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Abstract
Accurate parameter estimation and state identification within nonlinear systems are fun-
damental challenges addressed by optimization techniques. This paper fills a critical gap 
in previous research by investigating tailored optimization methods for parameter estima-
tion in nonlinear system modeling, with a particular emphasis on chaotic dynamical sys-
tems. We introduce and compare three optimization methods: a gradient-based iterative 
algorithm, the Levenberg-Marquardt algorithm, and the Nelder-Mead simplex method. 
These methods are strategically employed to simplify complex nonlinear optimization 
problems, rendering them more manageable. Through a comprehensive exploration of the 
performance of these methods in determining parameters across diverse systems, including 
the van der Pol oscillator, the Rössler system, and pharmacokinetic modeling, our study 
revealed that the accuracy and reliability of the Nelder-Mead simplex method were con-
sistent. The Nelder-Mead simplex algorithm emerged as a powerful tool, that consistently 
outperforms alternative methods in terms of root mean squared error (RMSE) and con-
vergence reliability. Visualizations of trajectory comparisons and parameter convergence 
under various noise levels further emphasize the algorithm’s robustness. These studies sug-
gest that the Nelder-Mead simplex method has potential as a valuable tool for parameter 
estimation in chaotic dynamical systems. Our study’s implications extend beyond theo-
retical considerations, offering promising insights for parameter estimation techniques in 
diverse scientific fields reliant on nonlinear system modeling.
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Introduction

Understanding complex systems often requires the construction of mathematical mod-
els based on empirical data-a process known as system identification [1–3]. This paper 
addresses the intricate challenge of accurately estimating parameters for nonlinear mod-
els that encapsulate the dynamics of these systems, such as the van der Pol oscillator, 
the Rössler system, and pharmacokinetic models. Parameter estimation is paramount for 
gaining insights into the behaviors of real-world systems and involves optimizing a cost 
function through various techniques such as gradient methods, Newton’s methods, and 
least square methods [4].

To address this challenge, we delve into optimization methods designed to simplify 
the intricate task of parameter estimation. Specifically, our study explores three distinct 
optimization strategies: a gradient-based iterative algorithm, the Levenberg-Marquardt 
algorithm, and the Nelder-Mead simplex method. These methods are applied to estimate 
the parameters of nonlinear functions, and their effectiveness is demonstrated through 
practical examples involving the aforementioned models.

This research contributes to the advancement of optimization techniques for param-
eter estimation in nonlinear system modeling, with broad applications across diverse 
scientific and engineering domains. The remainder of this paper is structured as follows: 
Sect.  3 outlines the research objectives, Sect.  4 provides a detailed description of the 
methods and algorithms employed for parameter identification in nonlinear dynamical 
systems, and Sects.  5 and 6, present the results of our experiments and conclusions, 
respectively.

Related Works

Fitting model parameters to real-world data is a common yet challenging task [5], par-
ticularly when dealing with models containing numerous parameters. Algorithms often 
struggle in parts of the parameter space where the model does not respond to changes, 
requiring manual adjustments.

Optimization methods are crucial across various fields, providing solutions to com-
plex problems. Here, we explore different optimization approaches and their relevance 
to our study. Specifically, we focus on three key algorithms: a gradient-based iterative 
method, the Levenberg-Marquardt algorithm, and the Nelder-Mead simplex method 
[6–9].

Gavin [10] has discussed these methods, demonstrating their application in solv-
ing curve-fitting problems using software tools. Shawash [11] demonstrated a practical 
implementation of the LM algorithm on hardware, specifically field programmable gate 
arrays (FPGAs). This successful real-time camera calibration and parameter estimation 
on FPGAs provides a blueprint for implementing the LM algorithm on specialized hard-
ware for high-speed, low-power applications.

The Nelder-Mead simplex method, a derivative-free approach for function minimiza-
tion, involves evaluating the objective function at various simplex vertices. Olsson [12] 
explained this method’s movement away from the poorest value. Wang [20] conducted a 
parameter sensitivity study of this method across different functions, revealing essential 
relationships between the parameters and the optimal solution.
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Additionally, numerous methods exist for solving similar problems, including 
trust-region optimization [14], multiple shooting methods [15, 16], and data-driven 
approaches [17, 18] leveraging various machine learning algorithms [19].

