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Abstract
A stochastic SIR (Susceptible, Infected, Recovered) model for the spread of a non-lethal 
disease is considered. The size of the population is constant. The problem of computing 
the moment-generating function of the random time until all members of the population 
are recovered is solved in special cases. The expected duration of the epidemic is also com-
puted, as well as the probability that the whole population will be either cured or immu-
nized before every member is infected. The method of similarity solutions is used to solve 
the various Kolmogorov partial differential equations, subject to the appropriate boundary 
conditions.

Keywords Kolmogorov backward equation · Similarity solutions · Special functions · 
Epidemiology
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Introduction

Especially since the start of the COVID-19 epidemic, there are have been numerous papers 
published on mathematical models for the spread of epidemics; see, for instance, [19] and 
[17]. These models can be quite complex, with systems of seven or more nonlinear differ-
ential equations. The authors are generally interested in the stability analysis of their mod-
els and/or in computing the very important basic reproduction number R0 . [4], among oth-
ers, proposed a SIS-type (for Susceptible, Infected, Susceptible) model, and they studied 
its stability. In this paper, we consider a basic SIR (R standing for Recovered or Removed) 
model, to which random perturbations will be added to make it more realistic. The deter-
ministic SIR model is a particular case of either the SIRS (see [20]), SEIR (E standing for 
Exposed; see [18], or [5]) or SEIRS (see [2]) models.

Let X(t) denote the number of individuals who are susceptible to a certain disease at time 
t, Y(t) the number who are infected, and Z(t) the number who are either vaccinated or cured 
from the disease, which is assumed to be non-lethal. Moreover, the size of the population is 
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constant. For example, the population could consist of the people on a cruise ship, and the dis-
ease could be an outbreak of gastroenteritis.

We begin with the following deterministic model:

where a1 , a2 and b1 are positive constants. The constant a1 is the vaccination rate, while b1 
is the recovery rate. We thus assume that susceptible individuals become infected at a rate 
which is proportional to the product X(t)Y(t).

Next, we introduce random perturbations in the form of diffusion processes:

where mi(⋅) is a real function, vi(⋅) is a positive function, and {Bi(t), t ≥ 0} is a standard 
Brownian motion, for i = 1, 2 . The two stochastic processes are assumed to be independent.

Notice that Ẋ(t) + Ẏ(t) + Ż(t) = 0 for both the deterministic and the stochastic model, so 
that the size of the population is a constant, that we denote by N.

Now, we define the first-passage time

with x + y > 0 . That is, the random variable �(x, y) is the first time all members of the 
population are either vaccinated or cured from the disease. We assume that vaccinated 
or cured individuals are immunized against the disease either permanently or for a time 
period of length T > 𝜏(x, y) , where T is large enough that we can neglect the probability 
P[𝜏(x, y) > T] . Then, we only need to consider the two-dimensional process (X(t), Y(t)).

Let M(x, y;�) denote the moment-generating function of �(x, y):

where � is a positive constant. The function M satisfies the following Kolmogorov partial 
differential equation:

(1)dX(t) = − a1X(t)dt − a2X(t)Y(t)dt,

(2)dY(t) = − b1Y(t)dt + a2X(t)Y(t)dt,

(3)dZ(t) =a1X(t)dt + b1Y(t)dt,

(4)
dX(t) = − a1X(t)dt − a2X(t)Y(t)dt + m1[X(t)]dt

+
{

v1[X(t)]
}1∕2

dB1(t),

(5)
dY(t) = − b1Y(t)dt + a2X(t)Y(t)dt + m2[Y(t)]dt

+
{

v2[Y(t)]
}1∕2

dB2(t),

(6)
dZ(t) = a1X(t)dt + b1Y(t)dt − m1[X(t)]dt −

{

v1[X(t)]
}1∕2

dB1(t)

− m2[Y(t)]dt −
{

v2[Y(t)]
}1∕2

dB2(t),

(7)𝜏(x, y) = inf{t > 0 ∶ X(t) + Y(t) = 0 ∣ X(0) = x, Y(0) = y},

(8)M(x, y;�) ∶= E
[

e−��(x,y)
]

,
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in which Mx = �M∕�x , etc. The boundary condition is

Indeed, we can write (see, for instance, [8], p. 282)) that the conditional transition density 
function

satisfies the Kolmogorov backward equation

Furthermore, because the functions mi and vi do not depend on t, for i = 1, 2 , the function 
p(x, x0, y, y0;t, t0) can be written as p(x, x0, y, y0;t − t0) . It follows that pt0 = −pt.

