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Abstract

In this paper, we propose a class of variable coefficients fractional ordinary differential
equations (FODEs). Using Mellin transform (MT), we have transformed this class into a
functional equation which can’t be solved in general. So, we have selected many special
cases of this functional equation that can be solved exactly. After solving these special
cases of the functional equation and using the inverse MT, we obtained some exact solu-
tions for the proposed class. The obtained solutions are given in the form of H-function
and the Wright function. The results, as special cases, contain some special forms given
in the literature. Also, the invariant subspace method (ISM) is utilized for solving a class
of nonlinear fractional diffusion equations with variable coefficients. The solutions of this
class of nonlinear fractional diffusion equations depend upon the solutions of the proposed
class of FODE:s.

Keywords Mellin transform - H-function - Caputo fractional derivative - Invariant
subspace method

Mathematics Subject Classification 26A33 - 34A08 - 44A10

Introduction

Recently, there has been a lot of interest in studying the qualitative and quantitative
behavior of solutions of FODEs [1-8]. The qualitative behavior of solutions of FODEs
contains the asymptotic behavior of solutions like oscillation, stability, periodicity, etc.

<4 M. S. Abdel Latif
Mohamed.soror@nmu.edu.eg

Department of Mathematics, Faculty of Science, New Mansoura University, New Mansoura City,

Egypt

Mathematics and Engineering Physics Department, Engineering Faculty, Mansoura University,
Mansoura, Egypt

Department of Computer Science and Mathematics, Lebanese American University, Beirut,
Lebanon

4 Institute of Space Sciences, Magurele, P. O. Box MG-23, 76900 Bucharest, Romania

Published online: 04 March 2024 ) Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-024-00680-3&domain=pdf
http://orcid.org/0000-0002-9013-1017

Differential Equations and Dynamical Systems

The quantitative behavior of solutions of FODE:s is to find the exact forms of solutions
which is not an easy task especially for equations with variable coefficients. Integral
transforms are considered as one of the most useful techniques used in solving such
problems [9-13]. Some of these transforms are, Laplace transform, Fourier transform,
Hankel transform and MT [10-13]. Recently, the MT is widely used for finding the
exact solutions of variable coefficients FDEs [10, 11].

Our interest in studying this type of FDEs with variable coefficients because they
are widely used in modeling many engineering and physical phenomena such as, heat
transfer, anomalous diffusion, quantum mechanics and quantum optics, see [14—18]
and the references cited therein.

In this paper, we are interested in seeking solutions of the following class of variable
coefficients FDEs

DY (f(0) + ¢ 1% (1) = 0, > 0, (1)

where a, v and ¢ are constants and f is a positive constant such that 0 < f < 1 and Df} uis
the Caputo fractional derivative of order § which is given by [19]
; 1

— —_ By
Diu = ra —ﬂ){(t ) u'(t)dr.

We note that when f = 1, Eq. (1) becomes the second order ODE

(t"f’(t))/ + ¢ 1%f(t) = 0,¢ > 0, )

which has been widely studied in the literature for special cases of the constant a.
For examples, when v = 0, and a = —2, Eq. (2) becomes the Cauchy-Euler ODE [20]

£+ %f(t) =0,1>0,

which has a solution of the form f(f) = ¢, and the characteristic equation proves the exist-
ence of oscillatory solution when ¢; > i.
Whenv=1,c;, = —1and a = 0, Eq. (2) becomes the Bessel-type ODE [21]

(if'®) —f@®)= 0,120,

which is utilized for modeling some phenomena such as Laguerre-type population
dynamics [22].

The exact solution for Eq. (1) has been obtained in [21] for the special case when
a=v—1,¢;, =—p. Our aim in this paper is to apply the MT to find the exact solution
of Eq. (1) for the general case. The technique based on the reduction of Eq. (1) into a
functional equation and by using the inverse MT, we obtained some exact solutions for
Eq. (1). Also, the ISM will be utilized with the help of solutions of Eq. (1) to get the
exact solutions for a class of nonlinear diffusion equations with variable coefficients.

