Skip to main content
Log in

Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This paper is an attempt to investigate the mineral matter constituents in Permian coals of Mahanadi basin, India. Twenty two bulk samples from the working mines have been selected for the study. Analytical techniques such as X-Ray diffraction, Fourier transform infrared spectroscopy coupled with coal microscopy have been used in this study for rapid characterization. The chief mineral phases are quartz, kaolinite, orthoclase, muscovite, and chlorite in order of increasing abundance in all the samples. Petrographic analysis reveal the dominance of Vitrinite (36.17%) followed by the Inertinite (32.33%), Liptinite (14.30%) group of macerals and mineral matter (17.18%). Mineral matter in the voids and cell lumens is common mode of occurrence in the coals which can be attributed to syngenetic and epigenetic types. The proximate analysis suggest the coals have high ash yield (8.37% to 38.46% on air dried basis) with high volatile matter (10.8% to 35.51% on air dried basis) making it suitable for thermal power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandopadhyay, A.K. (2010) Determination of quartz content for Indian coals using an FTIR technique. Internat. Jour. Coal Geol., v.81, pp.73–78.

    Article  Google Scholar 

  • Barooah, P.K. and Baruah, M.K. (1996) Sulphur in Assam coal. Fuel Process. Technol., v.46, pp.83–97.

    Article  Google Scholar 

  • Baruah, M.K., Kotoky, P. and Borah, G.C. (2003) Distribution and nature of organic/mineral bound elements in Assam coals, India. Fuel, v.82, pp.1783–1791.

    Article  Google Scholar 

  • Baysal, M., Yürüm, A., Yýldýz, B. and Yürüm, Y. (2016) Structure of some western Anatolia coals investigated by FTIR, Raman, C solid state NMR spectroscopy and X-ray diffraction. Internat. Jour. Coal Geol., v.163, pp.166–176.

    Article  Google Scholar 

  • Bertaux, J., Froehlich, F. and Ildefonse, P. (1998) Multicomponent analysis of FTIR spectra; quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. Jour. Sediment. Res., v.68, pp.440–447.

    Article  Google Scholar 

  • Besson, G. and Drits, V.A. (1997) Refined relationships between chemical composition of dioctohedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the OH stretching bands. Clay & Clay Min., v.45, pp.158–169.

    Article  Google Scholar 

  • BIS. (2003) Methods of test for coal and coke (2nd revision of IS: 1350) Part I, Proximate.

  • Bohor, B.F. and Triplehorn, D.M. (1993) Tonsteins: Altered Volcanic-Ash Layers in Coal-Bearing Sequences. Geol. Soc. Amer., Spec. Paper: 285.

  • Bouska, V., Pesek, J. and Sykorova, I. (2000) Probable Modes of Occurrence of Chemical Elements in Coal. Acta Mont., v.117, pp.53–90.

    Google Scholar 

  • Casshyap, S.M. (1970) Sedimentary cycle and environment of deposition of the Barakar Coal Measure of Lower Gondwana. India. Jour. Sediment. Petrol., v.40, pp.1302–1317.

    Google Scholar 

  • Casshyap, S.M. (1974) Glacial sedimentation of Late Paleozoic Talchir diamictite, Pench Valley Coalfield, Central India. Bull. Geol. Soc., v.85, pp.749–760.

    Article  Google Scholar 

  • Chatterjee, S. and Scotese, C.R. (1999) The breakup of Gondwana and evolution and biogeography of the Indian Plate. Pinsa, v.65, pp.397–425.

    Google Scholar 

  • Chen, Y., Furmann, A., Mastalerz, M. and Schimmelmann, A. (2014) Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel, v.116, pp.538–549.

    Article  Google Scholar 

  • Chou, C. L. (2012) Sulfur in coals: A review of geochemistry and origins. Internat. Jour. Coal Geol., v.100, pp.1–13.

    Article  Google Scholar 

  • Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz, A.N. (Ed.), Manual of Remote Sensing, John Wiley and Sons, New York.

    Google Scholar 

  • Dai, S., Guo, W., Victor, N.P., French, D., Ward, C.R., Spiro, B.F., Finkelman, R.B., (2018) Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. Internat. Jour. Coal Geol., v.189, pp.94–110.

    Article  Google Scholar 

  • Dai, S., Ren, D., Tang, Y., Yue, M., and Hao, L. (2005) Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Internat. Jour. Coal Geol., v.61, pp.119–137.

    Article  Google Scholar 

  • Dwari, R.K., and Rao, K.H., (2009) Fine coal preparation using novel triboelectrostatic separator. Min. Eng., v.22, pp.119–127.

    Article  Google Scholar 

  • Estep, P.A., Kovach, J.J. and Karr, C. Jr. (1968) Quantitative infrared multicomponent analysis of minerals occurring in coal. Analyt. Chem., v.60, pp.1–17.

    Google Scholar 

  • Farmer, V.C. (ed). (1974) The infrared spectra of minerals. The Mineralogical Society, UK, London.