Next, we can also state that the probability density function �(t;x, y) of the random vari-
able �(x, y) satisfies Eq. (12):

Finally, Eq. (9) is obtained by multiplying both sides of the above equation by e−�t and inte-
grating from 0 to ∞ . The boundary condition in (10) follows from the fact that �(x, y) = 0 
if x + y = 0.

Similarly, the function m(x, y) ∶= E[�(x, y)] (if it exists) satisfies

subject to the boundary condition

To prove this result, we use the series expansion of the exponential function (assuming that 
all moments of �(x, y) exist):

which we substitute into (9). Equation (14) is obtained by equating the terms in � on each 
side, and Eq. (15) is due to the fact that �(x, y) = 0 if x + y = 0.

(9)

�M(x, y;�) =
1

2
v1(x)Mxx(x, y;�) +

1

2
v2(y)Myy(x, y;�)

+
[

−a1x − a2xy + m1(x)
]

Mx(x, y;�)

+
[

−b1y + a2xy + m2(y)
]

My(x, y;�),

(10)M(x, y;�) = 1 if x + y = 0.

(11)p(x, x0, y, y0;t, t0) ∶= f(X(t),Y(t))∣(X(t0),Y(t0))(x, y ∣ x0, y0)

(12)
−pt0 =

1

2
v1(x)pxx +

1

2
v2(y)pyy +

[

−a1x − a2xy + m1(x)
]

px

+
[

−b1y + a2xy + m2(y)
]

py.

(13)
�t =

1

2
v1(x)�xx +

1

2
v2(y)�yy +

[

−a1x − a2xy + m1(x)
]

�x

+
[

−b1y + a2xy + m2(y)
]

�y.

(14)

−1 =
1

2
v1(x)mxx(x, y) +

1

2
v2(y)myy(x, y)

+
[

−a1x − a2xy + m1(x)
]

mx(x, y)

+
[

−b1y + a2xy + m2(y)
]

my(x, y),

(15)m(x, y) = 0 if x + y = 0.

(16)M(x, y;�) ∶= E
[

e−��(x,y)
]

= 1 − �E[�(x, y)] +
�2

2
E[�2(x, y)] −⋯ ,
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Remark In theory, we can obtain E[�(x, y)] by differentiating the moment-generating func-
tion M(x, y;�) with respect to � and then taking the limit as � decreases to zero. However, 
because M(x, y;�) is often expressed in terms of special functions, it may be easier to solve 
Eq. (14) instead.

Finally, let us define the random variable

We assume that X(0) < N . Therefore, when the expected value of Ẋ(t) is negative (which 
will be the case in Sect. 3), we can state that if X(�0,N) + Y(�0,N) = N , then it is likely that 
every member of the population is infected. We are interested in computing

that is, the probability that the epidemic will be over at time �0,N . The function p satisfies

The boundary conditions are

Obtaining explicit solutions to first-passage problems for diffusion processes in two or 
more dimensions is usually very difficult because one needs to solve partial differential 
equations, subject to the appropriate boundary conditions. See [9] and the references 
therein. Sometimes, using symmetry, it is possible to reduce the partial to ordinary differ-
ential equations.

One type of two-dimensional diffusion processes for which explicit and exact solutions 
to first-passage problems have been obtained are integrated diffusion processes. That is, 
processes of the form {(X1(t),X2(t)), t ≥ 0} , where {X2(t), t ≥ 0} is a diffusion process and

The author has considered such problems for integrated Wiener processes [13], Ornstein-
Uhlenbeck processes [11] and geometric Brownian motions [12]. See also [6, 10] and [16].

In the next section, we will find exact solutions to the above partial differential equa-
tions in important particular cases. The method of similarity solutions will be used.

