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Abstract
In this paper, we consider an SEIS epidemic model with infectious force in latent and 
infected period, which incorporates by nonlinear incidence rates. The local stability of 
the equilibria is discussed. By means of  Lyapunov functionals and LaSalle’s invariance 
principle, we proved the global asymptotic stability of the disease-free equilibrium and the 
endemic equilibrium. An application is given and numerical simulation results based on 
real data of COVID-19 in Morocco are performed to justify theoretical findings.

Keywords SEIS epidemic model · COVID-19 · Latent period · Local stability · Global 
stability

Introduction

In our life there are various infectious diseases that we face, such as coronavirus (COVID-
19) that was first identified in the Chinese city of Wuhan in 2019, and it is a new strain 
that has not been previously identified in humans. COVID-19 is a fatal illness caused by a 
severe acute respiratory syndrome that is transmitted from human-to-human [1]. In epide-
miology, mathematical models describing the population dynamics of infectious diseases 
plays an important role in analyzing the spread and controlling these diseases.

Some diseases, such as tuberculosis, measles, AIDS, COVID-19, have a latent or incu-
bation period when a susceptible has become infected but not yet infectious. COVID-19, 
for example, has about 5-6 days latent period [2] . This latency can be modeled by intro-
ducing a new class, called the exposed class, in which the susceptible remains for a given 
length of time before moving into the infective class. The resulting models are of SEI, 
SEIS, SEIR, SEIRS, or SEIRI type (here, S, E, I and R denote the numbers of susceptible, 
exposed, infectious and recovered individuals, respectively), see, e.g., [3–8].
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In many diseases the infection is not only in the infected period but even in the latent 
period, such as COVID-19 at present [9]. Many epidemic models with the infectious 
force in the latent period have been performed. Yuang et al. in [10] considered the local 
stability of an epidemic model having infectious force in both latent period and infected 
period. Guihua and Zhen [11, 12] studied the global stability of an SEI epidemic model 
having infectious force in both latent period and infected period. Global stability of 
an SEIS epidemic model with standard incidence rate having infectious force in both 
latent period and infected period given by Mukhopadhyay and Bhattacharyya [13]. The 
method used in [11–13] for proving global asymptotic stability of epidemic equilibrium 
is based on the geometric approaches developed by Smith [14], Li and Muldowney [15].

The incidence of a disease is the number of new cases per unit time and plays an 
important role in the modelling of epidemic dynamics. In many epidemic models, the 
bilinear incidence rate �SI ( � denote the transmission rate, which measures the infection 
force of the disease) [16, 17] and the standard incidence rate �SI

N
 , where N is the total 

population size [18], are frequently used. However, the bilinear incidence rate may face 
many problems and challenges when it is used to describe the evolution of infectious 
diseases among human. Consequently, the bilinear incidence rate should be modified 
into a nonlinear incidence rate which play a vital role in ensuring that the model can 
give a reasonable qualitative description of the capture the nonlinear nature of disease 
propagation law. Initially, Capasso and Serio [19] in the study of the cholera epidemic 
spread in Bari in 1973, observed that the incidence rate may increase more slowly as 
I increases rather than linearly increasing, and found the saturated incidence rate �SI

1+�I
 

which gives good agreement with observations, where the parameter � measures the 
inhibitory effect either due to the crowding caused by high numbers of cases or from the 
behavioral change of susceptible individuals as their number increases. From then on, 
a number of authors have studied epidemiological models with several nonlinear inci-
dence rates, see, e.g., [20–26].

In this paper we will consider an SEIS epidemic model with general incidence rates 
that the diseases such as COVID-19 can be infected in the latent period and the infected 
period. Hence, our study will be carried out on the following epidemic model:

where Λ is the recruitment rate of the susceptible, � is the natural death rate of the popula-
tion, � is the transfer rate from the exposed group to the infectious group so that 1

�
 is the 

mean latent period, � is the death rate due to disease, � is the transfer rate from the infec-
tious group to the susceptible group. In this work, we assume that � and � are nonnegative 
constants, and Λ , � , and � are positive constants.

