) and (26)
into Eq. (21), accumulating the coefficients of each power
F(2), (s =0,1,2,..,9), and then setting each of these coef-
ficients to zero:

_18 | 3547 35
=0,A — YA =04, =24,[-22. A
_ 946 o . _ 1260 _ A
T 6889 0727 571787 00 332’

(38)
provided A; < 0. Now, one finds the soliton solutions to
Equations (1) and (2) outlined below for A, < 0, after ignor-
ing the remaining cases when A, >) or A; = 0, which do not
give way to soliton solutions:

The straddled singular solitons are:

34, [354, A, 3 A,
ux,t) = ——— 3 coth ———z | —coth -——z
83 | 83A, 332 332

; " 2
¢ [ x4+Q 140, W, (1)—02t] ,

(39)

3pA, 35A A A
v(x, ,),_% S%AO [3coh< %z)—coth3< —éz)]
‘ ‘ (40)

i[—xpx+0y 10y Wy (1-031]
e[ 27 Wy (=03t|

and the straddled dark soliton solutions are:

3n, [354, A, o B
e e ELCTLY Y A=) BRI RV
83 83A3[ o < 3320 )~ 332°

ei[—:c, x+Q, 140, Wy (1)—071] ,

u(x,t) =

(41)

3660 [35A A N
V(x, r)——g—%(J 83A0 [Stanh( %z)—tanﬁ( —%z)]

ei[—xzx+92r+62 Wy0-031] A

(42)

Extended simplest equation algorithm

Equation (21), which relies on the explicit solution:

PO =10+ 0 (42) + 0(42) + 1(52) + o[ 5)
Y@\ (_L P L
+Bl(¢(z)><¢(z)>+B <¢<z>> (¢<z>)’

(43)

where x, 71, 22» X3 By, B; and B, are constants, y3 + B3 # 0
and the function ¢(z) presumes the auxiliary equation

¢"(2) + 6¢(2) = vy, 44)

in where 6 and v, are integers. The case when 6 < 0 is con-
sidered here since the other two cases, namely when 6 = 0 or
6 > 0 are discarded since they do not yield soliton solutions.

Here, we replace (43) for Eq.(21) and apply Eq.(43)
together with the connection

¢’(z>>2 < 1 )2 20
(=) -6+ =2, 45)
( () "\ ¢@ $(2)
where L, = 6(p} — p3) — %6, yields the following solutions

even when p, and p, are constants.
lution—1:

35 B
Xo= X0 X3 = (3 _A___1>’Bo=—2)(2”0’
3

A, = —12608%,p, =1/ p

2
provided A; < 0, (pg + %) > 0and v, # 0. As aresult, the

solitary solutions to Eqgs.(1) and (2) are as follows:

(5;(2 +5(3‘ |32 - ‘g‘;‘gl >®1(z)>[l - 030 +65,/320,0)

u(x, t) =
—2,000,(2) + B; V=60, (2)0,(2)

(47)

i[—K]HQ] o Wy (r)fulzz
e B

and
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<5;(2 +5<3‘ [ - ‘/2’70 )@1@)) [1 -]+ 65, [

v(x, 1) = p)
~212000(2) + B V=30 (2)0,(2)

(48)

il =k —2
e’[ KX+ t+oy Wy (D—031 i

where
1 / 2 smh [\/ z] + p, cosh [\/ Z]
0,(2) = ,
1)2 . v
\/ pi+ 5 cosh [\/—5z] + p, sinh [\/—&] +2
1
0,) = _
1)2 . v
\/ P% + 5—2 cosh [\/—&] + p, sinh [\/—51] + 30
(49)
Solution=2:
355(/)% - p%)
Xo=x1=1=x3=0,B)=1205 —mn
356(p1—p3) | _ s81s
B =0,B =408 _—,A — ,
e 2898, 0T T
_ 9265952 _ 1028255° o = 0
T R 280 0T
(50)

provided (p? — p2) A; > 0. In light of this, we arrive at the
subsequent solitary solutions to Egs. (1) and (2):
356(p% — p?
u(x, t) = 246 —M[
289A,