Explicit Solutions

Since the boundary condition in Eq. (10) depends only on the sum x + y , we can look for 
a solution of (9), (10) of the form L(w;�) = M(x, y;�) , where w ∶= x + y . This technique is 
known as the method of similarity solutions, and w is the similarity variable.

(17)𝜏0,N(x, y) = inf{t > 0 ∶ X(t) + Y(t) = 0 or N ∣ X(0) = x, Y(0) = y}.

(18)p(x, y) ∶= P[X(�0,N) + Y(�0,N) = 0];

(19)

0 =
1

2
v1(x)pxx(x, y) +

1

2
v2(y)pyy(x, y)

+
[

−a1x − a2xy + m1(x)
]

px(x, y)

+
[

−b1y + a2xy + m2(y)
]

py(x, y).

(20)p(x, y) =

{

1 if x + y = 0,

0 if x + y = N.

(21)X1(t) = X1(0) + ∫
t

0

X2(s)ds.
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In order for the method to work, we must be able to express both the differential 
equation and the boundary condition in terms of w. Equation  (9) is transformed into 
(dropping the dependence of L on the constant �)

and the boundary condition is L(0) = 1 . Moreover, because X(t) + Y(t) ≤ N ∀t ≥ 0 , we can 
state that N is a reflecting boundary for the sum X(t) + Y(t) ; it follows (see [3], p. 233, or 
[14], p. 221) that L�(N) = 0.

Proposition 2.1 If both expressions between square brackets in Eq. (22) can be expressed 
in terms of w ∶= x + y , then the problem (9), (10) can be solved by assuming that 
M(x, y;�) = L(w;�).

Remark If the problem (9), (10) is solvable by the method of similarity solutions, then 
so are the problems (14), (15) and (19), (20). Moreover, we assume that the functions 
v1(x) + v2(y) and m1(x) + m2(y) are smooth enough to guarantee the existence and unique-
ness of the solutions to the equations, which will be the case in the particular problems 
considered below.

Particular cases. I) The simplest particular case is the one when 
v1(x) + v2(y) ≡ v0 > 0 , m1(x) = a1x and m2(y) = b1y . Equation (22) then reduces to

The general solution of the above equation is easily found to be

With the conditions L(0) = 1 and L�(N) = 0 , we can determine the value of the constants c1 
and c2 . We find that

It follows that

and

(22)�L(w) =
1

2
[v1(x) + v2(y)]L

��(w) + [m1(x) + m2(y) − a1x − b1y]L
�(w)

(23)�L(w) =
1

2
v0L

��(w).

(24)L(w) = c1 exp

(√

2�

v0
w

)

+ c2 exp

(

−

√

2�

v0
w

)

.

(25)L(w) =

cosh

�

2
√

�
√

v0
(N − w)

�

cosh

�

2
√

�
√

v0
N

� for 0 ≤ w ≤ N.

(26)M(x, y;�) =

cosh

�

2
√

�
√

v0
(N − x − y)

�

cosh

�

2
√

�
√

v0
N

� for 0 ≤ x + y ≤ N
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Remark The random perturbations, with the above infinitesimal parameters, are particu-
lar (generalized) Ornstein-Uhlenbeck processes. Moreover, letting W(t) ∶= X(t) + Y(t) , 
{W(t), t ≥ 0} is a Wiener process with zero mean and variance parameter v0.

We can retrieve the formula for m(x, y) by solving Eq. (14), subject to the appropriate 
boundary conditions. First, we can assume that m(x, y) = n(w) , so that Eq. (14), with the 
above assumptions, simplifies to

In addition to the boundary condition n(0) = 0 , we can write that n�(N) = 0 . Indeed, we 
have

so that

Since L�(N) = 0 for any � , we deduce that n�(N) = 0 as well. It is then straightforward to 
find that

Next, with r(w) ∶= p(x, y) , Eq. (19) becomes

The solution that satisfies the boundary conditions r(0) = 1 and r(N) = 0 is

Case II. Assume that m1(x) = a1x and m2(y) = b1y , as in Case I, but that v1(x) = v0x and 
v2(y) = v0y . Equation (22) is then

The general solution of Eq. (34) is

(27)m(x, y) = − lim
�↓0

�

��
M(x, y;�) =

(x + y)2 − 2N(x + y)

v0
.