Theory: Background and Preliminaries

The challenge of parameter estimation in ordinary differential equations (ODEs) involves 
determining a parameter vector p ∈ ℝ

k and a trajectory y ∶ [ta, tb] ⟶ ℝ
n such that the 

ODE ẏ = f (t, y, p) is satisfied while minimizing a least-squares functional given by

where r ∈ ℝ
l represents least-squares conditions based on specific instants ti and 

parameters.
In a common scenario, the objective function simplifies to,

where, g relates ODE components to measured quantities, �ij is the observed value of gi at 
instant ti , and �ij is the standard deviation.

Estimating parameters, as described above, may present challenges when approached 
directly. However, adopting an inverse perspective shows promise. We consider the initial 
value problems ẏ(t) = f (t, y, p) , y(t0) = y0 , and their solutions’ derivatives with respect to 
the parameters and initial values:

The following equations for the difference in variation yield insightful relationships:

This leads to the deduction that:

This implies that if the time scale of measurement is significantly smaller than the time 
scale of oscillations in G or fp , parameter derivatives might benefit from initial value deriv-
atives, especially in chaotic systems. Essentially, observed trajectories could contain sub-
stantial information about the parameters. Hence, parameter estimation in chaotic systems 
could be well-posed if error propagation is managed effectively [9].

(1)L(y, p) = ‖r(y(t1), ..., y(t�), p)‖2,

(2)L(y, p) =

N∑

i=1

�∑

j=1

1

�2
ij

[�ij − gi(ti, y(ti), p)]
2

(3)

�

�y0
y(t;t0, y0, p) = G(t, t0, y0, p)

�

�p
y(t;t0, y0, p) = H(t, t0, y0, p)

(4)

Ġ(t, t0, y0, p) = fy(t, y, p) ⋅ G(t, t0, y0, p)

G(t0, t0, y0, p) = 1

Ḣ(t, t0, y0, p) = fy(t, y, p) ⋅ H(t, t0, y0, p) + fp(t, y, p)

H(t0, t0, y0, p) = 0

(5)H(t, t0, y0, p) = ∫
t

t0

G(t, s, y0, p) ⋅
�f

�p
(s, y(s, t0, y0, p), p) ds



	 Differential Equations and Dynamical Systems

1 3

Methods

Experimental data arising from chaotic nonlinear dynamical systems commonly undergo 
evaluation using diverse time-series analysis techniques. To address the optimization chal-
lenge inherent in this scenario, a variety of optimization algorithms are employed to iden-
tify the parameter vector p and the trajectory x that minimizes the objective function.

In this context, we introduce and employ three distinct optimization methods:

The Gradient‑based Iterative Algorithm

An algorithm based on gradient estimation can be used to find iterative solutions of p 
through the gradient search principle [7, 20]. In this algorithm, let k be the iterative vari-
able, while p̂k represents the iterative estimates of p at iteration k. The objective is to create 
identification techniques for estimating the parameters p by utilizing the available measure-
ment data (xi;f (xi)) , which is equivalent to minimizing the following cost function

and the gradient search principle leads to the following gradient-based estimation 
algorithms

where 𝜇k > 0 is the step-size or convergence factor and determined by

The procedure for computing the gradient-based estimation algorithm for the system 
described in equation (1) can be summarized as follows: 

1.	 The measured data (xi, f (xi)), are collected such that i = 1, 2, ...N.

2.	 To initialize, let k = 1 , p̂0 be arbitrary real numbers, and the preset small �
3.	 Determine the step-size �k by (8).
4.	 Compute p̂k by (7).
5.	 If 

∑‖p̂k − p̂k−1‖ > 𝜖 , increase k by 1 and go to step 3; otherwise, terminate the proce-
dure and obtain the estimate p̂k.

The learning rate also needs to be chosen carefully to ensure that the algorithm converges 
efficiently without oscillating or overshooting the minimum.

The Levenberg‑Marquardt Algorithm

The Levenberg-Marquardt algorithm [21, 22] iteratively updates the parameter estimates 
using a combination of the Gauss-Newton method and the steepest descent method, with 

(6)J(p) =
∑

ij

1

�2
ij

[�ij − gi(x(tj), p)]
2.