    Google Scholar 

  • Frost, R.L., Scholz, R., and López, A. (2015) Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite-Implications for the molecular structure. Jour. Mol. Struct., v.1097, pp.1–5.

    Article  Google Scholar 

  • Georgakopoulos, A. (2003) Study of low rank Greek coals using FTIR spectroscopy. Ener. Sour., v.25, pp.995–1005.

    Article  Google Scholar 

  • Gupta, D.C. (1999) Environmental aspects of selected trace elements associated with coal and natural waters of Pench Valley coalfield of India and their impact on human health. Internat. Jour. Coal Geol., v.40, pp.133–149.

    Article  Google Scholar 

  • Hayashi, H. and Oinuma, K. (1965) Relationship between infrared absorption spectra in the region of 450–900 cm−1 and chemical composition of chlorite. Amer. Mineral. v.50, pp.476–483. http://ibm.gov.in/writereaddata/files/12102018121017Coal%202017.pdf Accessed on 27 May 2019.

    Google Scholar 

  • Hunt, J.M., Wisherd, M.P. and Bonham, L.C. (1950) Infrared Absorption Spectra of Minerals and Other Inorganic Compounds. Analyt. Chem., v.22, pp.1478–1497.

    Article  Google Scholar 

  • Ibarra, J.V., Edgar, M. and Rafael, M. (1996) FTIR study of the evolution of coal structure during the coalification process. Org. Geochem., v.24, pp.725–735.

    Article  Google Scholar 

  • ICCP. (1998) The new vitrinite classification (ICCP System 1994). Fuel, v.77, pp.349–358.

    Article  Google Scholar 

  • ICCP. (2001) The new inertinite classification (ICCP System 1994). Fuel, v.80, pp.459–471.

    Article  Google Scholar 

  • Li, K., Khanna, R., Zhang, J., Barati, M., Liu, Z., Xu, T., Yang, T. and Veena, S. (2015) Comprehensive Investigation of Various Structural Features of Bituminous Coals Using Advanced Analytical Techniques. Ener. Fuel, v.29, pp.7178–7189.

    Article  Google Scholar 

  • Li, T., Dai, S., Zou, J.H., Zhang, S., Tian, H.H. and Zhao, L.X. (2014) Composition and mode of occurrence of minerals in Late Permian coals from Zhenxiong County, northeastern Yunnan, China. Internat. Jour. Coal Sci. Technol., v.1, pp.13–22.

    Article  Google Scholar 

  • Makreski, P., Jovanovski, G. and Kaitner, B. (2009) Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates. Jour. Mol. Struct., v.924, pp.413–419.

    Article  Google Scholar 

  • Manoj, B. (2016) A comprehensive analysis of various structural parameters of Indian coals with the aid of advanced analytical tools. Internat. Jour. Coal Sci. Technol., v.3, pp.123–132.

    Article  Google Scholar 

  • Moenke, H.H.W. (1974) Silica, the three dimensional silicates, borosilicates and beryllium silicates. In the Farmer, V.C., (Ed.), The Infrared Spectra of Minerals: Min. Soc. (London), Mngrph. v.4, pp.365–382.

  • Mukhopadhyay, G., Mukhopadhyay, S.K., Roychowdhury, M. and Parui, P.K. (2010) Stratigraphic correlation between different Gondwana Basins of India. Jour. Geol. Soc. India, v.76, pp.251–266.

    Article  Google Scholar 

  • Müller, C.M., Pejcic, B., Esteban, L., Delle, C.P., Raven, M. and Mizaikoff, B. (2014) Infrared Attenuated Total Reflectance Spectroscopy. An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Sci. Rep., v.1, pp.1–11.

    Google Scholar 

  • Naik, A.S., Singh, M.P., Volkmann, N., Singh, P.K., Mohanty, D. and Kumar, D. (2016) Petrographic characteristics & paleomires of Mand-Raigarh coals, Mahanadi Gondwana Basin, Chhattisgarh, India. Internat. Jour. Coal Sci. Technol., v.3, pp.165–183.

    Article  Google Scholar 

  • Nimaje, D.S. and Tripathy, D.P. (2016) Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel, v.163, pp.139–147.

    Article  Google Scholar 

  • Oinuma, K. and Hayashi, H. (1965) Infrared study of mixed-layer clay minerals. Amer. Mineral., v.50, pp.1213–1227.

    Google Scholar 

  • Painter, P.C., Coleman, M.M., Jenkins, R.G., Whang, P.W. and Walker, L.P. (1978) Fourier Transform Infrared study of mineral matter in coal- A novel method for quantitative mineralogical analysis. Fuel, v.57, pp.337–344.

    Article  Google Scholar 

  • Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W. and Davis, A. (1981) Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. App. Spectro., v.35, pp.475–485.

    Article  Google Scholar 

  • Pareek, H.S. (1963) Petrology of Talcher Coals. Econ. Geol., v.58, pp.1089–1109.

    Article  Google Scholar 

  • Rao, C.S.R. (1982) Coalfields of India, Coal Resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra. Geol. Surv. India, Bull Series, v.45, pp.103.