(28)−1 =
1

2
v0n

��(w).

(29)
L(w) ∶ = E

[

e−��
]

= 1 − �E[�] +
1

2
�2E[�2] −⋯

= 1 − �n(w) +
1

2
�2E[�2] −⋯ ,

(30)lim
�↓0

L�(w) = −n�(w).

(31)n(w) =
w2 − 2Nw

v0
⟹ m(x, y) =

(x + y)2 − 2N(x + y)

v0
.

(32)
1

2
v0r

��(w) = 0 ⟹ r(w) = d1w + d2.

(33)r(w) = 1 −
w

N
⟹ p(x, y) = 1 −

x + y

N
for 0 ≤ x + y ≤ N.

(34)�L(w) =
1

2
v0wL

��(w).

(35)L(w) = c1

√

wI1

��

2�

v0
w

�

+ c2

√

wK1

��

2�

v0
w

�

,
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where I1(⋅) and K1(⋅) are modified Bessel functions (see [1], p. 374) of order � = 1 . Making 
use of the boundary conditions L(0) = 1 and L�(N) = 0 , we find that

for 0 ≤ w ≤ N , where

The formula for M(x, y) is then obtained by replacing w by x + y in the above equation. 
Moreover, we compute

As in Case I, m(x, y) can also be found by solving the differential equation satisfied by 
n(w), subject to n(0) = n�(N) = 0.

Finally, Eq. (19) reduces to

and we obtain the same solution (given in Eq. (33)) as in Case I for the function p(x, y).

Remark This time, the random perturbations and {W(t), t ≥ 0} are limiting cases of a Cox-
Ingersoll-Ross (CIR) process.

Case III. Let m1(x) ≡ 0 , m2(y) ≡ 0 , a1 = b1 ∶= a , and v1(x) + v2(y) ≡ v0 > 0 , as in 
Case I. We must then solve

Making use of a mathematical software program, we find that

for 0 ≤ w ≤ N , in which

(36)L(w) =
�

I0(�
√

N)

�

K0(�
√

N)I1(�
√

w) + I0(�
√

N)K1(�
√

w)
�

(37)� ∶=
2
√

2
√

�
√

v0
.

(38)m(x, y) = − lim
�↓0

�

��
M(x, y;�) =

2(x + y)

v0

[

1 + ln(N) − ln(x + y)
]

.

(39)
1

2
v0wr

��(w) = 0,

(40)�L(w) =
1

2
v0L

��(w) − awL�(w).

(41)

L(w) = −

1

2

�

a

v0
Γ(�)w

a(
√

�� + 1)M
�

� + 1,
3

2
,
aN2

v0

�

− �M
�

�,
3

2
,
aN2

v0

�

×

�

�(� + a)M

�

�,
3

2
,
aw2

v0

�

U

�

� + 1,
3

2
,
aN2

v0

�

− 2�aM

�

�,
3

2
,
aw2

v0

�

U

�

�,
3

2
,
aN2

v0

�

− 2a(a + �)U

�

�,
3

2
,
aw2

v0

�

M

�

� + 1,
3

2
,
aN2

v0

�

+ 2a�U

�

�,
3

2
,
aw2

v0

�

M

�

�,
3

2
,
aN2

v0

��
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and M(⋅, ⋅, ⋅) (Kummer’s function) and U(⋅, ⋅, ⋅) (Tricomi’s function) are confluent hyper-
geometric functions (see [1], p. 504).

This time, it is clearly easier to obtain the function m(x, y) by solving Eq. (14) rather 
than by differentiating L(w) with respect to � and taking the limit as � decreases to zero. 
The unique solution to the differential equation

that satisfies the boundary conditions n(0) = 0 and n�(N) = 0 can be expressed as follows:

for 0 ≤ w ≤ N , where “erf” is the error function:

Finally, the function r(w) = p(x, y) satisfies

The unique solution such that r(0) = 1 and r(N) = 0 is

for 0 ≤ w ≤ N , where “erfi” is the imaginary error function defined by

Remark The random perturbations are Wiener processes with zero means and {W(t), t ≥ 0} 
is an Ornstein-Uhlenbeck process.