(7)
[
p̂k
]
=
[
p̂k−1

]
− 𝜇k

[
𝜕J(x, p)

𝜕p

]

(8)𝜇k = argmin
𝜇≥0 J(p̂1,k−1 − 𝜇

𝜕J

𝜕p1
, p̂2,k−1 − 𝜇

𝜕J

𝜕p2
,…)
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a damping parameter that adjusts the step size based on the curvature of the cost function. 
This algorithm 1 is widely used for nonlinear least squares problems and can be applied to 
a variety of parameter estimation problems in different fields [23, 24].

Algorithm  1   Pseudocode of the standard Levenberg-Marquardt algorithm for parameter 
estimation problems

Convergence Criteria for Levenberg‑Marquardt Algorithm

The convergence criteria for the Levenberg-Marquardt algorithm are typically determined 
based on the behavior of the cost function, which is defined as:

•	 Criterion 1: Residual norm convergence: ‖e(p)‖ < 𝜖r ; Convergence is achieved when 
the norm of the residual vector e(p), representing the difference between the model pre-
dictions and the measured responses, is smaller than a specified threshold �r.

•	 Criterion 2: Parameter change convergence: Δp < 𝜖p ; Convergence is achieved when 
the Euclidean norm of the parameter change vector Δp is smaller than a specified 
threshold ( �p).

•	 Criterion 3: Cost function convergence: |J(ptrial) − J(p)| < 𝜖J ; Convergence is achieved 
when the absolute difference between the cost functions of the trial and current param-
eter estimates, J(ptrial) and J(p), is smaller than a specified threshold �J.
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•	 Criterion 4: Damping parameter change convergence: |𝜆trial − 𝜆| < 𝜖𝜆 ; Convergence is 
achieved when the absolute difference between the damping parameters of the trial and 
current iterations, �trial and � , is smaller than a specified threshold ��.

•	 Criterion 5: Maximum Iterations: Terminate the iterations if the number of iterations 
exceeds a pre-specified limit.

The Nelder‑Mead Simplex Method

The Nelder-Mead simplex method [25, 26] iteratively updates the simplex by reflecting, 
expanding, and contracting its vertices based on the cost function evaluations. This par-
ticular algorithm  2 is simple to implement and does not rely on gradient descent. This 
approach proves highly adept at handling nonlinear optimization problems characterized 
by noisy or discontinuous cost functions. However, algorithms converge slowly or become 
stuck in local minima in some cases, therefore, it may be necessary to use multiple starting 
points or combine them with other optimization techniques [20, 27, 28].

Algorithm 2   Pseudocode of the standard Nelder-Mead simplex method for parameter esti-
mation problems

Convergence Criteria for the Nelder‑Mead Simplex Algorithm

In the context of the Nelder-Mead simplex algorithm for parameter estimation of nonlinear 
systems, convergence is typically determined based on the behavior of the cost function. 
The stopping criterion involves assessing the size of the simplex, the function values, or 
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the change in parameters. The convergence criteria for the Nelder-Mead algorithm are as 
follows:

•	 Criterion 1: Simplex Size Convergence: The maximum size of the simplexis < 𝜖s ; 
convergence is achieved when the maximum size of the simplex (the geometric shape 
formed by the current set of parameter values) is smaller than a specified threshold �s

•	 Criterion 2: Function Value Convergence: |J(pworst) − J(pbest)| < 𝜖f  ; Convergence is 
achieved when the absolute difference between the function values of the worst and 
best vertices is smaller than a specified threshold �f .

•	 Criterion 3: Parameter Convergence: maxi |pworst,i − pbest,i| < 𝜖x ; Convergence is 
achieved when the maximum absolute difference between the corresponding param-
eters of the worst and best vertices is smaller than a specified threshold �x.

•	 Criterion 4: Maximum Iterations: Terminate the iterations if the number of iterations 
exceeds a pre-specified limit.

