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Abstract This work retrieves a plethora of optical soliton
solutions to the dispersive concatenation model with power-
law of self-phase modulation. The implementation of the
sub-ODE method and its variations and versions yielded
such soliton solutions. The intermediary functions were
Weierstrass’ elliptic functions as well as Jacobi’s elliptic
functions. Their special cases gave way to soliton solutions.
In particular, for Jacobi’s elliptic functions, when the modu-
lus of ellipticity approached unity, the soliton solutions have
naturally emerged.
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Introduction

A decade ago, the concept of the concatenation model
had surfaced [1-5]. This is an unique and novel concept
of conjoining three pre-existing nonlinear evolution
equations that govern the propagation of solitons through
optical fibers into a single equation [6—10]. This is the
combination of the nonlinear Schrddinger’s equation
(NLSE), Lakshmanan—Porsezian—Daniel (LPD) model
and the Sasa—Satsuma equation [11-15]. Subsequently
during the same year, a different form of concatenation
model, with dispersive components included, gave way to
the dispersive concatenation model [16-20]. This model
is the combination of the Schrodinger—Hirota equation
(SHE), LPD model and the fifth-order NLSE [21-25].
Thus, there are two sources of dispersion embedded in this
model, namely, the SHE and the fifth-order dispersion in the
dispersive NLSE component [26-30]. This makes the newly
structured concatenation model true to its name [1-5]. This
dispersive concatenation model has been extensively studied
with various characteristic features, namely, the retrieval of
optical soliton solutions with the usage of the method of
undetermined coefficients as well as additional integration
tools and also addressing the model in the absence of self-
phase modulation (SPM) [31-37]. Later, the model was also
studied with nonlinear form of chromatic dispersion (CD)
and quiescent optical solitons were recovered in this context
[6-8].

The current paper will carry out further studies with the
model. First, the SPM will be generalized from Kerr law
to power-law. Subsequently, the sub ordinary differential
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equation (ODE) (AKA sub-ODE) approach together with
its variations and versions will recover a full spectrum of
soliton solutions along with a plethora of additional forms
of soliton solutions that are being reported in this paper
for the first time. The pathway to the retrieval of optical
soliton solutions to the model is through the intermediary
Weierstrass’ and Jacobi’s elliptic functions. The special
cases of Weierstrass’s elliptic functions will yield soliton
solutions. On the other hand, for Jacobi’s elliptic functions,
when the modulus of ellipticity approached unity, the
doubly periodic functions migrate to soliton solutions. The
spectrum of results are enumerated and exhibited in details
after a re-visitation to the model and recapitulating the
applied integration algorithms. The details follow through
in the subsequent sections and subsections.

The shift from Kerr law to power-law may have
limitations and may not universally apply. The assumption
of a power-law behavior requires careful justification.
The accuracy of the sub-ODE approach relies on valid
assumptions. The use of Weierstrass’ and Jacobi’s elliptic
functions introduces mathematical complexity. The
conditions under which special cases yield soliton solutions
are clearly defined.

Governing model

The dimensionless form of the generalized concatenation
model with power-law of SPM:

iQt +taq, + b|q|2nq - l51 [O-quxx + 02|Q|2nqx]
+ 6,[03G e + 041917 + 051917 g

2
+06|9,"q + 07474 + Ggqj;qz]

. 2 2n+2
- 153 [0-9qxxm + 010|CI| anxx +oy |q| " qx

+01249,45, + 0130”4 + 01499, 9sx + 01547497] = 0.
ey
where ¢g(x, 7) is a complex valued function that represents
the wave amplitude and g*(x, ?) is its complex-conjugate
while i = \/5 The first term represents the linear
temporal evolution. The constants a and b are coefficients
of CD and the power-law of SPM terms respectively. The
parameters o, for 1 <j < 15 are all real-valued constants.
If 6, = 6, = 6; = 0, Eq.(1) reduces to the standard NLSE
which describes the propagation of pulses through optical
fibers. If 6; # 0,6, = 63 =0, Eq.(1) reduces to SHE. If
6, =063 =0,6, # 0, Eq.(1) reduces to the LPD model. If
0, =06, =0,6; #0, Eq.(1) reduces to quintic NLSE that
introduces dispersive effects. Finally, n signifies the arbitrary
intensity parameter.
This work is organized. In Section-2, the governing
model is displayed. In Section-3, the mathematical
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analysis is introduced. In Section—4, the model is analyzed
using the integration technology and the recovered
solutions are enumerated. Finally, in Section-5, a few
words of Conclusions are jotted.