The rest of the paper is organized as follows: In Sect. 2, we give some basic defini-
tions and properties of fractional derivatives and MT. In Sect. 3, we establish the forms
of the exact solutions of Eq. (1). We will derive some special cases of these forms to
cover the existing results in the literature. In Sect. 4, the ISM will be used to get some
exact solutions for a class of nonlinear diffusion equations with variable coefficients.
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Some Basic Definitions
In this section, we give the basic definitions that are needed in the rest of this paper.
Definition 1 [23] The MT of f(¢) is given by
M) = F) = [ @
Lemma 1 [23] If the function f(t) is a continuous function fort > 0, then

1. The MT of the function #'f(¢) is given by
M{LF®} = Fp+v). 3)
2. The MT of f®(¢) is

ra
MU0} = S -, @)
3. The MT of the Caputo fractional derivative Df f(@)is
5 ra-p+ P
m{plro} = Ry Fw- b
4. The MT of #D’f(1) is given by
I'(1-p)

M{tﬂDﬁf(t)} " (5)

Definition 2 [23] The inverse MT of f(¢) is given by
1 c+ico

HFP) = 5= [ 7F(pdp.

(‘lOO

Definition 3 [24] The H-Function is defined by

N
HMN<Z| (@1,41)(a,45) ... (a,,4p) > _ L T, C(5 + Bp) T, D1~ 0, - 4p) Pdp
Pa (b1,B,)(02.B,) ... (bq’Bq) 2mi e H—M+l r(1 —b; - j/’) H, =N+1 r(”j +A.fp)
where B, A; aj, b are constants, M,N,P,q are integer numbers,

PR

0§N§P1<M<q,Al,BjeR a,b; €R.

Definition 4 [24] The Wright function is defined by

1 c+ico F(p) _
Wep@) = 7 . {oo TG - )(—z) Pdp.
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Some Exact Solutions for Eq. (1)

In this section, we establish the closed form of the solution of Eq. (1).
Multiplying Eq. (1) by ##, we obtain

PO (F' (1)) + ¢t *Pf (1) = 0. (6)
Applying MT to Eq. (6) and using Eq. (5), we obtain

SIS M @)+ Fp+a+ ) =0 @

Using Egs. (3) and (4), Eq. (7) becomes

LDy Ry - D)+ e P+ at f) =0, ®
'l-p-p)

Assume
pol—v+(l=v+a+pp.
Hence, Eq. (8) becomes
(I-vt+a+pplv-p-v+a+p) FlA-v+e+p@+1) _

To—f—p(l—vtatp) TTFRA-v+a+hp) ©)
Let,
F((1=v+a+pp) =Rp), (10)
In this case, Eq. (9) becomes
(A—vtatpplv-—pd-v+a+p) Rp+D _, an

To—f-p(l—v+a+p) TR

Equation (11) can’t be solved in general. So, we consider some special cases as follows:
Case 1. Assume the solution of Eq. (11) takes the form

_ Ap)
FA+r+a—(d-r+pp)

R(p)

v=1l—-d+r+a, (12)

where r, d are integers, A(p) is a function which will be determined later. By choosing
different values for r and d we can obtain many subcases. Some e

xamples of these subcases are given as follows:

Case 1.1. Whenr =d = 1, we get

p
A(p)=c2(1+a—ﬂp)r<p><cﬂ> v=1+a, (13)
1

where ¢, is a constant. Substitute Eqs. (13) and (12) into Eq. (10), to get
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F(p)

r(¢) <ﬂ>’é_

= CH———— | —
T(1-p+a)\c

Applying the inverse MT to Eq. (14), we get

0= L e T v

1 c+ico F(E) c % °
=c— [ __ N (e, dp
270 ¢Zieo T(1 = p + @) p
_ o (<)’ h
=o8((3) 103y con )
Remark 1 Equation (15) is equivalent to
0 =c, 2 +/°° () ¢ %tﬂ ) .