Results

Our study focuses on evaluating the robustness and accuracy of the optimization methods 
discussed in Sect. 4. To achieve this goal, we conducted simulations involving a diverse 
array of systems varying in complexity. These systems were subjected to additive noise of 
different intensities, covering a wide spectrum of scenarios [29]. Our investigation primar-
ily focused on understanding the impact of Gaussian noise on the performance of these 
optimization methods.

To assess the influence of noise, we introduce uncorrelated noise �(t) characterized by 
specific properties, as defined in Equation 9:

Incorporating this noise into the equation of motion allowed us to observe its effects on the 
systems under scrutiny. Our analysis focused on understanding how the introduced Gauss-
ian noise affects the robustness and accuracy of the optimization methods. We examined 
how varying noise intensities influenced the performance of these techniques, providing 
insights into their adaptability to different noise levels and their ability to accurately esti-
mate parameters under such conditions.

The accuracy of the parameter estimation is judged by the root mean squared error 
(RMSE). The root mean square error is commonly used to evaluate the accuracy of a mod-
el’s predictions. It assesses the variance or residuals between estimated and true values 
and is utilized to compare the estimated errors of various models for a given model. The 
formula for calculating the RMSE is as follows:

where N represents the total number of observations, yTr represents the actual value, and 
yEs represents the estimated value.

The error-propagation problem can be adequately addressed by the boundary-value-
problem methods for parameter estimation in ODE. In this section, we conduct numer-
ical tests of the methods discussed in Sect. 4. Although the examples we use are not 

(9)⟨�(t)⟩ = 0 and ⟨�(t)�(t�)⟩ = �(t − t�)

(10)RMSE =

√√√√ 1

N

N∑

i=1

(yTr − yEs)2
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representative of the full range of problems that these methods can address, they do 
allow us to evaluate the numerical properties of the algorithms. Specifically, we can 
assess the stability, reliability, efficiency, and accuracy of the methods, and examine 
their broader applicability.

Van der Pol Oscillator

The van der Pol oscillator, a nonlinear second-order differential equation demonstrat-
ing limit cycle behavior [30], is defined as follows:

where x represents the displacement of the oscillator from its equilibrium, and � is a 
parameter governing nonlinear damping. This equation can be expressed as a system of 
first-order equations:

The van der Pol oscillator serves as a canonical example of self-sustained oscillations.
To identify the system parameters, we conducted simulations using the model with 

the true parameter � = 1.5 and initial condition [x10 , x20 ]
T = [2.0, 0.0]T from time 

t = 0 to t = 20 with a time-step size of �t = 0.01 . Gaussian noise with a level of 0.1 was 
added to the simulated data for data collection. Subsequently, we applied the discussed 
optimization methods to estimate the system parameters. The results for all methods 
are presented in Table 1. The estimated parameters closely align with the true param-
eters, especially with the Nelder-Mead simplex algorithm.

In Table 2, we computed the root mean squared error (RMSE) values and the com-
putational cost for the discussed methods. The Nelder-Mead simplex algorithm out-
performed the gradient-based and Levenberg-Marquardt methods, showing the lowest 
RMSE value of 0.1023. However, this approach incurs a slightly greater computational 
cost than does the Levenberg-Marquardt method.

We further compared the true and estimated trajectories in Fig.  1 and the phase 
space in Fig. 2. Remarkably, the Nelder-Mead simplex algorithm accurately captured 
the system’s dynamic evolution with an estimated parameter very close to the true 
value.

In this section, which focuses on the Nelder-Mead method, we explored the evolu-
tion of parameters from an initial estimate, pinitial , to values closer to the true param-
eter, ptrue . Our analysis involved visualizations and metrics to evaluate convergence 
under different levels of noise � = [0.0001, 0.001, 0.01, 0.1] , as shown in Fig. 3. After a 
few iterations, the estimated parameters consistently converged to the true parameters, 
demonstrating a reliable approach.

A crucial aspect of our analysis involved evaluating the disparity between observed 
data values and the corresponding curve-fit estimates, as illustrated in Fig. 4. The his-
togram depicts the distribution of these fit errors. An ideal scenario involves these 
errors adhering to a normal distribution, indicating a robust fit.