To study the dynamics of the model (1), we suppose that the functions fi(i = 1, 2) are 
continuously differentiable on [0,+∞) satisfying the following two hypotheses. 

(H1)  fi(x) is strictly monotone increasing on [0,+∞) with fi(0) = 0.

(H2)  fi(x)
x

 is monotone decreasing on (0,+∞).

(1)

⎧⎪⎪⎨⎪⎪⎩

dS(t)

dt
= Λ − �S(t) − S(t)f1(I(t)) − S(t)f2(E(t)) + �I(t),

dE(t)

dt
= S(t)f1(I(t)) + S(t)f2(E(t)) − (� + �)E(t),

dI(t)

dt
= �E(t) − (� + � + �)I(t),



507Differential Equations and Dynamical Systems (April 2024) 32(2):505–518 

1 3

The hypothesis (H1) is a basic requirement for any biologically feasible incidence rate, 
since it is obvious that the disease cannot spread when the number of exposed and infected 
individuals is zero. In addition, the incidence Sf1(I) (resp., Sf2(E) ) becomes faster as the num-
ber of the infectious (resp., exposed) individuals increases.

Since the incidence Sf1(I) (resp., Sf2(E) ) can be rewritten as f1(I)

I
SI (resp., f2(E)

E
SE ). 

Then, function f1(I)
I

 (resp., f2(E)
E

 ) refers to effective contact rate between an infective (resp., 
exposed) and a susceptible individuals. The hypothesis (H2) implies that the effective con-
tact rate between infective (resp., exposed) and susceptible individuals is decreasing with 
increase of infectives since the individuals tend to reduce the number of contacts among 
them per unit time when they are under intervention policies. The idea of hypothesis (H2) 
has first been explored in [19].

By the hypotheses (H1)-(H2), it can be seen that fi satisfying

and consequently, the effective contact rates are bounded.
The functions fi(i = 1, 2) includes a number of especial incidence rates. For instance: 

1. fi(x) =
�ix

1+�ix
pi

 , �i ≥ 0 , 0 < pi ≤ 1 [27].

2. fi(x) =

(
�i −

�ix

mi+x

)
x , 𝛽i > 𝜎i , mi > 0 [28, 29].

On the positivity and boundedness of solutions, we have the following result. Since the 
proof is simple, we here omit it.

Proposition 1 Let (S(t), E(t), I(t)) be any solution of system (1) with any nonnegative initial 
condition, then S(t) ≥ 0 , E(t) ≥ 0 and I(t) ≥ 0 for all t ≥ 0. In addition, we have 
lim sup
t→+∞

(S(t) + E(t) + I(t)) ≤
Λ

�
.

The rest of this paper is organized as follows. In the next section, we discuss the exist-
ence and the local stability of the equilibria. In Section 3, by using Lyapunov functionals 
and LaSalle’s invariance principle, we establish the global asymptotic stability of the equi-
libria. An application and illustrative numerical simulations have been given in Section 4, 
and the numerical results of real data of COVID-19 in Morocco is conducted in the same 
section. Finally, conclusion is given in Section 5.

Equilibria and Their Local Stability

In this section, we discuss the existence and the local stability of the equilibria of system 
(1). It is easy to visualize that the system (1) always has a disease-free equilibrium 
E0 = (S0, 0, 0) , where S0 =

Λ

�
 , that is, there is no infection present in the population and all 

individuals are susceptible.
By applying the next generation matrix approach provided by van den Driessche and 

Watmough [30], the basic reproduction number of model (1) is defined as follows

(2)0 <
fi(x)

x
≤ f �

i
(0) for all x > 0,

R0 = S0

�f �
1
(0) + �2f

�
2
(0)

�1�2

,
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where �1 = � + � and �2 = � + � + � . Biologically, R0 represents the average number of 
secondary infectious cases produced by an exposed individual and an infectious individual 
during their effective infectious period when introduced in a completely susceptible popu-
lation [31].

