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Abstract
We obtain the analytical solutions in implicit form of a tumor cell population differential 
equation with strong Allee effect. We consider the ordinary case and then a fractional ver-
sion. Some particular cases are plotted.
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Introduction

The mathematical modeling and analysis of tumor growth is a crucial point to understand 
different aspects of cancer and to discover potential treatments [1–4]. Prof. H.I. Freedman 
has made important contributions in tumor-immune competitive systems and their applica-
tion to chemotherapy [5, 6].

In this paper, we investigate a tumor model with strong Allee effect in the following 
form [7]

(1)
dT

dt
= �T

(

1 −
T

k

)(

T − c

)

,

 *	 Juan J. Nieto 
	 juanjose.nieto.roig@usc.es

	 Subhas Khajanchi 
	 subhaskhajanchi@gmail.com

	 Mrinmoy Sardar 
	 sardar.mrinmoy1@gmail.com

1	 Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India
2	 Department of Mathematics, Jadavpur University, Kolkata 700032, India
3	 CITMAga, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-022-00622-x&domain=pdf
http://orcid.org/0000-0001-8202-6578


688	 Differential Equations and Dynamical Systems (July 2023) 31(3):687–692

1 3

with initial size of the tumor population is T(0) = T0 ≥ 0 . We assume that tumor cells grow 
logistically as tumor growth slows down due to insufficient nutrients. Here, � represents the 
intrinsic growth rate and k is the maximum carrying capacity of tumor cells [8]. It can be 
observed that 0, k and c are constant solutions. The parameter c ≥ 0 represents the strong 
Allee threshold. The growth of population subject to Allee effects is reduced at low density 
and it is related to the existence of a threshold size for the visibility of that population and 
they may altered the long-term persistence of the population. Note that for T between 0 and 
k, T is increasing if T > c , and T is decreasing if T < c.

There is a long history of fractional order derivative and it plays a vital role in nonlinear 
mathematical model. There are some limitations in integer derivatives of nonlinear models. 
Therefore the application of fractional order derivative is very important in the mathemati-
cal model. In fractional order differential equation, there are mainly two types of deriva-
tives known as Caputo-Fabrizio derivative and Riemann-Liouville derivative. In our study, 
we used Caputo-Fabrizio fractional order derivative.

The following fractional derivative of the model (1) has been considered as

with � ∈ (0, 1) and D� the Caputo fractional derivative of a C1 function and T is defined as

In this paper, we investigate the fractional version of the model (1)

where � is the Caputo-Fabrizio fractional derivative [9–11] and in the line of [12].
The paper is organized in the following way. We investigate the Caputo-Fabrizio frac-

tional order derivative and its corresponding fractional integral in the Sect. 2. We implic-
itly solved the Caputo-Fabrizio fractional derivative with order � ∈ (0, 1) of the proposed 
model (1) in the next Section. In the same Section, we plot the fractional Caputo-Fabrizio 
logistic equation with strong Allee effect (7) for different values of � by using MATH-
EMATICA. The paper ends with a brief conclusion.

Fractional Calculus with Non‑singular Kernel

Let us assume that � ∈ (0, 1) . The classical Riemann-Lioville fractional integral is given by

We have [13],

and
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where K1 is an arbitrary constant. For real smooth function g, the Caputo-Fabrizio frac-
tional derivative is given by

It is corresponding to the Caputo fractional derivative replacing the constant 1

Γ(1−�)
 by 1

1−�
 

and the singular kernel

by another kernel

Thus, the corresponding fractional integral [14, 15] of the function h is given by

Again, we have

K1 is an arbitrary constant. Due to [15], we point out that

This is quite different to the first order integral and derivative, the Caputo fractional deriva-
tive and the Riemann-Liouville fractional derivative and integral.

Solution for the Fractional Differential Equation

Assume that T is a solution of (3). Integration leads to

where

Therefore by (6), we get

where T(0) = T0 is the initial value. Taking derivative both sides of the above equation 
leads to
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We notice that if � = 1 then we recover the Allee model (1). After some algebraic manipu-
lation, for 0 < 𝜆 < 1 equation (7) becomes

with

Solving above equation by integration, we get

where

Putting t = 0 in the above equation, we have

where

Hence, we obtained the solution in an implicit form as
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We plot the solutions of the proposed model (7) by choosing a suitable set of parameter 
values and for different values of � . To numerically plot the solutions of (7), we use the 
initial size of the tumor cell population is T0 = 0.5 . To compare the solution of the classical 
(� = 1) logistic differential equation with Allee effect (1), and the Caputo-Fabrizio frac-
tional logistic equation with Allee effect (7) for � = 1∕2 and � = 1∕4 . See the Fig. 1. Rest 
of the parameter values are chosen as � = 1, k = 1 and c = 0.25. The solution of the clas-
sical logistic equation with strong Allee effect is above the solution of the fractional order 
Caputo-Fabrizio logistic equation with strong Allee effect (7) and above all the solution of 
the Caputo-fractional logistic differential equation.

Conclusions

In this paper, we proposed a mathematical model of tumor cell population with strong 
Allee effect, which is constructed by Sardar et al. [7] . Then we introduce fractional order 
derivative in our model. To solve the fractional logistic differential equation with Allee 
effect, we use fractional calculus with non-singular kernel. We calculate the analytical 
solutions in implicit form of the tumor cell population with strong Allee effect. Finally, we 
plot our solutions for different values of �.
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Fig. 1   Solution of the ordinary 
logistic differential equation with 
strong Allee effect for the initial 
value T

0
 = 0.5. Classical logistic 

equation with strong Allee 
effect (blue colour), fractional 
Caputo-Fabrizio logistic equation 
with strong Allee effect (7) for 
� = 1∕2 (black) and for � = 1∕4 
(green)
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