ei[—Kl)H-.Q.l t+0, W, (H)—o71] ,

51,(2) — 1777(2)7,(2)] 1)

and
356(p} = p3)
v(x, 1) = 2458 _%ST [572(2) — 1773(2)7,(2)]
ei[—K2x+921+o’2 Wz(z‘)—og l] ,
(52)
where
p; sinh [\/—52] + p, cosh 7\/—517
T () = - =
p; cosh [\/ —5z] + p, sinh [/ =6z
) ] (33)
1
() = - —.
p, cosh [\/—éz] + p, sinh [/ =6z

We get the combo-singular soliton solutions if we put
p1 =0,p, #0,in (51) and (52):

@ Springer

uCx, 1) = 248

356 3
2894, (12 csch [\/—_5Z] + 17 csch [\/—_&D

ei[—K1x+Ql t+0, W, ()—0?t]
(54

and

v(x,t) = 246p

356 (12 csch [\/__&] +17 csch33[\/__51]>

2894,
ei[—K2X+.QZ t+o,W, (t)—o‘% t] ,
(55)

provided A; < 0. The combo-bright soliton solutions are
available if we put p; #0,p, =0 :

_ 336 (12 sech [\/—_52] — 17 sech 3[\/—_52]>

2894,

; 2
el[—K1x+Q] t+0, W, ()—0?1] ,

u(x, ) = 245

(56)

and

v(x, 1) = =246p

_ 330 (12 sech [\/—_éz]

2894,
—17 sech [1/ Z]) i| —k,x+Q, 140, W, (1) —0: t]

provided A; > 0.
Solution—3:

35
=01 = 725\/_A_’}(2 =013
3
:24‘/_2,30231 —B,=0, (58)
AS

Ay =3326,A, = 1513662,
A, = —806405°, v, = 0,

(57)

provided A; < 0. As a result, we arrive at the solitary solu-
tions of equations (1) and (2) as follows:

u(x,t)=2451/35 [37,(2) — 7} ()]
(59

ei[—K]x+Q] t+o, W, ()—0, t] ,

and

/355 35
v(x, 1) = 246 [Srl @) -7, 60)

ei[—K2x+ta+o—2 W, (D—031] )

We get the combo-singular soliton solutions in (59) and (60),
specifically if we put p; =0,p, #0 :



J Opt

u(x, 1) = 246 3A5—35 (3 coth [\/—_5z] — coth? [\/—_&] )

ei[—;clx+§21 t+0, W, ()—0o1] ,
(61)

and

V(x, 1) = 245 3% (3 coth [\/—_&] — coth® [\/—_&] )
3

e [—rox4 Qs 140, Wy (1)—021] ,

(62)
while in (59) and (60), the combo-dark soliton solutions are
obtained if we set p; #0,p, =0 :

u(x, £) = 245 % (3 tanh [\/—_&] _ tanh® [\/—_&] )

ei[—rqx+§ll t+o, W, (t)—o’lzt] ,
(63)

and

v(x, 1) = 246p 32—5<3 tanh [\/—_52] — tanh® [\/—_&])
3

e [—rox4 Qs 140, Wy (0)—031] .
(64
Note that, when A = 3326, the solutions (61)-(64) are simi-

lar to the solutions (39)-(42).

Conclusions

The current paper retrieved a full spectrum of highly disper-
sive optical solitons for SSE in birefringent fibers in pres-
ence of white noise when the SPM is of Kerr type. A wide
range of integration algorithms has made this retrieval pos-
sible. It has been observed that the effect of white noise stays
confined to the phase component of the solitons and never
enters the amplitude portion of such pulses. The results are
thus overwhelming and stand strong for future activities in
this field. The model is to be next considered with addi-
tional forms of SPM that would produce further interesting
results. Additionally, later the model would be generalized
to dispersion-flattened fibers. That’s when the studies are
going to get more interesting. The results of such research
activities will be disseminated across the board with time
after they are colineared with the pre-existing ones [26—54].
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