Now, we obtain the following lemma which gives the result on the unique existence of 
the endemic equilibrium E∗ for R0 > 1.

Lemma 1 System (1) has a unique positive endemic equilibrium E∗ = (S∗,E∗, I∗) if and 
only if R0 > 1.

Proof Assume that R0 > 1 . Suppose that (S, E, I) is any positive equilibrium of system (1), 
then

From the third equation of system (3), we have

and by summing all equations of system (3), we find that

where � =
��2

�
+ � + � . We have S ≥ 0 implies that I ∈

(
0,

Λ

�

]
 . Hence, no positive equilib-

rium exists if I ≥ Λ

�
 . On the other hand, by the second equation of (3) and equation (4), it 

follows that

Then, by equations (5) and (6), I is a positive zero of the function F, where

By the hypothesis (H2), the function F is strictly monotone decreasing on 
(
0,

Λ

�

]
 satisfying

and F( Λ
𝜙
) < 0 . Hence, there is a unique I∗ ∈

(
0,

Λ

�

)
 such that F(I∗) = 0 if R0 > 1 . This 

shows that model (1) has a unique positive endemic equilibrium E∗ = (S∗,E∗, I∗) when 

(3)

⎧⎪⎪⎨⎪⎪⎩

Λ − �S − Sf1(I) − Sf2(E) + �I = 0,

Sf1(I) + Sf2(E) − �1E = 0,

�E − �2I = 0.

(4)E =
�2

�
I,

(5)S =
Λ − �I

�
,

(6)
S =

�1�2

�

1

f1(I)

I
+

f2

(
�2

�
I

)

I

.

F(I) = Λ − �I −
��1�2

�

1

f1(I)

I
+

f2

(
�2

�
I

)

I

, I ∈

(
0,

Λ

�

]
.

lim
I→0+

F(I) = Λ −
𝜇𝜔1𝜔2

𝜎

1

f �
1
(0) +

𝜔2

𝜎
f �
2
(0)

= Λ

(
1 −

1

R0

)
> 0,
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R0 > 1 , where E∗ and S∗ are determined by (4) and (5), respectively. Second we assume 
R0 ≤ 1 . Then it is obvious that system (1) has no endemic equilibria. Hence the proof is 
complete.   ◻

Next, we focus on the local stability of the disease-free equilibrium E0 . The Jacobian 
matrix of system (1) at the equilibrium E0 is as follows

Clearly, 𝜆1 = −𝜇 < 0 is a eigenvalue of JE0
 . The other two eigenvalues of JE0

 are deter-
mined by the following equation

If R0 < 1 , one immediately gets 𝜔1𝜔2 − S0
(
𝜎f �

1
(0) + 𝜔2f

�
2
(0)

)
= 𝜔1𝜔2

(
1 − R0

)
> 0 , 

and by the expression of R0 , we have S0f �2(0) < 𝜔1 , then 𝜔1 + 𝜔2 − S0f
�
2
(0) > 0. Thus, by 

the Routh-Hurwitz criterion, the eigenvalues �j (j = 2, 3) of JE0
 have negative real part if 

R0 < 1 . If R0 > 1 , then 𝜔1𝜔2 − S0
(
𝜎f �

1
(0) + 𝜔2f

�
2
(0)

)
< 0 , and this suggests that JE0

 admits 
a positive real eigenvalue. Consequently, we have the following result.

Theorem 1 If R0 < 1 , then the disease-free equilibrium E0 is locally asymptotically stable. 
E0 is unstable if R0 > 1.

Now, we analyze the local stability of the endemic equilibrium of the system (1) by 
assuming that R0 > 1 . The Jacobian matrix of system (1) at the equilibrium E∗ is as follows

Therefore, its characteristic equation at E∗ is

where

JE0
=

⎛
⎜⎜⎝

−� − S0f
�
2
(0) − S0f

�
1
(0) + �

0 S0f
�
2
(0) − �1 S0f

�
1
(0)

0 � − �2

⎞
⎟⎟⎠
.

