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Abstract  This paper recovers implicit quiescent optical 
solitons for the Lakshmanan–Porsezian–Daniel equation that 
is studied with nonlinear chromatic dispersion and power-
law of self-phase modulation. The Lie symmetry analysis 
has made this retrieval possible. An interesting observation 
has been made with the results that was not recoverable from 
the prequel paper.
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Introduction

One of the most important models  [1–10] that has been 
extensively studied in optics, for the past few decades, is 
the Lakshmanan–Porsezian–Daniel (LPD) equation. This 
model was considered with Kerr law of self–phase modula-
tion (SPM) as well as power–Law of SPM. Thereafter, this 
model was extended to address soliton studies in birefringent 
fibers. Later, LPD was also studied after replacing the chro-
matic dispersion (CD) with a combination of third–order and 
fourth–order dispersion effects. These were referred to as 
cubic–quartic solitons. These cubic–quartic solitons for LPD 
were studied for the perturbed LPD equation where the per-
turbation terms are of Hamiltonian type. The semi–inverse 
variational principle recovered the soliton solutions under 
these circumstances.

Additionally, in the past the LPD model was also studied 
with nonlinear CD and Kerr law of SPM. In this context, 
the Kerr law of SPM was considered. The linear temporal 
evolution as well as the generalized temporal evolution were 
taken into consideration. The current paper addresses the 
LPD equation with power-law of SPM and having linear as 
well as generalized temporal evolution. The implicit quies-
cent optical solitons are recovered by Lie symmetry analysis. 
The results are presented with the respective parameter con-
straints. A very important observation was made pertaining 
to the nonlinearity parameters of CD and SPM to the model. 
This was not recoverable in the two prequel papers [1, 2].

Linear temporal evolution

The dimensionless form of the LPD equation with nonlinear 
CD and power-law of nonlinear SPM, for linear temporal 
evolution is given as:
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Here, in (1), q(x, t) represents the wave amplitude and is a 
complex-valued function. The first term is the linear tem-
poral evolution and its coefficient is i =

√
−1 . The second 

term, with coefficient a, is the nonlinear CD with n being the 
nonlinearity parameter while the third term, with coefficient 
b, is the nonlinear form of SPM with the parameter m being 
the power-law of nonlinearity there. It needs to be noted that 
the parameter m = 1 collapses to Kerr law of SPM while if 
n = 0 , one recovers linear CD. On the right hand side, the 
usual terms of the LPD equation are present except for the 
fact that the intensity terms are written with power-law of 
nonlinearity.

(1)iqt + a(|q|nq)xx + b|q|2mq = cqxxxx + �
(
qx
)2
q∗ + �||qx||

2
q + �|q|2mqxx + �q2q∗

xx
+ �|q|2m+2q.

To solve (1), the following transformation is picked:

Upon substituting (2) into (1), one recovers the following 
relation for the amplitude portion �(x):

For integrability of (3), the following parameter restrictions 
must remain valid:

(2)q(x, t) = �(x)ei� t.

(3)a(n + 1)���(x)�n+1(x) + an(n + 1)
{
��(x)

}2
�n(x) + b�2m+2(x) + c�(iv)(x)�(x) − ����(x)�2m+1(x)

− ��2m+4(x) −
[
� + (� + �)

{
��(x)

}2
]
�2(x) − ����(x)�3(x) = 0.

(4)m = 1,

(5)n = 1,

(6)� + � = 0,

With the implementation of these parameter constraints, the 
governing model transforms to:

(7)� + � = 0,

(8)c = 0.

Then, the ODE given by (3) shrinks to:

The above equation (10) admits a single Lie point symmetry, 
namely �

�x
 . This symmetry when applied to (4) leads to its 

implicit solution in terms of Appell hypergeometric function 
of two variables as follows:

The Appell hypergeometric function of two variables is 
defined as follows:

which has a primary definition through the hypergeometric 

series

which is convergent inside the region

Equation (14) for (11) transforms to

together with

and

(9)
iqt + a(|q|q)xx + b|q|2q = �

{
||qx||

2
q −

(
qx
)2
q∗
}

+ �
{
|q|2qxx − q2q∗

xx

}
+ �|q|4q.

(10)
2a

[
���(x)�2(x) +

{
��(x)

}2
�(x)

]
+ b�4(x) − ��2(x) − ��6(x) = 0.

(11)x = ±2�
1

2

�
3a

�
F1

�
1

4
;
1

2
,
1

2
;
5

4
; −

30��2

−21b +
√
441b2 − 2100��

,
30��2

21b +
√
441b2 − 2100��

�
.

(12)F1

(
a;b1, b2;c;x, y

)
,

(13)xmyn

(
∞∑

m=0

∞∑

n=0

(a)m+n
(
b1
)
m

(
b2
)
n

(c)m+nm!n!

)
,

(14)max (|x|, |y|) < 1.

(15)max

�
30𝜎𝜙2

−21b +
√
441b2 − 2100𝜆𝜎

,
30𝜎𝜙2

−21b +
√
441b2 − 2100𝜆𝜎

�
< 1,

(16)21b2 > 100𝜆𝜎,

(17)
√
441b2 − 2100�� ≠ �21b�.
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The Pochhammer symbol in (13) is defined as follows:

Finally, the Appell hypergeometric function (11) is defined 
for:

(18)(p)n =

{
1 n = 0,

p(p + 1)⋯ (p + n − 1) n > 0.