(11)x�� − �(1 − x2)x� + x = 0

(12)

dx1

dt
= x2

dx2

dt
= �(1 − x2

1
)x2 − x1
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Rössler Systems

The Rössler system, a set of three coupled nonlinear ordinary differential equations 
known for exhibiting chaotic behavior, was introduced by Otto Rössler in 1976 [31–33]. 
These equations are given by:

Fig. 1   Exact trajectories of the van der Pol oscillator compared to the learned dynamics. The Blue lines rep-
resent the exact dynamics, while the red lines demonstrate the learned dynamics

Fig. 2   Exact phase portrait of the van der Pol Oscillator compared to the learned dynamics using various 
methods

Fig. 3   Convergence of parameters for the van der Pol oscillator at different noise levels
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Fig. 4   Histogram of the errors between the data and the fit at different noise levels for van der Pol oscillator

Table 1   Parameter Identification for van der Pol oscillators

Parameter True value Gradient-based Levenberg-Marquardt Nelder-Mead

� 1.5 1.2018 1.4611 1.5007

Table 2   Root mean square error 
(RMSE) and computational cost 
for van der Pol Oscillator with 
different algorithms

Methods RMSE Computational 
time (seconds)

Gradient-based 0.8799 0.1505
Levenberg-Marquardt 0.1409 0.4356
Nelder-Mead 0.1023 0.4045
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Here, x1 , x2 , and x3 represent state variables, while p1 , p2 , and p3 denote system parameters. 
The Rössler system is a classic chaotic system, that has been extensively studied across 
diverse fields due to its nonlinear and feedback-driven nature, leading to the emergence of 
a strange attractor.

To identify the parameters of the Rössler system, we conducted simulation using the 
model with true parameters p1 = 0.2, p2 = 0.2 , and p3 = 5.7 and initial conditions of 
[x10 , x20 , x30 ]

T = [0.1, 0.1, 0.1]T over t = 0 to t = 120 with a time-step size of 
Δt = 0.01 . Gaussian noise with a level of 0.1 was added to the simulated data for data 
collection.

We employed optimization methods, including iterative gradient-based, Levenberg-
Marquardt, and Nelder-Mead simplex methods, to estimate the parameters of the Rössler 
system. The results for all the methods discussed are summarized in Table 3. The estimated 
parameters closely align with the true values, particularly with the Nelder-Mead simplex 
algorithm.

Table 4 presents the root mean squared error (RMSE) values and computational costs 
for the discussed methods. The Nelder-Mead simplex algorithm outperformed the gra-
dient-based and Levenberg-Marquardt methods, exhibiting the lowest RMSE value of 
1.3199. However, this approach incurs a slightly greater computational cost than does the 
Levenberg-Marquardt method.

We further compared the true and estimated trajectories in Fig. 5 and the phase space in 
Fig. 6. Remarkably, the Nelder-Mead simplex algorithm accurately captured the system’s 
dynamic evolution with an estimated parameter very close to the true value.

To assess the impact of noisy derivatives in a controlled environment, we 
introduced zero-mean Gaussian measurement noise with varying levels of 
� = [0.0001, 0.001, 0.01, 0.1] . Figure  7 shows the trajectories of the Rössler system over 
t = 0 to t = 120 under different levels of additive noise, highlighting the system’s dynamics 
captured with estimated parameters even in the presence of noise.

Focusing specifically on the Nelder-Mead simplex method, we explored the evo-
lution of parameters from an initial estimate, pinitial , toward values closer to the true 

(13)

dx1

dt
= −x2 − x3

dx2

dt
= x1 + p1x2

dx3

dt
= p2 + x3(x1 − p3)

Fig. 5   Trajectories of the Rössler systems’ exact dynamics (blue solid lines) compared to learned dynamics 
(red solid lines)
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parameters, ptrue . Our analysis involved visualizing and evaluating several metrics for 
convergence under different levels of noise � = [0.0001, 0.001, 0.01, 0.1] , as shown in 
Fig.  8. After a few iterations, the estimated parameters consistently converged to the 
true parameters. The depicted monotonic convergence emphasizes the reliability and 
consistency of our parameter estimation methodology.