=CH — —_— —_ u

2270 otieo T(L = pu+a)\ \

= CZﬂWﬂ,l+a(_<%> ﬁtﬂ).

S

() (2)

(14)

s)

(16)

A special case of the solution (16) is obtained in [21], whenc¢; = —fanda =v — 1.

Case 1.2. Whenr = 0,d = 1, we get

e ) <—_1>" _
A(p)=c V=a,
T(r-5)

where c; is a constant. Substitute Eqs. (17) and (12) into Eq. (10), to get
L P
F([Hl) <_1>ﬁ+1
r(—p+a+1)r(L—L) €

p+1 p+1

F(p) =c;

Applying the inverse MT to Eq. (18), we get

1 c+ico F(ﬁ) 1\ "P
TO=5m. Ty (o))
I_‘(—p+a+l)l"<m—m)

, (;:L _l_)
— chl,O (cl)ﬁt p+17° p+1

o2 cen]

Case 1.3. Whenr = -2,d = 1, we get

amn

(18)

19)
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P
o))
APp) =¢y (ﬂ:j;:] gy T 2 20)
—a —a
o+ 53 )r(p+ =552 )r(p+ =557

where ¢, is a constant. Substitute Eqs. (20) and (12) into Eq. (10), to get

C8F<ﬂ+3) _1 7
(o) o

_ _ p—a+2 p—a+p+3 p—a+p+4 + 3)c
Tp+a I)F( 73 )F( p3 )F( e b+

F(p)=cy

Applying the inverse MT to Eq. (21), we get

1 P
2 N\
cico M ((—(ﬂ+3) cl)Mt)
FO=c45— / dp
2ri _ p a+2> <177a+ﬂ+3> (p—a+ﬂ+4)
le“( -p+a I)F 73 r e r e 22)
(2;a L) (Hw L) (4,,”,3 ;)
348 43 )7\ 348 C p+3 )7\ 3+  p+3 )

1
= ey Hy)| (=(B+3)%¢)) 71
! 3'2[( 2 0,55 ) (ca+2,1)

Case 1.4. Whenr = -2,d = 2, we get
)< )p
([ 4
G , (23)

—a+f+5

A =
O e (o ) (o = e (e =22
p p+4 p p+4 p p+4 P p+4

where c5 is a constant and v = 5 4+ a. Substitute Eq. (23) and Eq. (12) into Eq. (10), to get

A
14 1 p+4
F(p) = 5F<ﬁ><<ﬂ+4)3cl>
—pta- 2 \p( oy 3me\p( oy et \p( o g zepss
Tepta l)r( +ﬂ+4>r<ﬁ+4+ﬂ+4> (ﬂ+4+ p+a )F<ﬂ+4+ pra )
24)

Apply the inverse MT to Eq. (24), to get

ctico (4 )( (B +4y%c,) z)
—a+p+5

+4
Al ) ol (s ais ) ol (8
(5 + 5 )0 + =5 (s + =557

f(l)—Cs—/
2 —a
= mr(_”“L“_])r(ﬁL m)r pea T pra
2;11 ; 3-a L 4—a+p L 5—a+p ;
=65Hi§[((ﬂ+4) 01)"*“ ( 4+p’ pr4 < +ﬂ’ﬁ+4§)’( 4+p ﬂ+4)’< 4+p ’4+ﬁ>]’
(0 4—) (~a+2,1)
(25)
Case 1.5. Whenr = -3,d = 2, we get
) ’
05 )
(B+5)*c,
Alp) = +ﬂ+;r 446 5+7) (26)
—a —a -
F<p+ﬁ>r<p+ﬁ>(p+ pts >F(p+ pts >F<p+ pts )

where c5 is a constant and v = a — 4. Substitue Eq. (26) and Eq. (12) into Eq. (10), to get
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co(~(f+5)'c)) Tr(#)

