Skip to main content
Log in

Alternative study of using electro-optic Pockels cell for massive reduction in the intensity of central frequency by multi-passing technique

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Pockels cell is used for the processing of light in the field of optical communication and information processing. It is used for phase and amplitude modulation of light using polarized light as a carrier signal. A polarized incident light passes through electro-optic material, and by using the nonlinear property of the electro-optic material, the light is modulated as per the requirement. Here a study is done to show the massive reduction in the intensity of central frequency of the carrier light if multi-passing technique (multi-feedback) is adopted. In this paper, the authors show the significant number of passing (feedback) for such reduction in the intensity of central frequency and this number of passing (feedback) considerably increases the power of the sideband frequencies. The whole scheme is supported by MATLAB simulation. As the biasing signal information lies only in the sideband frequency, not in the carrier frequency, indirectly the increase in the power of the sideband frequencies strengthens the modulation information to be sent for communication by the carrier light wave having the central frequencies. This is the reason for increasing the sideband intensity by decreasing the intensity of the central frequency using multi-feedback mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Mandal, S. Mukhopadhyay, Analytical investigation to achieve highest phase difference between two orthogonal components of light in lithium niobate based electro-optic system. Optoelectr. Lett. 16(5), 338–342 (2020)

    Article  ADS  Google Scholar 

  2. S. Dey, S. Mukhopadhyay, A method of generation of sharp peaked parabolic and hyper parabolic optical pulses by the use of Pockels effect for long distance communication. J. Opt. 47(3), 272–277 (2018)

    Article  Google Scholar 

  3. B. Sarkar, S. Mukhopadhyay, An optical system for sharp increase of light frequency by the use of multiple numbers of LiNbO3 crystal biased sawtooth electronic pulse. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01858-5

    Article  Google Scholar 

  4. R. Maji, S. Mukhopadhyay, A method of reducing the half wave voltage (Vπ) of an electro-optic modulator by multi passing a light through the modulator. Optik 123(12), 1079–1081 (2012)

    Article  ADS  Google Scholar 

  5. R.C. Twu, H.Y. Hong, H.H. Lee, An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators. Opt. Express. 16(6), 4366–4374 (2008)

    Article  ADS  Google Scholar 

  6. S. Sen, S. Mukhopadhyay, A method of using a sharp cut and pointy electro-optic material for massive reduction of Vπ voltage. Optik 126(24), 5256–5259 (2015)

    Article  ADS  Google Scholar 

  7. A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  8. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007)

    Google Scholar 

  9. S. Shi, D.W. Prather, Ultrabroadband electro-optic modulator based on hybrid silicon-polymer dual vertical slot waveguide. Adv. Opto Electr. 2011, 1–6 (2011). https://doi.org/10.1155/2011/714895

    Article  Google Scholar 

  10. E.A. Whittaker, M. Gehrtz, G.C. Bjorklund, Residual amplitude modulation in laser electro-optic phase modulation. JOSA B. 2(8), 1320–1326 (1985)

    Article  ADS  Google Scholar 

  11. P. Kolchin, C. Belthangady, S. Du, G.Y. Yin, S.E. Harris, Electro-optic modulation of single photons. Phys. Rev. Lett. 101(10), 103601 (2008)

    Article  ADS  Google Scholar 

  12. J. Zhang, J.S. Nelson, Z. Chen, Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt. Lett. 30(2), 147–149 (2005)

    Article  ADS  Google Scholar 

  13. B. Sarkar, S. Mukhopadhyay, Optoelectronic scheme for generation of time bound low-frequency electronic signal using multi-passing of light. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0086

    Article  Google Scholar 

  14. S. Lakshan, D. Saha, S. Mukhopadhyay, Optical scheme of obtaining highest transmission factor in case of KDP based electro-optic crystal by the adjustment of suitable biasing voltage and number of feedback passing. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0112

    Article  Google Scholar 

  15. J.F. Diehl, C.E. Sunderman, J.M. Singley, V.J. Urick, K.J. Williams, Control of residual amplitude modulation in lithium niobate phase modulators. Opt. Express 25(26), 32985–32994 (2017)

    Article  ADS  Google Scholar 

  16. L. Cao, A. Aboketaf, Z. Wang, S. Preble, Hybrid amorphous silicon (a-Si: H)–LiNbO3 electro-optic modulator. Opt. Commun. 330, 40–44 (2014)

    Article  ADS  Google Scholar 

  17. D. Paipulas, R. Buivydas, S. Juodkazis, S. Mizeikis, Local photorefractive modification in lithium niobate using ultrafast direct laser write technique. J. Laser Micro Nanoeng. 11, 246 (2016)

    Article  Google Scholar 

  18. S. Sharma, P. Eiswirt, J. Petter, Electro optic sensor for high precision absolute distance measurement using multiwavelength interferometry. Opt. Express 26(3), 3443–3451 (2018)

    Article  ADS  Google Scholar 

  19. L. Xu, S. Jin, Y. Li, LiNbO3 thin film ACP phase modulator for hybridly integrated ACP-OPLL. Electron. Lett. 52(6), 472–473 (2016)