    Google Scholar 

  • Rao, C.P. and Gluskoter, H.J. (1973) Occurrence and distribution of minerals in Illinois coals. Illinois State Geol. Surv. Circular, v.476.

  • Raymond, R. and Andrejeko, M.J. (1983) Mineral Matter in Peat: its Occurrence, Form and Distribution. Los Alamos National Laboratory, Rep. LA 9907 OBES, Los Alamos, New Mexico.

  • Rendon, J.L. and Serna, C.J. (1981) Effects of Particle Size and Shape. Clay Min., v.16, pp.175–181.

    Article  Google Scholar 

  • Ruppert LF, Stanton RW, Cecil CB, Eble CF and Dulong FT (1991) Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp. Internat. Jour. Coal Geol., v.17, pp.95–116.

    Article  Google Scholar 

  • Saikia, B.K., Boruah, R.K. and Gogoi, P.K. (2007) FT-IR and XRD analysis of coal from Makum coalfield of Assam. Jour. Earth Sys. Sci., v.116, pp.575–579.

    Article  Google Scholar 

  • Saksena, B.D. (1964) Infrared hydroxyl frequencies of muscovite, phlogopite and biotite micas in relation to their structures. Trans. Faraday Soc., v.60, pp.1715–1725.

    Article  Google Scholar 

  • Singh, A.K. (2016) Petrographic and Geochemical Characterization of Coal from Talcher Coalfield, Mahanadi Basin, India. Jour. Geol. Soc. India, v.87, pp.525–534.

    Article  Google Scholar 

  • Singh, A.K. (2015) Petrological investigation of Eocene coals, Garo Hills, Meghalaya, India. Arab. Jour. Geosci., v.8, pp.10705–10714.

    Article  Google Scholar 

  • Singh, M.P. and Singh, P.K. (1996) Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India. Internat. Jour. Coal Geol., v.29, pp.93–118.

    Article  Google Scholar 

  • Singh, P.K., Singh, M.P., Prachiti, P.K., Kalpana, M.S., Manikyamba, C., Lakshminarayana, G., Singh, A.K. and Naik, A.S. (2012) Petrographic characteristics and carbon isotopic composition of Permian coal: Implications on depositional environment of Sattupalli coalfield, Godavari Valley, India. Internat. Jour. Coal Geol., v.90, pp.34–42.

    Article  Google Scholar 

  • Sobkowiak, M. and Painter, P.A. (1995) A comparison of drift and KBr pellet methodologies for the quantitative analysis of functional groups in coal by infrared spectroscopy. Ener. Fuel, v.9, pp.359–363.

    Article  Google Scholar 

  • Sonibare, O.O., Tobias, H. and Foley, S.F. (2010) Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, v.35, pp.5347–5353.

    Article  Google Scholar 

  • Spears, D.A. (1987) Mineral matter in coals, with special reference to the Pennine Coalfields. In: A.C. Scott (Ed.), Coal and coal-bearing strata: recent advances: Boston, Blackwell Scientific Publications, Geol. Soc. London Spec. Publ., v.32, pp.171–185.

  • Tappert, C.M., Rivard, B., Giles, D., Tappert, R. and Mauger, Alan. (2013) The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geol. Rev., v.53, pp.26–38.

    Article  Google Scholar 

  • Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R and Robert P (1998) Organic Petrology. Gebrüder Borntraeger, Berlin-Stuttgart.

    Google Scholar 

  • Tewari, R.C. (2005) Tectono-Stratigraphic- Sedimentary events in Gondwana succession of Peninsular India. Jour. Geol. Soc. India, v.65, pp.636–638.

    Google Scholar 

  • Vaculíkova, L. and Plevová, E. (2005) Identification of Clay Minerals and Micas in Sedimentary Rocks. Acta Geodyn. Geomater., v.138, pp.167–175.

    Google Scholar 

  • Vassilev, S.V., Kitano, K. and Vassileva, C.G. (1996) Some relationships between coal rank and chemical and mineral composition. Fuel, v.75, pp.1537–1542.

    Article  Google Scholar 

  • Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica. Amer. Mineral., v.49, pp.736–768.

    Google Scholar 

  • Veevers, J.J. (2004) Gondwanaland from 650-500Ma assembly through 320Ma merger in Pangea to 185-100Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci. Rev., v.68, pp.1–132.

    Article  Google Scholar 

  • Ward, C.R. (2016) Analysis, origin and significance of mineral matter in coal: An updated review. Internat. Jour. Coal Geol., v.16, pp.51–27.

    Google Scholar 

Download references

Acknowledgements

The Head Department of Geology, BHU, Varanasi and Head, Department of Mining, NIT, Rourkela, India are duly acknowledged for providing necessary facilities for carrying out this research. The DST-Purse grant program 5050 is also duly acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A.S., Behera, B., Shukla, U.K. et al. Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective. J Geol Soc India 97, 1019–1027 (2021). https://doi.org/10.1007/s12594-021-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1817-9

Navigation