Mathematical preliminaries

In order to solve Eq.(1), setting:

q(x, ) = @) explif(x,1)], O(x,1) = —kx+wt+6, E=x-Vt,

@)
where k is the soliton frequency, w is the wave number, 6,
is the phase constant and V is the velocity of the soliton.
Finally ¢is a real function which represents amplitude
of wave transformation. Exchanging (2) into Eq. (1) and
separating the real and imaginary parts, we get the real part
is given by:

A PP(E) + DT (0P (&)
+ D307 ()P () + Ayp(E)P*(E)

+ A5¢" (&) + Ag(&) + A7 ()
+ Agp™ (&) + g™ (E) = 0,

3

where
A, = 6,03 — 56504k,
A, = =36309k + 6,04,
Ay = 8,04 — 8301,k — 8303k + 6;014K7,
Ay = 2650,k — 20303k — 28504k — 0305K + 0,06 + 6,07,
As = 106;04k> — 66,0;k* — 36,0,k + a,
Ag = —w — ak® + 8,0,K> + 6,05k — 8300K°,
A; = 850,k + 83013k° — 8,014k° — 8,0,5K°
+ 8,04k% — 8,0,k% — 8,04K7,
Ag = b — 8,0,k — 8,0,K* + 830,0K>,

Ay = 6,05 — 630k,
“)

while the imaginary part is:

V(&) + 4,07 (99" (&) + AP ()P (&)
+A397(OP' () + AP ()P ()

+As" () + AP (&) + A7 HEP (&) + Agd (&) = 0,
©)

where
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L [5,0’2 + 26,0,k — 3536]01('2],

5[359
Ay = 0_9(612 + 013+ 014),

1
As =5 [6,01 + 48,03k + 106500x2],
A6 = (:;__]95,
A7 — %u ,
)
Ag = ——|V = 38,0,k — 46,05 + 56500k + 2ax],

6309
(6)
provided 65 # 0, 69 # 0. Applying the linearly independent
in Eq.(3) gives the frequency

_ 6,(06+07)
03(201,-2013-20,—0}5)

_ 6,03 6,04 6,05

_553‘79 B 365019 B 6301,

- _ 6,(05—07—0%)

83(01,+0613-01,—05)

and the wave number,

w= KZ(—a + 8,0,k + 8,03k — 53691(3),
as well as the constraint condition

a+ 108;69k> — 68,03k% — 36,0,k = 0, 7
b— K(5162 + 6,04k — 63610K2) =0.

Let us now solve Eq.(5) using the following method.

Enhanced sub-ODE approach

Zi Liang-Li [12] proposed a generalized version of sub-
ODE method, while Zayed and Alngar [13] introduced
the modified Sub-ODE method, Recently, Zayed et al.
[14] have suggested the addendum to modified sub-ODE
method which will be applied here to solve Eq.(5). The
current paper refers to the addendum as the enhanced
version of the sub-ODE approach. To accomplish this,
we assume that the solution of Eq.(5) is equivalent to the
solution of the auxiliary equation:

H*(&) =A H* (&) + BH* (&) + C H*(¢)

+ D H*P(&) + E HH(¢), ®

where A, B, C, D and E are constants, while p is a positive
integer.

