Skip to main content
Log in

Semi-active laser seeker design with combined diffractive optical element (CDOE)

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Through the use of diffractive optical elements (DOEs) in electro-optical systems, significant design freedoms have been achieved in these systems. Because of these design freedoms, a single DOE can perform several functions of an optical system. This provides considerable advantages in military and aerial applications. This paper presents a new combined diffractive optical element (CDOE) that increases a laser seeker's measurement sensitivity and maintains the linear measurement range almost the same as a conventional lens. The optical wave propagation method was applied to the CDOE in this study, and the simulation results were compared with a conventional refractive lens named the ideal refractive lens (IRL) in this article. The principle of operation of a laser seeker was analyzed by using MATLAB for IRL and CDOE. The analysis results indicate that the CDOE could increase the measurement sensitivity of the laser seeker while keeping the linear measurement range almost the same. Therefore, the new CDOE that provides many benefits would have better potential than conventional refractive lenses in laser seeker applications. This article will contribute to the development of combined lenses that simultaneously meet various parameters in an electro-optical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Seyhun, H. Sari, A computer modelling approach to decrease stray light in low light non imaging optical designs, in Proc. SPIE 8550, Optical Systems Design 2012, 85500C (2012). https://doi.org/10.1117/12.2014364

  2. T. Ren, T. Jiao, X. Ling, L. Hu, S. Zhu, Design and analysis of distributed semi-active detection system, in Proc. SPIE 11455, Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 114554O (2020). https://doi.org/10.1117/12.2564981

  3. X. Pu et al. Design and analysis of optical system of semi-active laser seeker, in 2020 J. Phys.: Conf. Ser. https://doi.org/10.1088/1742-6596/1650/2/02205

  4. K. Liang, J. Wang, K. Qi, Z. Huang, Design of a four-quadrant detector for the laser seeker of guided gun-launched projectile, in Proc. SPIE 10462, AOPC 2017: Optical Sensing and Imaging Technology and Applications, 1046214 (2017). https://doi.org/10.1117/12.2283259

  5. Q. Huang, B. Lang, L. Xue, Design of strapdown laser guided seeker, in Proc. SPIE 11023, Fifth Symposium on Novel Optoelectronic Detection Technology and Application, 1102350 (2019). https://doi.org/10.1117/12.2520601

  6. J. Barth, A. Fendt, R. Florian, W. Kieslich, Dual-mode seeker with imaging sensor and semi-active laser detector, in Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65423B (2007). https://doi.org/10.1117/12.719571

  7. X. Zhang, Z. Yang, T. Sun, H. Yang, K. Han, B. Hu, Optical system design with common aperture for mid-infrared and laser composite guidance, in Proc. SPIE 10256, Second International Conference on Photonics and Optical Engineering, 102560S (2017). https://doi.org/10.1117/12.2256433

  8. X. Guo, W. Qian, G. Gu, Q. Chen, E. Cao, X. Hu, Study of laser location based on four-quadrant detector APD, in Proc. SPIE 10153, Advanced Laser Manufacturing Technology, 101530M (2016). https://doi.org/10.1117/12.2246317

  9. S. Liu, Z. Liu, S. Wang, X Qiu, Research on influencing factors of detection accuracy based on laser seeker. https://doi.org/10.1088/1742-6596/1087/5/052039

  10. Q. Vo, X. Zhang, F. Fang, Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system. Opt. Laser Technol. (2019). https://doi.org/10.1016/j.optlastec.2018.11.036

    Article  Google Scholar 

  11. Q. Li, J. Wu, Y. Chen, J. Wang, S. Gao, Z. Wu, High precision position measurement method for Laguerre–Gaussian Beams using a quadrant detector. Sensors (2018). https://doi.org/10.3390/s18114007

    Article  Google Scholar 

  12. R.A.P. Aguilar, N.P. Hermosa II, Quadrant detector sensitivity and linearity index measurement with Laguerre-Gaussian beams, in Proc. SPIE 10098, Physics and Simulation of Optoelectronic Devices XXV, 100980V (2017). https://doi.org/10.1117/12.2249293

  13. J. Zhang, W. Qian, G. Gu, C. Mao, K. Ren, C. Wu, X. Peng, Q. Chen, Improved algorithm for expanding the measurement linear range of a four-quadrant detector. 2019 Optical Society of America, https://doi.org/10.1364/AO.58.007741

  14. M. Chen, Y. Yang, X. Jia, H. Gao, Investigation of positioning algorithm and method for increasing the linear measurement range for four-quadrant detector. 2013 Elsevier GmbH, https://doi.org/10.1016/j.ijleo.2013.06.010

  15. J. Zhang, W. Qian, G. Gu, K. Ren, Q. Chen, C. Mao, G. Cai, Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area. Doi: https://doi.org/10.1364/AO.57.006898

  16. W. Zhang, B. Zuo, S. Chen, H. Xiao, Z. Fan, Design of fixed correctors used in conformal optical system based on diffractive optical elements. Appl. Opt. 52, 461–466 (2013)