Central to our assessment is the scrutiny of the disparities between the observed data 
and the curve-fit predictions. In Fig. 9, we present a histogram detailing the distribution 
of these fit errors. Ideally conforming to a normal distribution, these errors are indic-
ative of the robustness of our curve fitting. Encouragingly, our analysis demonstrated 

Fig. 6   Phase portrait of the Rössler system’s exact dynamics compared to learned dynamics using various 
methods

Fig. 7   In this figure, we present the trajectories of the Rössler system for t = 0 to t = 120. The true dynam-
ics are depicted in red, while the identified systems obtained from the estimated parameters are displayed in 
blue. The performance of the identified systems is evaluated under different levels of additive noise
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Fig. 8   Convergence of parameters for the Rössler system at different noise levels

Fig. 9   Histogram of the errors between the data and the fit of the Rössler system at different noise levels
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close alignment with the anticipated normal distribution, underscoring the reliability of 
our model’s predictive capabilities within the Rössler system.

Pharmacokinetic Modeling

In drug development, scientists model how a new drug moves through the body-how it is 
absorbed, distributed, metabolized, and eliminated. The processes involved are complex 
and often nonlinear [34, 35]. One commonly used model is the two-compartment model 
called pharmacokinetic modeling, represented by the following equations:

Here, C1 and C2 are the drug concentrations in different compartments, and k10 , k12 , and k21 
are related to the drug’s behavior. The aim is to estimate these parameters from experimen-
tal data.

The two-compartment model becomes nonlinear due to exponential terms, leading to 
difficulty in finding an analytical solution. Nonlinear optimization methods such as the 
Levenberg-Marquardt or Nelder-Mead are commonly used to find the best-fit parameters 
for experimental data.

To assess the model’s performance, we conducted a simulation with true parame-
ters k10 = 0.2, k12 = 0.05 , and k21 = 0.03 , using an initial condition of C1(0) = 100 , and 
C2(0) = 0 over the time interval t = 0 to t = 25 with 100 evenly spaced points. Multipli-
cative Gaussian noise with a level of 0.1 was added to the simulated data for data col-
lection. We employed optimization methods, including iterative gradient-based, Lev-
enberg-Marquardt, and Nelder-Mead simplex methods, to estimate the parameters of 
the system. During the optimization process to minimize the difference between the 
observed data and model predictions, the initial guesses for the parameters were set to 
k
(0)

10
= 0.1, k

(0)

12
= 0.1, k

(0)

21
= 0.1 . The results for all discussed methods are summarized in 

(14)

dC1

dt
= −k10C1 − k12C1 + k21C2

dC2

dt
= k12C1 − k21C2

Table 3   Parameter Identification 
for the Rössler system

Parameter True Value Gradient-based Levenberg-
Marquardt

Nelder-Mead

p
1

0.2 0.1711 0.1499 0.1913
p
2

0.2 0.1501 0.1601 0.1918
p
3

5.7 4.418 8.8767 4.9344

Table 4   Root mean square error 
(RMSE) and computational cost 
(seconds) for Rössler systems 
using different algorithms

Methods RMSE Computational 
cost (seconds)

Gradient-based 4.4776 0.2246
Levenberg-Marquardt 6.9895 1.8856
Nelder-Mead 1.3199 9.7509
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Table 5. The estimated parameters closely align with the true values, particularly with the 
Nelder-Mead simplex algorithm.

Table 6 presents the root mean squared error (RMSE) values and computational costs 
for the discussed methods. The Nelder-Mead simplex algorithm outperformed the gra-
dient-based and Levenberg-Marquardt methods, exhibiting the lowest RMSE value of 
1.8796. However, this approach incurs a slightly greater computational cost than does the 
Levenberg-Marquardt method. We further compared the true and estimated trajectories in 
Fig. 10. Remarkably, the Nelder-Mead simplex algorithm accurately captured the system’s 
dynamic evolution with an estimated parameter very close to the true value.

Our focus on the Nelder-Mead simplex method involved exploring the evolution of 
parameters from an initial estimate, pinitial , toward values closer to the true parameter, ptrue . 
Our analysis included visualizations and metrics to evaluate convergence under different 
levels of noise � = [0.0001, 0.001, 0.01, 0.1].