It is well known [12—-14] that Eq.(8) has many particular
solutions which will be used throughout this section to find
the optical soliton solutions of Eq.(1). Let us now study the
following sets:

Set-1 Inserting A = B = D = 0in Eq.(8) we have:

H'*(&) = C H*(&) + E H*(&). ©
substituting (9) into Eq.(5) we get

C? + CE(1 + p)(1 +2p)[1 + (1 + 2p)*1H? (&)
+2pE*(1 + p)(1 + 2p)(1 + 4p)H* ()
+ (14 p)*(1 +2p)(1 + 3p)(1 + 4p)E*H7 (&) + A, CH*"(¢)
+ A E(1 + p)(1 + 2p)H>™ (&)
+ A H*(E) + A;H™ (&) + A CH? (&) + A EH*P2(¢)
+AsC + AsE(1 + p)(1 + 2p)H? (&)

+ AgCH? (&) + AGEH> P (&) + A;H*™ (&) + Ag = 0.
(10)

Comparing the exponent 2n + 2p with 4p we get p = n.
Then, Eq.(10) gives
[CE(1 + n)(1 + 2n) + CE(1 + n)(1 + 2n)* + A,
+A,C+ AE(1 + n)(1 + 2n)| H*'(&)
+ [(1+ (1 + 2n)(1 + 3n)(1 + 4n)E?
+AE(1 4 n)(1 +2n)| H(¢)
+ A, + CA, + Ap)|H* (&) + [A; + E(A, + Ap)]
H>" (&) + C* + CA5 + Ay = 0.

)

From Eq.(11) we have the algebraic equations:

CE(1 + n)(1 +2n) + CE(1 + n)(1 4+ 2n)* + A,
+A,C+AsE(1 +n)(1+2n) =0,
(14 n)*(1 + 2n)(1 + 3n)(1 + 4n)E?
+AE(1 +n)(1+2n) =0, (12)
Ay + CA, +Ag) =0,
A+ EA, +Ag) =0,
C? + CAs +Ag = 0.

On solving the above algebraic Eq. (12) with C, E, which are

non-zero constants, we have:

_ Ay _ Ay
= , E=- , (13)
L+ Ag A, +Aq

along with the conditions

n=n, A, = 00Dy
Ayt
_ As(Ag+A P +142n) (43 480 +2n+ DAYA,
As = () (1+2m)A; (A, +Ag) ’ (14)

A = AyA3(Ay+AgY +n(1+2n)@n’+8n+DAA,
8 (I+n)(14+2n)A; (A, +Ag )? ’

where A,, A, A, are non-zero constants.
It is well known [1-3] that, when E < QOand C > 0,
Eq.(1) has the bright soliton solution:
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H= A sech Vi 4, ;
qx,t) =X € —A—7$ec n(x — Vi) _A4+A6

ei(—xx+wt+¢90 )
15)

provided A,A; < 0,A,(A; +Ag) <0,e = £1. The above
solution (15) is obtained under the restriction (14).

Set-2 Inserting A = B = 0, in Eq.(8) we have:
H™(@) = CH*&) + D H**(&) + E H*(¢). (16)

Substituting (16) into Eq. (5) we get

2+ %CD(I +P)2+p)2 +2p + pHHP(E)
+A+p)2 +p)[i(2 +pPD* + 2Ep(1 + 2p)
+CEQ2 + 2p)| H*(¢)
+ %ED(I +p)(1+3p)Q2 + p)(Tp* + 11p + OHP (&)
+ (1 +p)(1 +2p)(1 + 3p)(1 + 4p)EHY (&) + A, CH*(&)
+ SAD( +p)2+ pIH(E)

+A;(1+p)(1 + 2p)H" (&)
+ A HA(E) + A H (&) + A,CH? (&)

+ %A4(2 + p)DH"2(E) + A, (1 + p)EH?P2(&)
+ CAs + %ASD(I + )2 + P HP(E) + AsE(1 + p)(1 + 2p)H? (&)

+ AgCH* (&) + AGDH*P (&) + AGEH* (&)
+ AJHP2(E) + A = 0.
a7

Comparing the exponent 2p + 2n with 4p we get p = n, or
2p + 2n with 3p we get p = 2n. Let us now discuss the case
p = n (similarly p = 2n). Then, Eq.(17) reduces to
{(1 + )2 +n) [i(z +n)’D? + 2En(1 +2n)

+CEQ2 +2n) + ASE| + A, C + A; JH™ (&)

+ [%ED(l +n)(1 +3n)2 + n)(7n’* + 11n + 6)

+%A1D(1 + )2+ n)]H3”(§)

