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Abstract This paper presents a deterministic model for evaluating the impact of
anti-retroviral drugs (ARVs), voluntary testing (using standard antibody-based and a DNA-
based testing methods) and condom use on the transmission dynamics of HIV in a community.
Rigorous qualitative analysis of the model show that it has a globally-stable disease-free equi-
librium whenever a certain epidemiological threshold, known as the effective reproduction
number (Reff ), is less than unity. The model has an endemic equilibrium whenever Reff > 1.
The endemic equilibrium is shown to be locally-asymptotically stable for a special case.
Numerical simulations of the model show that the use of the combined testing and treatment
strategy is more effective than the use of the standard ELISA testing method with ARV treat-
ment, even for the use of condoms as a singular strategy. Furthermore, the universal strategy
(which involves the use of condoms, the two testing methods and ARV treatment) is always
more effective than the combined use of the standard ELISA testing method and ARVs.

Keywords HIV · Nucleic acid amplification testing (NAAT) · ARVs · Condoms ·
Standard testing · Reproduction number · Stability

Introduction

Since its emergence in the 1980s, the human immunodeficiency virus (HIV), the causative
agent of the acquired immune deficiency syndrome (AIDS), continues to pose an unprec-
edented threat to global health and human development. Currently, 33 million people are
estimated to be living with HIV/AIDS [40], and more than 25 million people have died
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from HIV-related illnesses during the last 20 years. AIDS is now the leading cause of death
in sub-Saharan Africa and the fourth-leading cause of death globally [23]. In addition to
being a serious public health menace, HIV/AIDS has far reaching consequences to all social
and economic sectors of society. It exacerbates poverty, reduces educational opportunities,
devastates the workforce, creates large numbers of orphans, and exerts tremendous pressure
on already limited health and social services [2,9,14,36,39,43,44]. Another more troubling
aspect of HIV disease is the fact that a sizable proportion (about 25% in North America) of
those infected with the virus are not aware of their HIV status [6,25]. Thus, these individuals
continue to unknowingly transmit the virus to others (in addition to not being able to benefit
from clinical care to reduce morbidity and mortality).

Control measures against the spread of HIV are wide and varied. They include preventive
measures (such as the use of condoms, public health education and counselling about safer
sex practices, sterilization of needles in health care delivery, voluntary HIV testing) and the
use of therapeutic agents. The currently available anti-HIV therapeutic measure is based on
using anti-retroviral therapy, especially the highly-active anti-retroviral therapy (HAART),
which is known to significantly reduce viral load in treated individuals [13,25,29,30,34].
Unfortunately, HAART is still not widely accessible in many resource-poor nations, where
HIV prevalence is the highest (an estimated 5.2 million people in low-and middle-income
countries were receiving life-saving HIV treatment at the end of 2009 [38]).

The purpose of this study is to use mathematical modelling to gain insight into the impact
of voluntary testing, the use of condoms and the use of anti-retroviral drugs in curtailing the
spread of HIV in a community. Two different testing methods, namely a standard antibody
test (such as the Enzyme Linked Immuno Absorbent Assay (ELISA)) and a DNA-based test,
known as the Nucleic Acid Amplification Testing (NAAT), will be considered. Unlike the
standard antibody test (which typically detect antibodies in the blood after a minimum of
three to four weeks of infection), NAAT can detect early infection (within the first few days
of occurrence) [1,31,37].

The model to be developed in this study incorporates some of the well-known prop-
erties of HIV disease. These notably include the staged-progression aspect, where a typi-
cal HIV-infected individual passes through several infection stages, being highly infectious
during the pre-antibody phase (characterized by high viremia with over 10 million viral
copies per ml), maintaining low infectivity during the asymptomatic phase and becoming
highly infectious as s/he progresses toward AIDS (i.e., the AIDS stage of HIV infection)
[10,13,15,16,18,22,26,30]. These stages are sometimes categorized into four groups namely,
acute sero-conversion stage (less than 28 days of infection), early infection stage (less than
170 days of infection but prior to development of symptoms), established infection stage
(after 170 days of infection) and the AIDS stage (characterized by the presence of clinical
symptoms of AIDS and very reduced level of CD4 count) [1]. Another important aspect of
HIV disease is the fact that HIV RNA levels are positively correlated with infectiousness
[28,34].

In addition to developing a reasonably realistic model for HIV spread, this study also
contributes by including numerous anti-HIV strategies and carrying out rigorous qualitative
analysis of the resulting model. The paper is organized as follows. The model is formulated in
“Model Formulation” section, and rigorously analysed in subsequent subsections. Numerical
simulations are reported in third section.
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Model Formulation

A deterministic compartmental modelling approach is used to design the model as follows.
The total population at time t , denoted by N (t), is sub-divided into 10 mutually-exclusive
compartments of susceptible individuals (S(t)), newly-infected individuals unaware of their
status in the acute sero-conversion stage (I u

1 (t); less than 28 days of infection), infected
individuals unaware of their HIV status in the asymptomatic stage (I u

2 (t); 28–170 days
of infection), infected individuals unaware of their HIV infection status in the established
(pre-AIDS) stage (I u

3 (t)), infected individuals unaware of their status in the AIDS stage of
infection (Au(t)), treated individuals (T (t)), and (corresponding) infected individuals aware
of their infection status (due to positive HIV diagnosis) at the aforementioned infection stages,
denoted by I k

1 , I k
2 , I k

3 and Ak , respectively. Thus,

N (t) = S(t)+ I u
1 (t)+ I u

2 (t)+ I u
3 (t)+ Au(t)+ I k

1 (t)+ I k
2 (t)+ I k

3 (t)+ Ak(t)+ T (t).