    Article  ADS  Google Scholar 

  17. J. P. Mills, Conformal optics: theory and practice, in Proc. SPIE 4442, Novel Optical Systems Design and Optimization IV, (2001). https://doi.org/10.1117/12.449962

  18. .R. R. Shannon, Overview of conformal optics, in Proc. SPIE 3705, Window and Dome Technologies and Materials VI, (1999). https://doi.org/10.1117/12.354622

  19. M. Hinnrichs, B. Hinnrichs, E. McCutchen, Infrared hyperspectral imaging miniaturized for UAV applications, in Proc. SPIE 10177, Infrared Technology and Applications XLIII, 101770H (2017). https://doi.org/10.1117/12.2262125

  20. H.-J. Niu, J. Zhang, A. Yan, H. Leng, J. Fei, D. Wu, J. Cao, Optical system design for wide-angle airborne mapping camera with diffractive optical element, in Proc. SPIE 9449, The International Conference on Photonics and Optical Engineering (icPOE 2014), 94492N (2015). https://doi.org/10.1117/12.2085042

  21. D.U. Sakarya, H. Sari, Design of dual mode seeker for millimeter wave and four-quadrant detectors in missile application, in Proc. SPIE 11100, Optomechanical Engineering 2019, 111000N (2019). https://doi.org/10.1117/12.2534751

  22. K. Qian, T. Li, .J. Li, Design of a semi-active laser/active radar/ infrared common aperture compound optical system, in Proc. SPIE 10832, Fifth Conference on Frontiers in Optical Imaging Technology and Applications, 108321H (2018). https://doi.org/10.1117/12.2511609

  23. T. Grulois, G. Druart, N. Guérineau, A. Crastes, H. Sauer, P. Chavel, Extra-thin infrared camera for low-cost surveillance applications. Opt. Lett. 39, 3169–3172 (2014). https://doi.org/10.1364/OL.39.003169

    Article  ADS  Google Scholar 

  24. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens. Opt. Lett. 44, 5450–5452 (2019)

    Article  ADS  Google Scholar 

  25. Y. Peng, Fu. Qiang, H. Amata, Su. Shuochen, F. Heide, W. Heidrich, Computational imaging using lightweight diffractive-refractive optics. Opt. Express 23, 31393–31407 (2015)

    Article  ADS  Google Scholar 

  26. Y. Peng, Computational imaging with diffractive optics. A Thesis Submitted In Partial Fulfıllment Of The Requirements For the Degree Of Doctor Of Philosophy, The University of British Columbia April 2018, https://doi.org/10.14288/1.0365608

  27. Y. Peng, Q. Fu, F. Heide, W. Heidrich, The diffractive achromat: full spectrum computational imaging with diffractive optics. ACM Trans. Graph. 35, 4, Article 31 (2016). https://doi.org/10.1145/2897824.2925941

  28. P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016). https://doi.org/10.1038/srep21545

    Article  ADS  Google Scholar 

  29. K. T. Jacoby, M. W. Pieratt, J. I. Halman, K. A. Ramsey, Predicted and measured EMI shielding effectiveness of a metallic mesh coating on a sapphire window over a broad frequency range. in Proc. SPIE 7302, window and Dome Technologies and Materials XI, 73020X. (2009). https://doi.org/10.1117/12.818200

  30. M.E. Alpman, T. Senger, Simple optimization method for EMI mesh pattern design. In Proc. SPIE 9453, Window and Dome Technologies and Materials XIV, 94530L (2015). https://doi.org/10.1117/12.2176820

  31. N.B. Mentesana, Characterization of shielding effectiveness for metallic enclosures (2011). Masters Theses. 4964. https://scholarsmine.mst.edu/masters_theses/4964

  32. Yu. Miao, Xu. Nianxi, H. Liu, J. Gao, Infrared transparent frequency selective surface based on metallic meshes. AIP Adv. 4, 027112 (2014). https://doi.org/10.1063/1.4866292

    Article  ADS  Google Scholar 

  33. Lu. Zhengang, J. Tan, J. Qi, Z. Fan, L. Zhang, Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh. Opt. Commun. 284, 3855–3861 (2011). https://doi.org/10.1016/j.optcom.2011.04.040

    Article  ADS  Google Scholar 

  34. A.A. Dewani, S.G. O’Keefe, D.V. Thiel, A. Galehdar, Optically transparent frequency selective surfaces on flexible thin plastic substrates. AIP Adv. 5, 027107 (2015). https://doi.org/10.1063/1.4907929

    Article  ADS  Google Scholar 

  35. Z. Lu, Y. Liu, H. Wang, Y. Zhang, J. Tan, Optically transparent frequency selective surface based on nested ring metallic mesh. Opt. Express 24(23), 26109 (2016)

    Article  ADS  Google Scholar 

  36. S. Yan-Jun, C. Hao, W. Song-hang, L. Yan-Bing, W. Li, Study on electromagnetic shielding of infrared /visible optical window. Modern Appl. Sci. (2015). https://doi.org/10.5539/mas.v9n13p231