+ [(1 4 n)(1 +2n)(1 + 3n)(1 + 4n)E?
+A, (14 n)(1 + 2n)|H*" (&)

+ [%CD(I + )2+ )2 +2n+nd)
+%A5D(1 + )2+ n)]H"(g)

+ [A; + E(1 + mA, + EA|H"(&)
+ [A; + CA, + Ap)| H ()

A4 24+n 2
+ |3+ WD+ AD|H(€) + CP 4+ CAs + 45 = 0.
(18)
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From Eq.(18) we have the algebraic equations:

(1 +n)2 + 1) H(z +1)?D? + 2En(1 + 2n)
+CEQ2+2n) + AE| + A, C+A; =0,
%ED(I + )1 +3m)2 +n)(7r + 1n +6)

+ %AID(I +n)(2+n)=0,

(1 4+ n)(1 4+ 2n)(1 + 3n)(1 + 4n)E? +A,1+n)(1+2n)=0,
%CD(I +n)Q2+n)Q2+2n+n)+ %ASD(I +n)(2+n)=0,
A;+E(1+nA,+EA; =0,

Ay +CA, +Ag) =0,

Ay

7(2 +n)D+AsD =0,

C?+ CA5 + Ay = 0.
(19)
On solving the above algebraic equations (19) with C, D, E,
which are non-zero constants, we have the results:
24, —24,

C==2 E = s

nA,’ nA,

4(A,C+As)
(I+n)2+n)?
(20

D? = (2+ - [2n(1 +2n) +4C(1 +n) + Ag| —

along with conditions,

2A2 (24+2n+n?)

nA,
4A2(1+2n+n2)

nzA2 ’
2D
where A, and A, are non-zero constants. With the aid of
[1,2,3], Eq.(1) has the following solutions:
(a) The soliton solutions:

_(1+3n)(6+11n+7nz)2 A =
(1+4n) > ST
6-+11n+7n)A
A, = _MOHndTn)A, 4 Q4w
7 2l+4n) * O

n=n, A =

s

Ag =

“/; ech? (x Vi) '
q(x, 1) =| — .
2 _ 4A5(6+11n+7n?) 1n+7n2) _
p2 - Mt [1 +etanh /2 (x Vt)]
ei(—Kx+wt+90 )

(22)
1
2D osch?y /22 (x = Vi) '

qx, 1) = . .

2
2 44,(6+11n+Tn2) nA2 _
D oA 1 + € coth (x Vi)

el(—KX+W[+00 ),

(23)
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=

24, 2 ”Az _

vy sech 1/ ( Vi)

44,(6+11n+7n%) 1n+7n?) _
D+2ey | =7 L) tan h\/ (x Vi)

el(—KX+Wt+(90 )’

q(xs l) = —

@24

)

2A2 2
csch
nA,

4A2(6+11n+7n2) nAz _
D + 2¢e4 / —nA4(1+4n) (x Vi)

et(—/(x+wt+90 )’

My _
. (x—= V)

qx,t) =

(25)

provided A,A,> 0,e = +1.
(b) The singular soliton solution:

= 24, 1 h V ;
qlx, 1) = _nA4 + ecot 2 (x -V

ez(—lcx+wt+00 )’

(26)

provided A,A,> 0,D? + % =0,e = +1.
Ay

(c) The bright soliton solution:

4A,
nAy

qx,t) = @n

164,4,

2 " (= Vi) —
D? + e 2A4(x Vty—D

ei(—Kx+wt+00 )’

provided A,A,> 0, D +

(d) The singular soliton solution:

164,4, _
W > 0,8 =+1.

