Skip to main content
Log in

Spatial frequency chirping of q-Gaussian laser beams in graded index plasma channel with ponderomotive nonlinearity

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Chirping of spatial frequency of q-Gaussian laser beams interacting nonlinearly with plasmas with radially inhomogeneous electron density has been investigated theoretically. Due to the radial nonuniformity of the electron density, the index of refraction of the plasma channel resembles to that of a graded index fiber. Chirping or modulation of spatial frequency also known as phase anomaly occurs due to position momentum uncertainty of photons. Due to intensity gradient over the laser cross section, the transverse component of ponderomotive force becomes finite. This results in redistribution of carriers in the irradiated potion of the channel. This results in the enhancement of the radial gradient of the density profile that stimulates the laser beam to get self-focused. The reduction in transverse dimensions of the laser beam in turn leads to spread in transverse momentum of its photons. This transverse momentum spread then modifies the axial phase of the laser beam. Following Virial theory, equations of motion for radius and spatial frequency of the laser beam have been obtained. The equations so obtained have been solved numerically to envision the effect of various laser and plasma parameters on the evolution of beam envelope. Manifestation of axial phase to Berry phase has also been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.G. Gouy, Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. ParisSer. 110, 1251 (1890)

    Google Scholar 

  2. R.W. Boyd, Intuitive explanation of the phase anomaly of focused light beams. J. Opt. Soc. Am. 70, 877 (1980)

    Article  ADS  Google Scholar 

  3. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  4. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 993 (1960)

    Article  Google Scholar 

  5. F. Gittes, C.F. Schmidt, Interference model for back-focal-plane displacementdetection in optical tweezers. Opt. Lett. 23, 7 (1998)

    Article  ADS  Google Scholar 

  6. S.B. Pal, A. Haldar, R.K. Gupta, N. Ghosh, B. Roy, A. Banerjee, Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry. Opt. Express 20, 8317 (2012)

    Article  ADS  Google Scholar 

  7. L. Friedrich, A. Rohrbach, Phase anomalies in Bessel-Gauss beams. Opt. Lett. 37, 2019 (2012)

    Google Scholar 

  8. B.E. Saleh, M.C. Teich, S. Carrasco, J.T. Fourkas, Second-and third-harmonic generation with vector Gaussian beams. J. Opt. Soc. Am. B 23, 2134 (2006)

    Article  ADS  Google Scholar 

  9. Y.Q. Qin, C. Zhang, Y.Y. Zhu, Perfect quasi-phase matching for the third-harmonic generation using focused Gaussian beams. Opt. Lett. 33, 720 (2008)

    Article  ADS  Google Scholar 

  10. M.F. Erden, H.M. Ozaktas, Accumulated Gouy phase shift in Gaussian beampropagation through first-order optical systems. J. Opt. Soc. Am. A 14, 2190 (1997)

    Article  ADS  Google Scholar 

  11. C. Finot, D. Oron, E.R. Andresen, H. Rigneault, Spectral analog of the Gouy phase shift. Phys. Rev. Lett. 110, 143902 (2013)

    Article  ADS  Google Scholar 

  12. R.J. Gordon, V.J. Barge, Effect of the Gouy phase on the coherent phase control of chemical reactions. J. Chem. Phys. 127, 204302 (2007)

    Article  ADS  Google Scholar 

  13. M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, A. Nikroo, A. Niles, H.S. Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R.V. Maren, S.C. Wilks, P.K. Patel, B. Zhang, Integrated laser–target interaction experiments on the RAL petawatt laser. Plasma Phys. Cont. Fusion 47, B833 (2005)

    Article  Google Scholar 

  14. J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Free-man, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, Jaan-imagi, P. Key, M.H. Krushelnick, K. Ma, T. MacPhee, A. MacKinnon, A.J. Nakamura, H. Stephens, R.B. Storm, M.M. Tampo Theobald, W. Woerkom, L.V. Weber, R.L. Wei, M.S. Woolsey, N.C. Nakatsutsumi, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)

    Article  Google Scholar 

  15. C.J. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N. Singh, N. Gupta, A. Singh, Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys. Plasmas 22, 113106 (2015)

    Article  ADS  Google Scholar 

  17. A. Kumar, Ponderomotive self-focusing of surface plasma wave. Plasmonics 8, 1135 (2013)

    Article  Google Scholar 

  18. B. Guo, On global solution for a class of systems of multi-dimensional generalized Zakharov type equation. Acta Math. Appl. Sin. 10, 419 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Sharma, I. Kourakis, Spatial evolution of a q-Gaussian laser beam in relativisticplasma. Laser Part. Beams 28, 479 (2010)

    Article  ADS  Google Scholar 

  20. N. Gupta, Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Johari, R., Alex, A.K. et al. Spatial frequency chirping of q-Gaussian laser beams in graded index plasma channel with ponderomotive nonlinearity. J Opt (2023). https://doi.org/10.1007/s12596-023-01537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01537-8

Keywords

Navigation