    Article  Google Scholar 

  37. İ. Günay, T. Yelboğa, Y. Çat, H. Batman, A.E. Yilmaz, Comparison of basic frequency selective surface design methods for optical windows. IEEE. 9:129855. Doi: https://doi.org/10.1109/ACCESS.2021.3112885

  38. R.S. Anwar, L. Mao, H. Ning, Frequency selective surfaces: a review. Appl. Sci. 8, 1689 (2018). https://doi.org/10.3390/app8091689

    Article  Google Scholar 

  39. M. Gustafsson, A. Karlsson, A.P.P. Rebelo, B. Widenberg, [Design of frequency selective windows for improved indoor outdoor communication] Lund Institute of Technology, Dept. Electroscience, Lund, Sweden, Tech. Rep. LUTEDX/(TEAT-7132)/1--14/(2005), 2005 [Online]. Available: http://www.es.lth.se

  40. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000)

    Book  Google Scholar 

  41. C. Lua, Y.-S. Zhai, X.-J. Wangc, Y.-Y. Guoc, Y.-X. Dud, G.-S. Yang, A novel method to improve detecting sensitivity of quadrant detector. https://doi.org/10.1016/j.ijleo.2014.01.059. 0030-4026/© 2014 Elsevier GmbH

  42. V. Moreno, J.F. Román, J.R. Salgueiro, High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys. 1995, June 1997 © 1997 American Association of Physics Teachers, https://doi.org/10.1119/1.18587

  43. Y. Zhang, J. Chen, X. Yea, Multilevel phase Fresnel zone plate lens as a near-field optical element. Opt. Commun. 269, 271–273 (2007). https://doi.org/10.1016/j.optcom.2006.08.006

    Article  ADS  Google Scholar 

  44. C.-W. Yao-JuZhang, H.-C. Xiao, Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate. Opt. Laser Technol. 37, 444–448 (2005). https://doi.org/10.1016/j.optlastec.2004.07.011

    Article  ADS  Google Scholar 

  45. H. Jeong, H. Shin, S. Zhang, X. Li, S. Cho, Application of fresnel zone plate focused beam to optimized sensor design for pulse-echo harmonic generation measurements. Sensors 19, 1373 (2019). https://doi.org/10.3390/s19061373

    Article  ADS  Google Scholar 

  46. M.M. Greve, A.M. Vial, J.J. Stamnes, B. Holst, The Beynon Gabor zone plate: a new tool for de Broglie matter waves and hard X-rays? An off axis and focus intensity investigation. Opt. Express 21, 28483–28495 (2013)

    Article  ADS  Google Scholar 

  47. HaiFeng Zhang, JianChao Li, D.W. Doerr, D.R. Alexander, Diffraction characteristics of a Fresnel zone plate illuminated by 10 fs laser pulses. Appl. Opt. 45, 8541–8546 (2006)

    Article  ADS  Google Scholar 

  48. D. Atwood, Soft X-Rays and Extreme Ultraviolet (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  49. Z. Zhang, C. Guo, R. Wang, Hu. Haixiang, X. Zhou, T. Liu, D. Xue, X. Zhang, F. Zhang, X. Zhang, Hybrid-level Fresnel zone plate for diffraction efficiency enhancement. Opt. Express 25, 33676–33687 (2017). https://doi.org/10.1364/OE.25.033676

    Article  ADS  Google Scholar 

  50. D.S. Jeon, S.-H. Baek, S. Yi, Q. Fu, X. Dun, W. Heidrich, M.H. Kim, Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. 38(4), 1–13 (2019). https://doi.org/10.1145/3306346.3322946

    Article  Google Scholar 

  51. J. Xin, C. Gao, Y. Liu, C. Li, K. Dai, Q. Na, Generation of Bessel beams from a diffractive ring lens. 2013 Elsevier, https://doi.org/10.1016/j.optcom.2013.07.025

  52. J. Xin, Z. Zhou, X. Lou, M. Dong, L. Zhu, Transformation of Laguerre–Gaussian beam by a ring-lens. Front. Optoelectron. 10(1), 9–13 (2017). https://doi.org/10.1007/s12200-016-0606-3

    Article  Google Scholar 

  53. J. W. Goodman Introduction to Fourier Optics, Second Edition, McGraw-Hill Series

  54. R.E. Blahut, Theory of Remote Image Formation (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  55. J.D. Schmidt, Numerical Simulation of Optical Wave Propagation With examples in MATLAB (SPIE Press, Washington, 2010)

    Book  Google Scholar 

  56. O.K. Ersoy, Diffraction, Fourier Optics and Imaging (John Wiley & Sons, New Jersey, 2007)

    Book  MATH  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ünal.

Ethics declarations

Competing interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünal, A. Semi-active laser seeker design with combined diffractive optical element (CDOE). J Opt 52, 956–968 (2023). https://doi.org/10.1007/s12596-022-00954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00954-5

Keywords

Navigation