_ _ p—a+3 p—a+4 p—a+p+5 p—a+p+6 p—a+p+7 ’
Fepta 2)F< p+s )F< 75 )F< ps >F< ps )F( ps )
(27)

F(p) =

Apply the inverse MT to Eq. (27), to get
-p

etico c6<(—(ﬁ+5)4c1)ﬁ%iz> F(,ﬁ)
Y e (e e ey ey e ey

c—ico

dp

3-a S—a+p 1 6—a+f 1 T—a+p 1
=66H§j§[(—<ﬂ+5)4cl)”i5t| (5+” 5*”) (W W) ( 5+l; W)( 540 ﬂ)( ors m)]

(0.55)- -1

(28)

Case 2. The solution of Eq. (11) can be written in the form
d—

R() =A(p)r<1 tria- %ﬂp)

v=1l-d+r+a. (29)

Also, by choosing different values for » and d we can obtain many subcases. Some
examples of these subcases are given as follows:
Case 2.1. Whenr = f,d =1 — f, we get

2\ P
A(p)—c7r(p)<(ﬁ cl) > F<p+(;tf>,v=a+2ﬂ, (30)

1

where ¢, is a constant. Substitute Eqs. (30) and (29) into Eq. (10), to get

12\ i _
F(p)=c7<(ﬂ_611)> ' r(ll_’ﬂ>r< p;_‘x1+ﬂ>r(—p+a+ﬂ+1). 3D

Apply the inverse MT to Eq. (31), to get

-P

_ 1 c+ico (ﬂ_l)Z ﬁ p p—a—ﬁ
fy=—= [ ¢ <T> t F<1_ﬁ)r< =7 )F(—p+a+ﬂ+l)dp

2770100 1

1
)2\ 1 (—a—8,1)
=c7H12”2l <(ﬁ )> |<0L)<a+ﬂ L) .
A "1 )\ T 15
Case 2.2. Whenr = f,d =2 — f§, we get

a+28-3 a+2p-2 B-2"\
AP) = TN p+ ———2 1T p+ =221 ) =),
(¢) = csTp) <p+ s ) <p+ s >< - (33)
where cg is a constant and v = a + 2 — 1. Substite Eq. (33) and Eq. (29) into Eq. (10), to
get

(32)
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(=D [ p \ofp-a—B+1\ (p—a-p\
Fo=e(P22) e (g (=g (B rer e ey
(34)

Apply the inverse MT to Eq. (34), to get
1 -P
_ g el ((p-27\ 72 r p—a—f+1 p—a—p
ﬂ,)_z_m_{w[< -2) ] (52 (e (25 e v

o ((ﬂ—2)3>”]-2[| (o= p,1)
() o) (5 ) .2

(335)
Exact Solutions of Nonlinear Fractional Diffusion Equations
with Variable Coefficients Using the ISM

In this section, the ISM will be utilized for seeking some exact solutions for a class of non-
linear diffusion equations with variable coefficients. The details of the ISM can be found in

[14, 26].
Consider the nonlinear variable coefficients fractional diffusion equation

t_”’Df(tvut) = bui + ouu,, + yuu,,t >0, (36)

where b, 6 and y are constants.
The ISM can be used for obtaining the solutions of Eq. (36) as follows:
Step 1. Equation (36) can be rewritten as follows:

t_“Df(tvut) = Flu] = bui + ouu,, + yuu,.
Step 2. The solution of Eq. (36) can be written as
u=A(0B(x) + Ay, (B, (%), (37)

where A, A,, B,, B, are some functions which will be determined later.
Step 3. Compute the functions B, (x), B,(x) as follows:

e Determine the values of the two constants a, and a, from the following equation

d? d
<ﬁ +a1 a +ao>F[y(X)] = O’

X

which can be written in the form

d—2+a i+a <b(y’)2+6yy”+yyy’> =0 (38)
dx? Yax 770 '