44,

_< 16/242/217> h\/i(x—Vt)—

el(—KX+Wt+90 )’

qx, ) =

(28)
provided A,A, >0, D*+ 16‘3;;‘7 <0, e =+1. All the

solutions (22-28) are existed under the restriction (21).
Set-3 Inserting A = B = E = 0 in Eq.(8) we have:

H'*(&) = C H*(&) + D H*7(¢). (29)

Substituting (29) into Eq.(5) we get

C?+ %CD(I + )1 +2p)2 + 2p + pHHP (&)
+ 411’)2“ +p)(1 +2p)2 + p)3p + DH? (&)

+A,CH (@) + SA,D(1 + )2+ PH(E)
+ A H?(&) + A H™ (&) + A,CH*(&)+
%(2 + P)DAH(E) + CAs + %ASD(l +p)2+p)

HP (&) + AqCH* (&) + AgDH*'P (&)

+ A H?™ (&) + Ag = 0.
(30)

Comparing the exponent 2n + 2 with p + 2 or 2n + p with
2p we get p = 2n. Then, Eq.(30) reduces to

C? + Ag + CAs
+ [%CD(l +2n)(1 + 4n)(2 + 4n + 4n%) + A C+ A,

+%A5D(l +2n)2 + 2n)]H2”(é)

+ Ll—tpz(l +2n)(1 + 4n)(2 + 2n)(6n + 2)

+%Al D1 +n)(2 + 2n)]H4”(§)
+ Ay + A,C + ACIHX©) + [A¢D

+%(z +2m)DA, + A7]H2”+2(§) —0

(3D
From Eq.(31) we have the algebraic equations:
C? +Ag + CA5 =0,
CD(1 +2n)(1 + 4n)(1 +2n +2n*) + A,C
+A; +AsD(1 +2n)(1 +n) =0,
D*(1 + n)(1 + 2n)(1 + 3n)(1 + 4n) (32)

+A,D(1 +2n)(1+n)=0,
Ay +A,CH+ALC=0,
AsD+ (1 +nDA, +A, =0.

On solving the above algebraic equations (32) with C, D,
which are non-zero constant, we have:
A, A,

C=— N D:——,
A, + A 1+ A, + A, (33)

along with the conditions

@ Springer
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_ _ A;(143n)(14+4n)
n=n, 4 = (I+mA+As
A [(HmAHA] | A (1A [(142m) (14204207~ (143n) |

57T A, (1+m)(142n) (1+n)(A4+Ag) ’ (34)

A A [(1+m)A+Aq]
A;(14+n)(142n)(A4+Ag)

A%(1+4n)(1+2n)[2n2+2n—1]
(14+n)(A4+Ag)? ’

A8:_

where A,,A3,A,,A¢ and A, are non-zero constants.
It is well known [12—14] that, when D < Qand C > 0,
Eq.(1) has the bright soliton solution:

A (1 +m)A, +A
qlx, 1) =4 — dl s+ A ech?
A7(A4 +Ag)
: u 35)
_ A2 (x = Vi) e (rx+wi+6, )’

provided A(A, +Ag) <0, A;[(1+n)A, +Ag] > 0. The
above solution (35) is obtained under the restriction (34).
Set-4 Inserting B = D = 0 into Eq.(8), we have:

H(&) = A H7 (&) + C H* &) + E HF(8). (36)
Substituting (36) into Eq.(5) we get

AX(1 = p)(1 = 2p)(1 = 3p)(1 — 4p)H™*(£)
+ C* 4+ 2AE +2AC(1 — p)(1 = 2p)(1 = 2p + pPH (&)
+ E*(1 4+ p)(1 + 2p)(1 + 3p)(1 + 4p)H™ (&)
+2EC(1 + p)(1 + 2p)(1 + 2p + 2pP)E*H? (&)
+AA( = p)(1 = 2p)H>" " (£) + A CH™"(£)
+AE(L+ p)(1 + 2p)H> P (&) + A, HP (&)
+ A HY(&) + AA(L = p)H> 7P (&) + A,CH*(§)
+ALE(L + p)H?PP2(€) + CA;
+AA(L = p)(1 = 2p)H (&) + AsE(1 + p)(1 + 2p)H (&)
+ AGAHY (&)