We conducted a comprehensive analysis of parameter convergence and the accuracy of 
curve fitting derived from the initial guesses toward their true values, as shown in Fig. 11. 
The depicted monotonic convergence emphasizes the reliability and consistency of our 

Fig. 10   Exact trajectories of pharmacokinetic modeling compared to the learned dynamics. The Blue and 
the red lines represent the exact dynamics, while the dash lines demonstrate the learned dynamics

Fig. 11   Convergence of parameters of the pharmacokinetic model at different noise levels



	 Differential Equations and Dynamical Systems

1 3

parameter estimation methodology. A histogram of the errors between the data and the 
fit of the pharmacokinetic model at different noise levels is shown in Fig. 12. Ideally, the 
errors from curve fitting should follow a normal distribution. In this example, at various 
noise levels, it seems that these errors exhibit a normal distribution.

Fig. 12   Histogram of the errors between the data and the fit of the pharmacokinetic model at different noise 
levels

Table 5   Estimated parameters for 
pharmacokinetic modeling

Parameter True Value Gradient-based Levenberg-
Marquardt

Nelder-Mead

k
10

0.2 0.2727 0.2042 0.2041
k
12

0.05 0.0923 0.0509 0.0508
k
21

0.03 0.1044 0.0292 0.0291

Table 6   Root mean square error 
(RMSE) and computational 
cost (seconds) for the 
pharmacokinetic model using 
different algorithms

Methods RMSE Computational 
cost (seconds)

Gradient-based 6.6439 0.1629
Levenberg-Marquardt 1.9870 0.1379
Nelder-Mead 1.8796 0.1609
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These simulation and parameter estimation results underscore the significance of non-
linear optimization techniques in the field of pharmacokinetics, where understanding drug 
behavior in the body is crucial for drug development and dosage optimization.

Conclusions

In conclusion, our comprehensive exploration of three distinct nonlinear systems-namely, 
the van der Pol oscillator, the Rössler system, and pharmacokinetic modeling-provides val-
uable insights into the effectiveness of optimization methods for parameter estimation. The 
Nelder-Mead simplex algorithm consistently demonstrated superior performance, show-
casing its robustness and accuracy across diverse and complex dynamic systems.

For the van der Pol oscillator, our simulations revealed that the Nelder-Mead simplex 
algorithm outperformed alternative optimization methods, achieving the lowest root Mean 
Squared Error of 0.1023. The ability of the algorithm to accurately capture system dynam-
ics, even under the influence of noise, highlights its reliability. Moreover, the visualiza-
tions of parameter convergence illustrated consistent and monotonic convergence toward 
true values.

Similar commendable results were observed in the Rössler system, where the Nelder-
Mead simplex algorithm exhibited the lowest RMSE value of 1.3199. The algorithm’s 
accuracy in capturing the system’s dynamics, coupled with the monotonic convergence of 
parameters under varying noise levels, emphasized its reliability and consistency in param-
eter estimation.

In the realm of pharmacokinetic modeling, the Nelder-Mead simplex algorithm contin-
ued to perform well, achieving the lowest RMSE value of 1.8796. The algorithm’s accu-
racy in capturing the dynamic evolution of the system, coupled with its reliable parameter 
convergence, underscores its efficacy in the intricate context of drug behavior within the 
body.

Overall, our study reinforces the critical importance of thoughtful optimization method 
selection in nonlinear system parameter identification. The Nelder-Mead simplex algo-
rithm has emerged as a powerful tool, consistently outperforming alternative methods and 
enhancing model accuracy across diverse systems. This approach not only refines param-
eter estimation methodologies but also deepens our understanding of complex dynamics, 
improving predictions and paving the way for advancements in vital research fields.

Appendix A Comparison with Gauss‑Newton Methods

In this section, we evaluate our methods by comparing them to other gradient-based 
approaches, such as Gauss-Newton methods, which are specifically applied to the van der 
Pol oscillator. 13 shows the disparities between the estimated trajectories and the true tra-
jectories. Gauss-Newton methods, which are optimal for linear systems, are employed here. 
However, when dealing with nonlinear dynamics such as the van der Pol oscillator, the 
method is suboptimal, leading to significant errors. The root Mean Square Error (RMSE) 
for Gauss-Newton is 1.9965, while gradient-descent methods exhibit a lower RMSE of 
0.8799.
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