Equation (38) after cancelling the independence using the second order ODE
Y +a;y + ayy =0, can be written as

as(2b + 8)y* +ag(4a,b — 3y +3a,8)yy’ — (2a,7 — 2a3(B + 6) + ay(B + 25))y”* = 0.
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Equating the coefficients of y2,yy’, y' to zero and solving the resulting algebraic equa-
tions, we obtain

14
ag = O,a] = m (39)

e Using Eq. (39), we solve the following ODE

d’ d
(e oo o =0

to get
y(x) = hy + h, exp (—Lx),
b+6

where h, and h, are arbitrary constants. Hence, the basis of the invariant subspace is

1,exp (——Lx) { and we can assume that
b+

B,(x) = 1, B,(x) = exp (—b15x>, (40)

Step 4. Substituting Eq. (40) into Eq. (37), we obtain

u=A1(t)+A2(t)exp<—b:5x>. @41)

Substituting Eq. (41) into Eq. (36), we obtain

2
—apf(p —apyf(py Y ___br Y
t O’Dt ([ All) +1 aD[ (t‘Alz) exp (—b+5x) ——(b+5)2A1A26Xp (—mX). (42)

Comparing the two sides of Eq. (42), we obtain

oD (A7) = @)
by?
D (PAL) = - ALA,. 44
F (1'A)) broy 2 (44)
Equation (43) has the solution
A1 = C(), (45)

where C, is a constant. Substituting Eq. (45) into Eq. (44), we obtain

b}’ZCO
D (PAL) = — A,. 46
(1A%) b (46)
Equation (46) is similar to Eq. (1) with ¢; = Zﬁ;‘;. Using the obtained solutions of

Eq. (1), we can get some solutions of Eq. (36) as follows:
Case 1: Forv =1 + «, using Eq. (16), we obtain
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by2C, \ ¥
Ay () = 2Wp 14a _<%(bjil- 5())2> 7| 47)

Substituting Eqs. (45) and (47) into Eq. (41), we get the following solution for
Eq. (36)

1
1 b*Cy \’ Y
4= Cot Wyt ‘<E<b+a§2 ?lee (~5557)

Case 2: For v = a, using Eq. (19), we obtain

1
Az(t)—c3H10 (ﬂ)ﬂﬂ

b+ o7 ) | (48)

0, m), (—a,1)

Substituting Egs. (45) and (48) into Eq. (41), we get

1 —a 1
u= C0+c3H10 ( brGy >ﬁ+l (ﬂ“ ﬂ“) Xp (——x).
(b +6) (=a, 1) b+

Case 3: For v = a — 2, using Eq. (22), we get

(2—_a L) (3—a+ﬂ ;) <4—a+ﬂ ;)
3487 f+3 )7\ 348 7 p+3 )7\ 348  p+3

1
0,55 ). (=a+2,1)

Ay(e) = ¢, HYY < B+ )(b i()) >Mr

49)
Substituting Egs. (45) and (49) into Eq. (41), we get

1
et 2-a 1 3—atf 1 d-atp 1
=c uof (=er3eea \ | (s ) (5555 ) (55 55) __r
u=Cy+c,Hy, (17—5)2 1 ( exp h+§x .
" +

0, W) (—a+2,1)
Case 4: For v = a + 5, using Eq. (25), we obtain

(2—_a ;) (% a ;) (_4—a+ﬂ ;) (_5—a+ﬂ ;)
4+p° p+4 p+4 )0\ 4+p 7 p+d )0\ 4+ A+p (50)

4’
( Lﬁ),(—a+2,1)

by*C, /ilra
}’0>t

Az(z>=c5H4‘;;’[ <(ﬂ+ 4y b1

Substituting Egs. (45) and (50) into Eq. (41), we get

(2;(1 ;) <3—a 1 )(4—a+ﬂ ;) (5—a+ﬂ ;)
4p pa )\ 245 pra 4+ p+4 4+ A+p Y
t exp(——x)
( Lﬁ) (~a+2,1) b+3s