�2 +
(
�1 + �2 − S0f

�

2
(0)

)
� + �1�2 − S0

(
�f �

1
(0) + �2f

�

2
(0)

)
= 0.

JE∗
=

⎛⎜⎜⎝

−� − f1(I
∗) − f2(E

∗) − S∗f �
2
(E∗) − S∗f �

1
(I∗) + �

f1(I
∗) + f2(E

∗) S∗f �
2
(E∗) − �1 S∗f �

1
(I∗)

0 � − �2

⎞⎟⎟⎠
.

(7)�3 + C2�
2 + C1� + C0 = 0,

C2 =� + �2 + f1(I
∗) +

S∗

E∗
f1(I

∗) + f2(E
∗) + S∗

(
f2(E

∗)

E∗
− f �

2
(E∗)

)
,

C1 =
(
�1 + �2

)(
f1(I

∗) + f2(E
∗)
)
+ �

(
�2 + S∗

(
f2(E

∗)

E∗
− f �

2
(E∗)

))
+ �S∗

(
f1(I

∗)

I∗
− f �

1
(I∗)

)

+ �2S
∗

(
f2(E

∗)

E∗
− f �

2
(E∗)

)
,

C0 =
(
�1�2 − ��

)(
f1(I

∗) + f2(E
∗)
)
+ ��S∗

(
f1(I

∗)

I∗
− f �

1
(I∗)

)
+ ��2S

∗

(
f2(E

∗)

E∗
− f �

2
(E∗)

)
.
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By (H2), fi(x)
x

 is decreasing on (0,+∞) , so 
(

fi(x)

x

)�

≤ 0 , which implies that fi(x)
x

− f �
i
(x) ≥ 0 

for all x > 0 . Further, we have 𝜔1𝜔2 − 𝜎𝛾 = 𝜇(𝜇 + 𝛿 + 𝛾) + 𝜎(𝜇 + 𝛿) > 0 . Then it is easy 
to show that C2 > 0, C1 > 0 , C0 > 0 and C2C1 > C0 . Thus, by the Routh-Hurwitz criterion, 
all roots �j (j = 1, 2, 3) of (7) have negative real part. Hence, we have the following 
theorem.

Theorem 2 When R0 > 1 , the endemic equilibrium E∗ is locally asymptotically stable.

Global Stability

The aim of this section is to analyze the global stability of the equilibria. First, we con-
sider the global stability of model (1) at the disease-free equilibrium E0.

Theorem 3 If R0 ≤ 1 , then the disease-free equilibrium E0 is globally asymptotically stable.

Proof Let U be the Lyapunov functional defined as

where

The derivatives of functions U0 and U1 along the solution of system (1) are

and

U(t) = U0(t) + U1(t),

U0(t) = S0g

(
S

S0

)
+ E +

𝜔1f
�
1
(0)

𝜎f �
1
(0) + 𝜔2f

�
2
(0)

I,

U1(t) =
𝛾

𝜎S0

I2

2
+

𝛾

(2𝜇 + 𝛿)S0

(
S − S0 + E + I

)2
2

,

g(x) = x − 1 − ln x, x > 0.

dU0

dt
=

(
1 −

S0

S

)(
Λ − �S − Sf1(I) − Sf2(E) + �I

)
+
(
Sf1(I) + Sf2(E) − �1E

)

+
�1f

�
1
(0)

�f �
1
(0) + �2f

�
2
(0)

(
�E − �2I

)

=
−�

(
S − S0

)2
S

+
(
f1(I) + f2(E)

)
S0

−
�1�2

�f �
1
(0) + �2f

�
2
(0)

(
f �
1
(0)I + f �

2
(0)E

)
+ �I

(
1 −

S0

S

)
,
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Then

According to (2), we have f1(I) ≤ f �
1
(0)I and f2(E) ≤ f �

2
(0)E . Hence

Therefore, R0 ≤ 1 ensures that dU
dt

≤ 0 . Furthermore, it is easy to verify that the singleton {
E0

}
 is the largest compact invariant set in 

{
(S,E, I) ∈ ℝ

3
+
∶

dU

dt
= 0

}
 . By LaSalle’s invari-

ance principle [32], we get that equilibrium E0 of system (1) is globally asymptotically sta-
ble if R0 ≤ 1.   ◻

In the following theorem, we study the global stability of the endemic equilibrium E∗.