Case IV. Lastly, let m1(x) ≡ 0 , m2(y) ≡ 0 , a1 = b1 ∶= a , as in Case III, and v1(x) = v0x 
and v2(y) = v0y , as in Case II. The differential equation satisfied by the function L(w) is 
then

We find that the solution that we are looking for is

(42)� ∶=
1

2
+

�

2a

(43)−1 =
1

2
v0n

��(w) − awn�(w)

(44)n(w) = −

�

�

av0 ∫
w

0

eau
2∕v0

�

erf
�

√

a∕v0u
�

− erf
�

√

a∕v0N
��

du

(45)erf(z) ∶=
2

√

� ∫
z

0

e−t
2

dt.

(46)0 =
1

2
v0r

��(w) − awr�(w).

(47)r(w) = 1 −
erfi

�

√

a∕v0w
�

erfi
�

√

a∕v0N
�

(48)erfi(z) =
2

√

� ∫
z

0

et
2

dt.

(49)�L(w) =
1

2
v0wL

��(w) − awL�(w).



Differential Equations and Dynamical Systems 

1 3

for 0 ≤ w ≤ N.
As in Case III, we will calculate the expected value of �(x, y) by solving

We can express the solution for which n(0) = 0 and n�(N) = 0 as follows:

for 0 ≤ w ≤ N , where Ei(⋅, ⋅) is a particular exponential integral, which is defined by

To conclude, the function r(w) = p(x, y) is such that

with r(0) = 1 and r(N) = 0 . We easily find that

Remark As in Case II, the random perturbations and {W(t), t ≥ 0} are limiting cases of a 
Cox-Ingersoll-Ross (CIR) process.

Concluding Remarks

In this paper, we computed various explicit and exact solutions to first-passage problems 
for a particular stochastic three-dimensional SIR model. Because the size of the popula-
tion was assumed to be constant, it was possible to reduce the first-passage problems to 
two-dimensional ones. Moreover, thanks to the symmetry in the model, we were then 
able to make use of the method of similarity solutions to solve the partial differential 
equations of interest, subject to the appropriate boundary conditions.

We were mainly interested in computing two quantities: the expected time needed to 
end the epidemic, and the probability that every member of the population will become 
infected, rather than everybody becoming immunized or cured from the disease. We 
saw that, even though one is able to find explicitly the moment-generating function of 
the first-passage time �(x, y) , it is often much easier to obtain the expected value m(x, y) 
of �(x, y) by solving the differential equation it satisfies, instead of differentiating the 

(50)

L(w) =
2a

v0
Γ(2�)wU(2�, 2, 2aw∕v0) −

2�

v0
Γ(2�)

×

[

(a + �)U(2� + 1, 2, 2aN∕v0) − aU(2�, 2, 2aN∕v0)

(a + �)M(2� + 1, 2, 2aN∕v0) − �M(2�, 2, 2aN∕v0)

]

× wM(2�, 2, 2aw∕v0)

(51)−1 =
1

2
v0wn

��(w) − awn�(w).

(52)n(w) =
2

v0 ∫
w

0

e2au∕v0
{

Ei
(

1, (2a∕v0)u
)

− Ei
(

1, (2a∕v0)N
)}

du

(53)Ei(�, z) = ∫
∞

1

e−tzt−�dt.

(54)0 =
1

2
v0wr

��(w) − awr�(w),

(55)r(w) =
e(2a∕v0)N − e(2a∕v0)w

e(2a∕v0)N − 1
for 0 ≤ w ≤ N.



 Differential Equations and Dynamical Systems

1 3

moment-generating function and then taking the appropriate limit. Indeed, the moment-
generating function is generally expressed in terms of special functions, so that per-
forming the required derivative can be very difficult.

When we cannot use the method of similarity solutions, we could at least try to solve 
the differential equations numerically, in any particular case. However, the aim of this 
paper was to obtain analytical solutions to the first-passage problems.

Next, we could try to compute the expected time that an epidemic will last when the 
model is more general than the one considered in this paper. We could also discretize 
the deterministic model and add Gaussian random variables as perturbations.

Finally, the problem of optimally controlling the system of stochastic differential 
equations is obviously an important one; see [7] and [15].
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