1
by? Co )ﬁ+4
(b+6)7

u=Cy+csH, [((ﬂ+4)

Case 5: For v = a — 4, using Eq. (28), we obtain

1 3—a 1 4—a 1 S5—atf 1 6=a+f 1 T—atf 1
— . glof [ _ 4 byZCO s (5+ﬂ 5+ﬁ) <5+ﬂ S+ﬂ> ( 544 5+ﬂ) ( 5+p  5+p )’( 6+ 5+ﬁ)
A1) = L6H5'2 B+5) — t| .
b+96) i+ﬁ)(3—ozl)
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Substituting Eqs. (45) and (51) into Eq. (41), we obtain

u=Cy+ cgHs

2 s
(o009 22570 (5555 (53 (52 (5. (52 ) ) - |

= (-555%)
Case 6: For v = a + 2, using Eq. (32), we obtain

-1

b
1y (—a—B.1)
Ay(0) = ¢;H T ¢ - L ! arp 1 | (52)
12 _ by*Cy 0, Y B 5
18y 1-p —1+p" 1-p

Substituting Eqs. (45) and (52) into Eq. (41), we obtain

1

p-1
—1)? (—a—=p.1)
u==_Cy+ c7H12,’21 ¢ byZC) | 0 L atp 1\ |exp (—ﬁx).
_ 0 15 )\ T T +
(b+6)?

Case 7: Forv = a + 2 — 1, using Eq. (35), we obtain

L
p-2

B -2)° (—a—p.1)
A, (1) = c8H13:31 T 1| (O L) (—l+a+ﬂ L) ( atp L) . (53)
_(b+6)02 22— )2\ =245 *2-p )7 \ =248’ 2-5
Substituting Egs. (45) and (53) into Eq. (41), we obtain
=
p-2 (—a—=p.1) y
u= CO + CgI'IS'1 > t| 1 —lt+a+p 1 a+p 1 expl\———x).
=] o) (e ) (2.5 [ )

T bro?

Conclusion

In this paper, established new forms of exact solutions of FODE (1) which generalized the
work that has been obtained in [21] for Eq. (1) when ¢; = —f and @ = v — 1. We obtained
our results by using the MT which reduce the equation to a functional equation which is
solved when v = 1 — d + r + a. By choosing different values of » and d, we obtained exact
solutions for Eq. (1) in the form of the H-function. Finally, the effectiveness of the ISM
for getting exact solutions for FDEs with variable coefficients is illustrated when solving
Eq. (36).

Acknowledgements The authors are thankful to Prof. Samir Saker for his valuable suggestions to improve
the quality of the paper.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

@ Springer



Differential Equations and Dynamical Systems

Data availability statement The authors declare that they do not require any data to analyze.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbas, S.: Pseudo almost automorphic solutions of fractional order neutral differential equation. Semi-
group Forum 81, 393-404 (2010)

2. El-Sayed, AM.A,, Elsonbaty, A., Elsadany, A.A., Matouk, A.E.: Dynamical analysis and circuit simu-
lation of a new fractional-order hyperchaotic system and its discretization. Int. J. Bifurc. Chaos 26(13),
1650222 (2016)

3. Abbas, S., Mahto, L., Favini, A., Hafayed, M.: Dynamical study of fractional model of allelopathic
stimulatory phytoplankton species. Differ. Equ. Dyn. Syst. 24, 267-280 (2016)

4. Singh, A., Elsadany, A.A., Elsonbaty, A.: Complex dynamics of a discrete fractional-order Leslie-
Gower predator-prey model. Math. Methods Appl. Sci. 42(11), 3992-4007 (2019)

5. Al-Khedhairi, A., Elsonbaty, A., Elsadany, A.A., Hagras, E.A.: Hybrid cryptosystem based on pseudo
chaos of novel fractional order map and elliptic curves. IEEE Access 8, 57733-57748 (2020)