Theorem 4 Assume that R0 > 1 . The endemic equilibrium E∗ is globally asymptotically sta-
ble if

Proof Let V be the Lyapunov functional defined as

where

and

By means of the equalities

the derivative of V0 is

dU1

dt
=

�

�S0
I
(
�E − �2I

)
+

�

(2� + �)S0

(
−�(S − S0 + E)2 − (� + �)I2 − (2� + �)I

(
S − S0

)
− (2� + �)EI

)

= −
�

S0

(
�2

�
+

� + �

2� + �

)
I2 −

��

(2� + �)S0
(S − S0 + E)2 − �I

(
S

S0
− 1

)
.

dU

dt
=

−�
(
S − S0

)2
S

−
�

S0

(
�2

�
+

� + �

2� + �

)
I2 −

��

(2� + �)S0
(S − S0 + E)2 − �I

(
S − S0

)2
SS0

+
(
f1(I) + f2(E)

)
S0 −

�1�2

�f �
1
(0) + �2f

�
2
(0)

(
f �
1
(0)I + f �

2
(0)E

)
.

dU

dt
≤ −

�S0 + �I

SS0

(
S − S0

)2
−

�

S0

(
�2

�
+

� + �

2� + �

)
I2

−
��

(2� + �)S0
(S − S0 + E)2 +

(
f �
1
(0)I + f �

2
(0)E

)
S0

(
1 −

1

R0

)
.

(8)�S∗ − �I∗ ≥ 0.

V(t) = V0(t) + V1(t),

V0(t) = S∗g

(
S

S∗

)
+ E∗g

(
E

E∗

)
+

S∗f1(I
∗)

�E∗
I∗g

(
I

I∗

)
,

V1(t) =
�

�S∗
(I − I∗)2

2
+

�

(2� + �)S∗
(S − S∗ + E − E∗ + I − I∗)2

2
.

Λ = �S∗ + S∗f1(I
∗) + S∗f2(E

∗) − �I∗, S∗f1(I
∗) + S∗f2(E

∗) = �1E
∗, �2 =

�E∗

I∗
,
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The derivative of V1 is

Then the sum of these two functions gives

By the hypotheses (H1) and (H2), we obtain

and using the arithmetic-geometric inequality, we have

dV0

dt
=

(
1 −

S∗

S

)(
−�

(
S − S∗

)
+ S∗f1(I

∗) − Sf1(I) + S∗f2(E
∗) − Sf2(E) + �

(
I − I∗

))

+

(
1 −

E∗

E

)(
Sf1(I) − S∗f1(I

∗)
E

E∗
+ Sf2(E) − S∗f2(E

∗)
E

E∗

)
+ S∗f1(I

∗)

(
1 −

I∗

I

)(
E

E∗
−

I

I∗

)

= − �
(S − S∗)2

S
+ S∗f1(I

∗)

(
1 −

S∗

S
−

Sf1(I)

S∗f1(I
∗)

+
f1(I)

f1(I
∗)

)
+ S∗f2(E

∗)

(
1 −

S∗

S
−

Sf2(E)

S∗f2(E
∗)

+
f2(E)

f2(E
∗)

)

+ �
(
I − I∗

)(
1 −

S∗

S

)
+ S∗f1(I

∗)

(
1 −

E

E∗
−

SE∗f1(I)

S∗Ef1(I
∗)

+
Sf1(I)

S∗f1(I
∗)

)

+ S∗f2(E
∗)

(
1 −

E

E∗
−

SE∗f2(E)

S∗Ef2(E
∗)

+
Sf2(E)

S∗f2(E
∗)