+ AgCH*(&) + AGEH* P (&) + A, H?" () + Ag = 0.
37

Comparing the exponent 2n + 2p with 4p we get p = n.
Then, Eq.(37) is reduced to

@ Springer

[A%(1 = m)(1 = 2n)(1 = 3n)(1 — 4n)|H~*"(&)
+ [2AC(1 = n)(1 = 2n)(1 = 2n + n*) + A;A(1 - n)
(1 =2m)]H(&)
+ [E*(1 +n)(1 +2n)(1 + 3n)(1 +4n) + EA (1 + n)
(1 +2m]H" (&)
+ [2CE(1 + n)(1 + 2n)(1 + 2n + 2n°) + A C + A;
+ASE(1 4 n)(1 + 2n)| H*'(¢)
[A6A + A, AL = m)|H>72"(&) + [ALE(1 + n)
+AGE + A7 | H*2'(8) + [A, + C(A4 + Ag)| H* (&)

+2AE 4+ C* + CA5 + Ag + A|A(1 — n)(1 = 2n) = 0.
(38)

From (38) we get the algebraic equations:

A%(1 = n)(1 = 2n)(1 = 3n)(1 —4n) = 0,
2AC(1 — m)(1 = 2n)(1 = 2n 4+ n?) + AsA(1 — n)(1 — 2n) = 0,
E*(1 + n)(1 4 2n)(1 + 3n)(1 + 4n) + EA,(1 + n)(1 4+ 2n) = 0,
2CE(1 + n)(1 + 2n)(1 + 2n + 2n?) +A,C+A;
+AsE(1 +n)(1 +2n) =0,
AA+AA(1—n) =0,
AE(1+n)+AE+A, =0,
Ay + CA; +Ag) =0,
2AE + C* + CAs + Ag + A|A(1 — n)(1 — 2n) = 0.
(39
On solving Eq.(39) with A, C, E, which are non-zero
constants, we have the results:

co M A
T onA, T 2nAy] (40)

along with the conditions:

=1 1 1 1
n=1, E» 59 Zs
A = (143n)(1+4n)A, A, = (—8n*—20n>—5n*+n—3)A,A,
1 2nA, ’ 3 2n2A2 ’
(41)
2A,(1—n)?
A5 = ZnT’ Ay =—(1-n)A,,

Ao = AL(=4nt20%)  AA;[=24+(1-m)(1-2m)(1+3m)(1+4n)]
8 A2 2nA, ’

where A,,A,, A, are non-zero constants. Let us discuss the
following cases:
Case-1 If A > 0, then with reference to [1-3], Eq.(1)
has the Weierstrass elliptic function solutions:
443 443 243 9
+ EAA7 we

(@) If g = 550 +24A;, g3 = o | 2

have
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[ 2nA, y 24,) =
qlx, 1) =3 — e g (n(x — t),gz,g3)—E 42)
ei(—l(x+wt+00 )’
and
t
g ) = 3A piokxtwty)

A
3p(n(x - Vt),gz,g3) + Ei

(43)
provided A,A; < 0, A4;A; < 0and A,A,> 0.

(b) If ‘[Az AA] =& A 1gaa
8 = 1204, 783 = 216m2A2 | nA, 7

we have

6\/2@(’1()6_ Vt), gze g3) - \i‘i‘jz

qlx, 1) =
3¢/ (n(x - V1), 85, g3) 44)
ei(—Kx+wt+00 )
and
1
3 2234 g (n(x — V1), 8,.83)
qlx, 1) =

60 (n(x — Vi), g5,83) — == 3

et(—Kx+wt+00 ),

provided AyA; <0 and A4A; <0, where ¢y (pf I g3)
dp(pé.g.83)
dE :
Case-2 If A = ﬁ ,then with reference to [1-3], Eq.(1)

has the Weierstrass elliptic function solution:

1
\/76@ (= Vi g083] = 22 |
X, 1) =€ -
q( 18n4,A; 3¢ [(x — V1), 85, &3] (46)

el(—KX+Wt+90 )’

provided A,A; < 0 and A,A, < 0, where the invariants g,, g5
of the Weierstrass elliptic function solution (46) are given by

242 A3
—— and g3 =— YRR
On?A; 54n3A;

&= (47)

The solutions (42—-46) are obtained under the restriction
41).