    Article  ADS  Google Scholar 

  20. M. Jin, J.Y. Chen, Y.M. Sua, Y.P. Huang, High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett. 44(5), 1265–1268 (2019)

    Article  ADS  Google Scholar 

  21. C. Wang, M. Zhang, B. Stern, M. Lipsonand, M. Lon-čar, Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)

    Article  ADS  Google Scholar 

  22. R. Maji, S. Mukhopadhyay, An alternative optical method of determining the unknown microwave frequency by the use of electro-optic materials and semiconductor optical amplifier. Optik 122, 1622–1624 (2010)

    Article  ADS  Google Scholar 

  23. M. Mandal, R. Maji, S. Mukhopadhyay, Increase of side band powers in parallel phase modulation by lithium niobate–based electro-optic crystal. Braz. J. Phys. 51, 738–745 (2021)

    Article  ADS  Google Scholar 

  24. M. Mandal, S, Lakshan, D. Saha, A. Chatterjee, S. Mukhopadhyay, Investigation on some fast optical/optoelectronic switching systems for implementing different modulation scheme. Book Chapter, CRC Press, Kolkata. (2021) https://doi.org/10.1201/9781003047193

  25. J. Niedziela, Bessel Functions and Their Applications (University of Tennessee, Knoxville, 2008)

    Google Scholar 

  26. B. Chakraborty, S. Mukhopadhyay, A method of implementing all-optical clocked flip-flop with phase encoded optical logic. Optik 123(16), 1432–1435 (2012)

    Article  ADS  Google Scholar 

  27. S. Mukhopadhyay, D. Das, P. Das, P. Ghosh, Implementation of all-optical digital matrix multiplication scheme with non-linear material. Opt. Eng. 40, 1998–2002 (2001)

    Article  ADS  Google Scholar 

  28. K. Roy Chowdhury, S. Mukhopadhyay, Binary optical arithmetic operation scheme with tree architecture by proper accommodation of optical nonlinear materials. Opt. Eng. 43(1), 132–136 (2004)

    Article  ADS  Google Scholar 

  29. N. Pahari, S. Mukhopadhyay, New method of all-optical data comparison with nonlinear material using 1’s complement method. Opt. Eng. 45(1), 015201 (2006)

    Article  ADS  Google Scholar 

  30. S. Dhar, S. Mukhopadhyay, All optical implementation of ASCII by use of nonlinear material for optical encoding of necessary symbols. Opt. Eng. 44(6), 065201 (2005)

    Article  ADS  Google Scholar 

  31. P. Mondal, S. Mukhopadhyay, Analytical study to find the proper coupling energy from one optical waveguide to another with consideration of the nonlinear correction factor. Opt. Eng. (USA) 45(11), 114602.1-114602.5 (2006)

    Google Scholar 

  32. F. Lucchi, D. Janner, M. Belmonte, S. Balsamo, M. Villa, S. Giurgola, P. Vergani, V. Pruneri, Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator. Opt. Express 15(17), 10739–10743 (2007)

    Article  ADS  Google Scholar 

  33. S. Deng, Z.R. Huang, J.F. McDonald, Design of high efficiency multi-GHZ SiGe HBT electro-optic modulator. Optic express. 17(16), 13425–13438 (2009)

    Article  ADS  Google Scholar 

  34. Y. Shi, Micromachined wide-band lithium-niobate electrooptic modulators. IEEE Trans. Microw. Theory Tech. 54(2), 810–815 (2006)

    Article  ADS  Google Scholar 

  35. S. Haxha, B.A. Rahman, R.J. Langley, Broadband and low-driving-power LiNbO3 electro-optic modulators. Opt. Quant. Electron. 36(14), 1205–1220 (2009)

    Article  Google Scholar 

  36. Z. Liu, J. Yu, D. Zhu, Design of a new type of electro-optic polymer wave guide modulator with ultra high band width. Int. J. Infrared Millimeter Waves 27(5), 707–724 (2006)

    Article  Google Scholar 

  37. Y.Q. Lu, Z.L. Wan, Q. Wang, Y.X. Xi, N.B. Ming, Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl. Phys. Lett. 77(23), 3719–3721 (2000)

    Article  ADS  Google Scholar 

  38. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarisation encoding. IET Optoelectron. 12(4), 176–179 (2018)

    Article  Google Scholar 

  39. M. Mandal, S. Mukhopadhyay, Photonic scheme for implementing quantum square root controlled Z gate using phase and intensity encoding of light. IET Optoelectron. 15, 52–60 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission (UGC) for extending a research fellowship to one of the author. They also acknowledge the Centre for Advance Study (CAS) programme sponsored by the University Grants Commission (UGC), Government of India, for some infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, I., Mandal, M. & Mukhopadhyay, S. Alternative study of using electro-optic Pockels cell for massive reduction in the intensity of central frequency by multi-passing technique. J Opt 51, 379–385 (2022). https://doi.org/10.1007/s12596-021-00779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00779-8

Keywords

Navigation