)
+ S∗f1(I

∗)

(
E

E∗
−

I

I∗
−

I∗E

IE∗
+ 1

)

= − �
(S − S∗)2

S
+ S∗f1(I

∗)

(
3 −

S∗

S
−

SE∗f1(I)

S∗Ef1(I
∗)

−
I

I∗
−

I∗E

IE∗
+

f1(I)

f1(I
∗)

)

+ S∗f2(E
∗)

(
2 −

S∗

S
−

E

E∗
−

SE∗f2(E)

S∗Ef2(E
∗)

+
f2(E)

f2(E
∗)

)
+ �

(
I − I∗

)(
1 −

S∗

S

)

= − �
(S − S∗)2

S
+ S∗f1(I

∗)

((
f1(I)

f1(I
∗)

− 1 −
I

I∗
+

If1(I
∗)

I∗f1(I)

)
+

(
4 −

S∗

S
−

SE∗f1(I)

S∗Ef1(I
∗)

−
I∗E

IE∗
−

If1(I
∗)

I∗f1(I)

))

+ S∗f2(E
∗)

((
f2(E)

f2(E
∗)

− 1 −
E

E∗
+

Ef2(E
∗)

E∗f2(E)

)
+

(
3 −

S∗

S
−

SE∗f2(E)

S∗Ef2(E
∗)

−
Ef2(E

∗)

E∗f2(E)

))
+ �

(
I − I∗

)(
1 −

S∗

S

)
.

dV1

dt
=

�

S∗

(
I − I∗

)(
E − E∗

)
−

�

�S∗
(� + � + �)

(
I − I∗

)2
+

�

(2� + �)S∗

(
−�(S − S∗ + E − E∗)2

−(� + �)
(
I − I∗

)2
− (2� + �)

(
S − S∗

)(
I − I∗

)
− (2� + �)

(
I − I∗

)(
E − E∗

))

= −
�

�S∗
(� + � + �)

(
I − I∗

)2
−

��

(2� + �)S∗
(S − S∗ + E − E∗)2 −

�(� + �)

(2� + �)S∗

(
I − I∗

)2
− �

(
S

S∗
− 1

)(
I − I∗

)

= −
�

S∗

(
� + � + �

�
+

� + �

2� + �

)(
I − I∗

)2
−

��

(2� + �)S∗
(S − S∗ + E − E∗)2 − �

(
S

S∗
− 1

)(
I − I∗

)
.

dV

dt
= −

((
�S∗ − �I∗

)
+ �I

) (S − S∗)2

S
−

�

S∗

(
� + � + �

�
+

� + �

2� + �

)(
I − I∗

)2
−

��

(2� + �)S∗
(S − S∗ + E − E∗)2

+ S∗f1(I
∗)

((
f1(I)

f1(I
∗)

− 1 −
I

I∗
+

If1(I
∗)

I∗f1(I)

)
+

(
4 −

S∗

S
−

SE∗f1(I)

S∗Ef1(I
∗)

−
I∗E

IE∗
−

If1(I
∗)

I∗f1(I)

))

+ S∗f2(E
∗)

((
f2(E)

f2(E
∗)

− 1 −
E

E∗
+

Ef2(E
∗)

E∗f2(E)

)
+

(
3 −

S∗

S
−

SE∗f2(E)

S∗Ef2(E
∗)

−
Ef2(E

∗)

E∗f2(E)

))
.

f1(I)

f1(I
∗)

− 1 −
I

I∗
+

If1(I
∗)

I∗f1(I)
=

1

I∗

(
I∗

f1(I
∗)

−
I

f1(I)

)(
f1(I) − f1(I

∗)
)
≤ 0,

f2(E)

f2(E
∗)

− 1 −
E

E∗
+

Ef2(E
∗)

E∗f2(E)
=

1

E∗

(
E∗

f2(E
∗)

−
E

f2(E)

)(
f2(E) − f2(E

∗)
)
≤ 0,

4 −
S∗

S
−

SE∗f1(I)

S∗Ef1(I
∗)