(19)a𝜆 > 0.

Generalized temporal evolution

The dimensionless form of LPD Eq. (1), with generalized tem-
poral evolution, is written as:

(20)iql
t
+ a

(
|q|nql

)
xx
+ b|q|2mql = cql

xxxx
+ �

(
qx
)2(

ql
)∗

+ �||qx||
2
ql + �|q|2m

(
ql
)
xx
+ �q2

(
ql
)∗
xx
+ �|q|2m+2ql.

The constant l is the parameter for the generalized temporal 
evolution. For l = 1 , Eq. (20) collapses to (1). Substituting 
the transform given by (2) into (20) the real and imaginary 
components reveal the following pair of relations:

and

For integrability, the same conditions given by (4)–(8) must 
hold. Therefore, the governing model (20) simplifies to:

while Eq. (22) reduces to

The above equation admits a single Lie point symmetry, 
namely �

�x
 . This symmetry will be used the integration pro-

cess and it leads to the following implicit solution in terms 
of Appell hypergeometric function of two variables

where

and

(21){� + �l(l − 1)}
{
��(x)

}2
+ �l���(x)�(x) = 0,

(22)

a
{
l2 + l(2n − 1) + n(n − 1)

}{
��(x)

}2
�n+2(x) + a(l + n)���(x)�n+3(x) + b�m+4(x)

− 6cl(l − 1)(l − 2)���(x)
{
��(x)

}2
�(x) − cl(l − 1)(l − 2)(l − 3)

{
��(x)

}4
− cl�(iv)(x)�3(x)

+ cl(l − 1)

[
3
{
���(x)

}2
+ 4����(x)��(x)

]
�2(x) − �l���(x)�2m+3(x) − �l(1 − l)

{
��(x)

}2
�2m+2(x)

− �l�4(x) − ��2m+6(x) − �
{
��(x)

}2
�4(x) = 0.

(23)iql
t
+ a

(
|q|ql

)
xx
+ b|q|2ql = �

{
||qx||

2
ql −

(
qx
)2(

ql
)∗}

+ �

{
q2
(
ql
)∗
xx
− |q|2

(
ql
)
xx

}
+ �|q|4ql,

(24){� + �l(l − 1)}
{
��(x)

}2
�(x) + �l���(x)�2(x) + al(l + 1)

{
��(x)

}2
+ a(l + 1)���(x)�(x)

+ b�3(x) − �l���(x)�2(x) − �l(l − 1)
{
��(x)

}2
�(x) − �l�(x) − �

{
��(x)

}2
�(x) − ��5(x) = 0.

(25)x = ±�
1

2

√
2a(1 + l)(1 + 2l)

l�
F1

(
1

4
;
1

2
,
1

2
;
5

4
;A1,A2

)
,

(26)A1 =
2
(
4l2 + 8l + 3

)
��2

b
(
4l2 + 12l + 5

)
−

√(
4l2 + 12l + 5

){
b2
(
4l2 + 12l + 5

)
− 4�l(2l + 3)2�

} ,

(27)A2 =
2
(
4l2 + 8l + 3

)
��2

√(
4l2 + 12l + 5

){
b2
(
4l2 + 12l + 5

)
− 4�l(2l + 3)2�

}
+ b

(
4l2 + 12l + 5

) .
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The condition (14), in this case translates to

; while, the other constraints that naturally follow through 
are:

and

Additionally, the condition (19) still holds true here as well.

An observation

The results of the current paper prove that quiescent solitons 
for LPD equation with power-law of SPM would exist only 
when the nonlinear CD parameter as well as the SPM param-
eter both shrink to unity. This fact was neither observed nor 
retrievable when the LPD equation with Kerr law nonlinearity 
was studied in the prequel papers [1, 2].

Conclusions

The current paper recovered the implicit quiescent optical 
solitons for the LPD model with power-law of SPM and 
having nonlinear CD. Both linear temporal evolution as well 
as generalized temporal evolution effects are considered. 
The recovered results are in terms of Appell hypergeomet-
ric functions. The respective parameter constraints are also 
considered. The paper unravels a mysterious situation with 
the power-law parameters. The study of the LPD model with 
power-law of SPM reveals the fact that the solitons would 
exist provided the parameter of nonlinearity for CD as well 
as SPM are both reduced to unity. This was never revealed 
in the prequel papers [1, 2]. This paper will be later studied 
for the same model but with differential group delay as well 
as in dispersion flattened fibers. The results of those research 
activities would be soon disclosed after aligning the results 
with the pre-existing reports [11–27].
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(28)max
(||A1

||, ||A2
||
)
< 1,

(29)

(
4l2 + 12l + 5

){
b2
(
4l2 + 12l + 5

)
− 4𝜆l(2l + 3)2𝜎

}
> 0,

(30)

|

|

|

|

√

(

4l2 + 12l + 5
){

b2
(

4l2 + 12l + 5
)

− 4�l(2l + 3)2�
}

+b
(

4l2 + 12l + 5
)

|

|

|

≠ 0.
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