6. Elsonbaty, AM.R., Sabir, Z., Ramaswamy, R., Adel, W.: Dynamical analysis of a novel discrete frac-
tional SITRS model for COVID-19. Fractals 29(08), 2140035 (2021)

7. Elsonbaty, A., Elsadany, A.A.: On discrete fractional-order Lotka-Volterra model based on the Caputo
difference discrete operator. Math. Sci. 1-13 (2021}

8. Askar, S., Al-Khedhairi, A., Elsonbaty, A., Elsadany, A.: Chaotic discrete fractional-order food chain
model and hybrid image encryption scheme application. Symmetry 13(2), 161 (2021)

9. Davies, B.: Integral Transforms and Their Applications. Springer, New York (2002)

10. Khan, T.U., Khan, M.A., Chu, Y.: A new generalized Hilfer-type fractional derivative with applica-
tions to space-time diffusion equation. Results Phys. 22, 103953 (2021)

11. Costa, F.S., Oliveira, D.S., Rodrigues, F.G., de Oliveira, E.C.: The fractional space—time radial diffu-
sion equation in terms of the Fox’s H-function. Physica A 515, 403-418 (2019)

12. Elhadedy, H., Abdel-Kader, A.H., Abdel-Latif, M.S.: Investigating heat conduction in a sphere with
heat absorption using generalized Caputo fractional derivative. Heat Transf. 50, 6955-6963 (2021)

13. Gabr, A., Abdel Kader, A.H., Abdel Latif, M.S.: The effect of the parameters of the generalized frac-
tional derivatives on the behavior of linear electrical circuits. Int. J. Appl. Comput. Math. 7, 247 (2021)

14. Abdel Kader, A.H., Abdel Latif, M.S., Baleanu, D.: Some exact solutions of a variable coefficients
fractional biological population model. Math. Methods Appl. Sci. 44(6), 4701-4714 (2021)

15. Elsaid, A., Abdel Latif, M.S., Maneea, M.: Similarity solutions of fractional order heat equations with
variable coefficients. Miskolc Math. Notes 17(1), 245-254 (2016)

16. de Oliveira, E.C., Mainardi, F., Vaz, J.: Fractional models of anomalous relaxation based on the Kilbas
and Saigo function. Meccanica 49(9), 2049-2060 (2014)

17. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathemati-
cal Models, 2nd edn. World Scientific, Singapore (2022)

18. Garra, R., Giraldi, F., Mainardi, F.: Wright type generalized coherent states. WSEAS Trans. Math. 18,
428-431 (2019)

19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

20. Misir, A., Mermerkaya, B., Banu, M.: Oscillation and non-oscillation of half-linear Euler type differ-
ential equations with different periodic coefficients. Open Math. 15(1), 548-561 (2017)

21. Garra, R., Mainardi, F.: Some applications of Wright functions in fractional differential equations.
Rep. Math. Phys. 87(2), 265-273 (2021)

@ Springer


http://creativecommons.org/licenses/by/4.0/

Differential Equations and Dynamical Systems

22.

23.

24.

25.

Dattoli, G., He, M.X., Ricci, P.E.: Eigenfunctions of Laguerre-type operators and generalized evolu-
tion problems. Math. Comput. Model. 42(11-12), 1263-1268 (2005)

Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman and Hall, Boca Raton
(2016)

Mathai, A.M., Saxena, R.K., Haubold, HJ.: The H-Functions: Theory and Applications, 1st edn.
Springer, Berlin (2010)

Sahadevan, R., Prakash, P.: Exact solution of certain time fractional nonlinear partial differential equa-
tions. Nonlinear Dyn. 85, 659-673 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Exact Solutions for a Class of Variable Coefficients Fractional Differential Equations Using Mellin Transform and the Invariant Subspace Method
	Abstract
	Introduction
	Some Basic Definitions
	Some Exact Solutions for Eq. (1)
	Exact Solutions of Nonlinear Fractional Diffusion Equations with Variable Coefficients Using the ISM
	Conclusion
	Acknowledgements 
	References