−
I∗E

IE∗
−

If1(I
∗)

I∗f1(I)
≤0,

3 −
S∗

S
−

SE∗f2(E)

S∗Ef2(E
∗)

−
Ef2(E

∗)

E∗f2(E)
≤0.
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Hence, the condition (8) ensures that dV

dt
≤ 0 . Further, the largest invariant set of {

(S,E, I) ∈ ℝ
3
+
∶

dV

dt
= 0

}
 is the singleton 

{
E∗

}
 . By applying the LaSalle’s invariance 

principle, we can obtain that the endemic equilibrium E∗ of model (1) is globally asymp-
totically stable if R0 > 1 and �S∗ − �I∗ ≥ 0.   ◻

Remark 1 When � = 0 , the system (1) reduces to an SEI model, and the endemic equilib-
rium E∗ is globally asymptotically stable if R0 > 1.

Corollary 1 For 𝛾 > 0 , the endemic equilibrium E∗ is globally asymptotically stable if

where � given in the proof of Lemma 1.

Proof We prove that the condition (8) in Theorem  4 holds if the condition R0 ≤ 1 +
�

�
 

holds. We have I∗ satisfies the following

Therefore, we obtain that

which completes the proof.   ◻

Application and Numerical Simulations

The main purpose of this section is to give a particular nonlinear incidence rate to illustrate 
our main results. Consider the system

1 < R0 ≤ 1 +
𝜙

𝛾
,

I∗ =
1

�

⎛
⎜⎜⎜⎝
Λ −

��1�2

�

1

f1(I
∗)

I∗
+

f2

�
�2

�
I∗
�

I∗

⎞
⎟⎟⎟⎠
≤

1

�

�
Λ −

��1�2

�

1

f �
1
(0) +

�2

�
f �
2
(0)

�

=
��1�2

�
�
�f �

1
(0) + �2f

�
2
(0)

��R0 − 1
�
.

�S∗ − �I∗ =

��1�2I
∗

�

f1(I
∗) + f2

(
�2

�
I∗
) − �I∗

=

��1�2

�
I∗

f1(I
∗) + f2

(
�2

�
I∗
)
(
1 − �

�

��1�2

(
f1(I

∗) + f2

(�2

�
I∗
)))

≥

��1�2

�
I∗

f1(I
∗) + f2

(
�2

�
I∗
)
(
1 − �

�f �
1
(0) + �2f

�
2
(0)

��1�2

I∗
)

≥

��1�2

�
I∗

f1(I
∗) + f2

(
�2

�
I∗
)
(
1 −

�

�

(
R0 − 1
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subject to initial conditions

where �1 and �2 are the rates of the efficient contact in infected period and latent period, 
respectively. The positive constants �1 and �2 measure the saturation or inhibitory effect. 
The remaining parameters have the same biological significance as those in system (1). 
Model (9) is a particular case of system (1) by choosing f1(I) =

�1I

1+�1I
 and f2(E) =

�2E

1+�2E
.

Obviously, the hypotheses (H1)-(H2) are satisfied. The basic reproduction number of 
model (9) is

Now, we give some numerical simulations in order to validate our theoretical results. 
Firstly, we simulate model (9) with the parameter values as shown in Table 1.

By calculation, we have R0 = 0.5919 ≤ 1 . Hence, by Lemma 1, model (9) has only an 
disease-free equilibrium E0 = (1384.45, 0, 0) . Fig. 1 shows that the trajectories of S(t), 
E(t) and I(t), which are the solutions of (9), from different initial values to E0 . This sup-
ports the analytical result obtained in Theorem 3, i.e., the disease-free equilibrium E0 is 
globally asymptotically stable provided R0 ≤ 1 . Thus, under the condition R0 ≤ 1 , the 
disease will be eradicated.

Now, we simulate the case when the basic reproduction number is bigger than one. 
For this end, we consider model (9) with the parameter values as shown in Table 2.