Case-3 With references [1-3], Eq.(1) has three Jacobian
elliptic function solutions as:

MIFC>0,A= S0 oy < 1,

EQm2—1)? ’

(1) = 24,m?
TEURN " em - )

1
_ A2 ei(—loc+wl+90 )’
nA,(2m2 — 1)

provided A,A;2m? — 1) < 0,A,A,2m?> — 1) < 0, = +1.

C(1-m?)
IDIFC>0,4= S0 0<m< L,

(x, 1) 2 dn (n(x — V1)
qlx,t) =< € ——=—— dn (n(x —
CA,2-m)
1
_ L (KXW, )
nA4Q2 —m?) ’

provided A,A; < 0,A4,A, < 0,& = +1. The above solutions
(48), (49) are valid under the restriction (41).

In particular, when m — 17in (48) and (49), we have
A = 0 and then Eq.(1) has the bright soliton solution:

1
2A A "
qx,t) =< € 22 sech n(x — Vi) _2 piKxtwi+6, )’
Ay nA,

(50)

cn (n(x — Vi)

(48)

49)

(I IfC < 0,A = 0O<m<1,

E(m’ 2+1)2 ?

2A,m? A,
————sn | n(x — VO —————
A2+ 1) AL + 1)

et(—Kx+wr+90 )’

1

n

qx,1) =4 €

D
provided A,A; < 0,4,A, > 0, = +1.

Additional results

It is well known that Weierstrass elliptic function g (é;gz, g3)
can be written in the form:

I, —13)cn (V - Lé¢; m)
‘Z’(f§82783) =L+, —L)ns 2(\/ll - l3§;m),

in terms of the Jacobian elliptic functions where m =

0 (£:82.83) =1, —
(52)

=
1~
is the modulus of the Jacobian elliptic function; [.(j = 1, 2, 3),
l, 21, > I; are the three roots of the cubic equation
4y} — gy - g =0.

Substituting (52) into (42) we have Jacobi elliptic func-
tion solutions:
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gl 1) =¢ [— 22 [t~y en® (Vi —Tsgem)]

7

i (53)
_Ml & ei(—Kx+wt+6’0)
34, ’
and
2nA
g(x, 1) =¢ [— Z 4 [13 (1) ns2<\/11 — m)]
7
1 54
_2A2 " iKxHw+0, )
34, '

In particular, if m — 17, then [, - [, and we have
cn (£,1) —» sech (&) and ns (&, 1) — coth(é). Now, we have
the bright soliton solutions:

g, ) =¢ [— ZZA“ [12 — (l, — 1) sech 2(@4&)]

7

L (55
24, | iRxwrt0,)
34, ’
and the singular soliton solutions:
2nA
q(x. 1) =€ [— — |13+ (= 1) coth* (V= T¢ )]
7
L (56)

24,
34,

o,
] el(—K}C+Wl+90 )'

Substituting (52) into (44) we have Jacobi elliptic solutions:

A

b= —lyen?(VI = Tem) + 22

el(—KX+W[+90 )’

q(x, 1) =¢

(57
and

A

Iy + (I, — L3) ns 2(\/11 —7 ;m) i

ei(—/(x+wt+90 ) .

q(x,t) =¢

(58)
In particular, if m — 17, we have the singular soliton
solution:
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2n

A
ly = (l, = I) sech 2<\/l2 — 13§> + 3:_;4 (59)

ei(—r(x+wt+00 ).

q(x,t) =€

Substituting (52) into (45) we have Jacobi elliptic solutions:

VA==t en* (Vi=Tiem) |- Vit !
q(x, 1) =€ 2
m(lz_ls) en (m 3’”) sn (m im) dn (m ;m)
Pl (Kx+wi+0, )’
(60)
and
q(x, t) =€
ﬁx/K[13+(ll—l3) ns?(Vi—h ?m)]— \632 !
— 2y/I,=1; (1, =13) en (\/ﬁ ;m) dn (\/ﬁ ;m> nss(m ;m)

ei(—Kx+wt+6’0 ).
(61)
In particular, if m - 17, we have the straddled
bright—singular soliton solutions:

\/2[12—(12—13> sech Z(VHf)] ‘6%2 '
VTl seeh (VL) tanh (YET5¢) ©

et(—l(x+wt+90 )’

q(x,t) =€ l

and the straddled singular—singular soliton solutions:

6\/2[134'(12—13)cothz(\/ﬁg)]_\%z n
zm(lz—h)sechl(\/ﬁé) °°th3<m§) (63)

ei(—Kx+wt+¢90 )’

q(x,t) =€ l—

provided A > 0,e = +1.
Substituting (54) into (46) we have Jacobi elliptic solutions:

qlx,t)=¢€

1

-2 =Tty en (VI=Ggim) sn (yI=hm) dn (i=heam) [
[lz—(lz_IS) cn 2(@5%)] - "j"i‘

ei(—l(x+wt+90 )
(64)
and
qx.1) =€

ﬁm(ll_ls)cn (\/ﬁ ;m) dn (\/ﬁ ;m) ns3(\/[|Tl3 :m) i
R

ei(—Kx+wt+6“ )
(65)
provided A,A; < 0,e = +1.
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In particular, if m - 17, we have the straddled
bright—singular soliton solutions:

/- 2'“2 VBT (,~1s) sechz(m.f) tanh (\/Hg)
|=a=1) sech 2(ViE¢ )| - 2

et(—l(x+wt+90 )’

q(x,t) =¢

(66)
and the straddled bright—singular soliton solutions:

1

_%\/E(lz—ls) sech 2(\/12T13§) coth 3(\/@5)
[12_(12_13) coth 2(m6)]_6:§4

q(-xs l) i

ei(—r(x+wt+90 ).
(67)
Substituting (54) into (47) we have Jacobi elliptic solutions:

1

n
- [12 (L) cn (\/ll I m)] =

VI—Ly(y—1;) en (\/1173 ) sn (VI=ls&m) dn (y/I=T&m )

et(—Kx+wt+00 ) ,

q(x,t) =€

(68)

and

1
p
- [lg+(ll—lq)ns<\/l, = m)] oy

VI=I5(l,~1) en (\/11713 ;m) dn (\/ﬁf;m) ns3(m§;m)

el(—KX+W[+90 ) ,

q(X, Z) =€ |-

(69)

provided A,A; < 0,e = +1.
In particular, if m - 17, we have the straddled
bright—singular soliton solutions:

1
2 [12 (Iy—15) sech (wz—,@] & .

Vh=T5(—13) sech z(mg) tanh (\/ﬁg) (70)

el(—KX+Wt+00 )’

q(x,t) =€

and the straddled singular-singular soliton solutions:

1

542 A n
20 [13+(12—13) coth <\/12—13§>]—6"§4

VBT (=) sech? (/R =T5¢ ) coth 3(./12—135) (71)

ei(—Kx+wt+00 ).

q(-xs t) N

Fig. 1 illustrates the 2D and surface plots of a bright opti-
cal soliton (15), showcasing the results under the following
parameter settings: e =1, V=10, =1, 0, =103 =1,
ou=los=16=106=-1,05=10,=104=1 and

o9 = —1.

1a(x, 81

(a) Surface plot

1.0

0.8
S 0.6}
5 —n=1
o n=12
T 0.4f |t
0.2
3 -2 2 0 1 2 3
X
(b) 2D plot

Fig. 1 Analysis of the individual properties showcased by a bright
optical soliton

Conclusions

The current paper addressed the dispersive concatenation
model with power-law of SPM by the aid of sub-ODE
and its variants to recover a spectrum of optical solitons.
In addition, versions of the algorithm also yielded a
wider spectrum of soliton solutions to the model that
are being reported for the first time in this work. While
a full spectrum of solitons are enumerated and exhibited,
it is proved that dark 1-solitons exist only for Kerr law
of nonlinear refractive index change [38]. These results
are important in the optoelectronics area and will be
of great advantage to carry out further research related
investigations with the model. Thus, the future holds
strong for its research activities. Later, the model will
be addressed with differential group delay and also for
dispersion—flattened fibers. The application to other
optoelectronic devices with this model is also awaited.
These include optical metamaterials, optical couplers, gap
solitons, quiescent optical solitons and several others. The
results of such research activities will be reported after the
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recovered results are aligned with the pre-existing ones
[9-15].
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