By computing, we get R0 = 4.2787 > 1 and �S∗ − �I∗ = 97.0392 ≥ 0 . Fig.  2 shows 
that the trajectories of S(t), E(t) and I(t), which are the solutions of (9), from different 
initial values to E∗ = (1192.7, 29.0039, 18.6941) . This confirms the global stability of 

(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)

dt
= Λ − �S(t) −

�1S(t)I(t)

1+�1I(t)
−

�2S(t)E(t)

1+�2E(t)
+ �I(t),

dE(t)

dt
=

�1S(t)I(t)

1+�1I(t)
+

�2S(t)E(t)

1+�2E(t)
− (� + �)E(t),

dI(t)

dt
= �E(t) − (� + � + �)I(t),

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,

R0 =
��1Λ

�(� + �)(� + � + �)
+

�2Λ

�(� + �)
.

Table 1  Parameter values for model (9)

Parameter Λ � �1 �2 � � � �1 �2

Value 130 0.0939 0.00015 0.0002 0.6 0.037 0.8 0.2 0.1

Table 2  Parameter values for 
model (9)

Parameter Λ � �1 �2 � � � �1 �2

Value 130 0.0939 0.001 0.0015 0.6 0.037 0.8 0.2 0.1
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the endemic equilibrium E∗ and thus supports the theoretical result given in Theorem 4, 
which means that the disease becomes endemic.

Next, we provide a numerical simulation using real data for the transmis-
sion of COVID-19 in Morocco during the year 2020 [33]. On 27 October, we have 
S(0) = 37055403 [34], I(0) = 203733 [33], then we assume E(0) = 400000 . Fig. 3 shows 
that the trajectories of S(t), E(t) and I(t) in the model under investigation (9), for the 
parameter values as shown in Table  3, converges towards the endemic equilibrium 
E∗ = (1.9007 × 107, 1.8539 × 106, 2.3607 × 106).

In this case, we have the basic reproduction number is greater than unity 
R0 = 1.5159 > 1 and �S∗ − �I∗ ≥ 0 , which means that the disease persists. In this situa-
tion, it will be important to eventually undertake some strategies like quarantine, isola-
tion, wearing of masks, disinfection and if it will be possible vaccination.

Conclusion

This paper presents a mathematical study on the dynamical behavior of an SEIS epi-
demic model with infectivity in incubation period and general incidence rates. From the 
system, we have found the following basic reproduction number
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Fig. 1  Plot of the time evolution of S(t), E(t) and I(t), which are the solutions of (9). The parameter values 
are tabulated in Table 1. This plot shows the stability of the disease-free equilibrium E0 from different val-
ues



516 Differential Equations and Dynamical Systems (April 2024) 32(2):505–518

1 3

It determines whether the disease will die out or persist in the population as time increases. 
We have shown that if R0 ≤ 1 , the disease-free equilibrium E0 is globally asymptotically, 
which means that the disease cannot persist in the population, and the situation is under 
control. Moreover, we have proved that if R0 > 1 , the disease-free equilibrium becomes 
unstable and the model has an endemic equilibrium E∗ which is globally asymptotically 
stable provided that �S∗ ≥ �I∗ , so that the disease, if initially present, will be persistent at 
the unique endemic equilibrium level. An application and some numerical simulations are 
presented to verify the feasibility of the theoretical results.

We would like to point out here that Theorem 4 leaves us an open problem: whether 
the endemic equilibrium E∗ is globally asymptotically stable when R0 > 1 without the 
additional condition �S∗ − �I∗ ≥ 0 ?. We leave this for future work.

R0 =
�Λf �

1
(0)

�(� + �)(� + � + �)
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Fig. 2  Plot of the time evolution of S(t), E(t) and I(t), which are the solutions of (9). The parameter values 
are tabulated in Table 2. This plot shows the stability of the endemic equilibrium E∗ from different values

Table 3  Parameter values for model (9)

Parameter Λ � �1 �2 � � � �1 �2

Value 278.15 0.05861 0.000079 0.0001 0.5 0.017 0.428 0.14 0.145
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