The susceptible population is increased by the recruitment of new sexually-active indi-
viduals (at a rate �). Susceptible individuals acquire infection, following effective contact
with untreated infected individuals, at a rate λ, where

λ = β

N

[
I u
1 + η2 I u

2 + η3 I u
3 + η4 Au + r

(
I k
1 + η2 I k

2 + η3 I k
3 + η4 Ak

)]
. (1)

In (1), β is the effective contact rate and the modification parameters ηi (i = 2, 3, 4) are esti-
mated as follows. The average transmission rate per coital act during the primary infection
stage (i.e, less than 28 days of infection) is estimated to be 0.0082 [42]. Assuming that an
infected individual in this stage of infection has an average of six sexual acts per month, it fol-
lows that the transmission rate in the primary infection stage is β = 0.0082 × 6 × 12 = 0.59
per year. For the second stage of infection (i.e., 28–170 days of infection), it is assumed
that the average transmission rate per coital act is 0.0035. This gives a transmission rate of
β = 0.252 per year (so that, η2 = 0.43). For the third stage of HIV infection (i.e., from
170 days of infection to the onset of clinical symptoms of AIDS), the transmission rate per
act is 0.007 [42], so that (by using an average of 3 acts per month) β = 0.0252 per year
(hence, η3 = 0.043). Finally, following [42], the per coital transmission probability in the
AIDS stage is assumed to be 0.0028. Using an estimate of 3 acts per month, it follows that
the transmission rate in this stage is β = 0.1 per year (thus, η4 = 0.17). It should be men-
tioned that, in the above, it is assumed that individuals in the pre-AIDS and AIDS stages
have reduced number of sexual acts in comparison to those in the primary and early infection
stages (the justification for this assumption is that individuals in the pre-AIDS and AIDS
stages are too sick to engage in active sexual activity). In summary, these estimates (for
ηi ; i = 1, 2, 3) show that the rate of HIV transmission is the highest during the primary
infection stage (β = 1). It decreases during the second infection stage to β = 0.252, and
further decreases to β = 0.0252 in the pre-AIDS stage. The transmission rate then increases
to β = 0.1 in the AIDS stage. These estimates are consistent with the conclusions drawn in
numerous HIV modelling studies, such as those reported in [19,42] (it should, however, be
mentioned that some studies, such as that reported in [35], show that HIV transmission rate
is the highest during the AIDS stage of infection).

Once infected individuals are made aware of their infection status (by positive HIV diag-
nosis), it is assumed that these individuals (who are moved to the class of individuals who
know their positive HIV infection status) will reduce their risky behaviour by a factor of r .
Marks et al. [24,25] estimated that knowledge of HIV status resulted in 57% reduction in
unprotected sex (so that, r � 0.43). Condom use is modelled in terms of reduction in the
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Fig. 1 Schematic diagram of the model (2)

infection rate, λ, by a factor of (1 − εcκ), where 0 < εc < 1 is the condom efficacy and
0 < κ < 1 is the fraction of sexually-active individuals that use condoms consistently and
correctly (condom compliance). It is assumed that newly-infected individuals are unaware
of their infection status until they are detected either by NAAT or the standard antibody test.

It is assumed that individuals unaware of their infection status progress from the acute
sero-conversion stage (I u

1 ) to the asymptomatic stage (I u
2 ), at a rate σ1. Progression from

the asymptomatic stage (I u
2 ) to the pre-AIDS stage (I u

3 ) occurs at a rate σ2. Finally, pre-
AIDS individuals progress to the AIDS stage at a rate σ3. Individuals that are unaware of
their infection status in the I u

1 class are tested (using NAAT) at a rate τn , with efficacy εn

(0 < εn < 1). Those that are positively diagnosed move to the corresponding I k
1 class.

Standard (ELISA) testing is used for individuals in the I u
2 , I u

3 and Au classes at a rate τε ,
with efficacy εε (0 < εε < 1); and those positively identified move to their corresponding
Ik class. Individuals aware of their infection status progress through the various infection
stages at the same rate (σi ; i = 1, 2, 3) as those who are not (in other words, it is assumed
that knowledge of HIV infection status does not alter the progression rate among untreated
infected individuals).

Individuals aware of their status in the infection stages I k
1 , I k

2 , I k
3 and Ak are treated at

rates ψ1, ψ2, ψ3 and ψk , respectively. It is assumed, for mathematical tractability, that these
(treated) individuals do not transmit infection. Further, natural mortality occurs in all epide-
miological classes at a rateμ (i.e., 1/μ represents the average duration of acquisition of sexual
partners), and individuals in the AIDS stage suffer an additional disease-induced death (at
rates δu and δk , for individuals unaware or aware of their status, respectively). It is assumed
that treated individuals eventually succumb to the disease (at a reduced disease-induced rate
θ1δk , with 0 < θ1 < 1).

Putting the aforementioned formulations and assumptions together, it follows that the
model for HIV transmission, in the presence of the two testing methods, condom use and
ARVs, is given by the following system of differential equations (a schematic description of
the model is given in Fig. 1, and the variables and parameters of the model are described in
Table 1):
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Table 1 Description of model variables and parameters

Variable Description

S(t) Susceptible individuals

I u
1 (t) Infected individuals unaware of their status in acute sero-conversion stage

I u
2 (t) Infected individuals unaware of their status in the asymptomatic stage

I u
3 (t) Infected individuals unaware of their status in the pre-AIDS stage

Au(t) Infected individuals unaware of their status in the AIDS stage

I k
1 (t) Infected individuals aware of their status in acute sero-conversion stage

I k
2 (t) Infected individuals aware of their status in the asymptomatic stage

I k
3 (t) Infected individuals aware of their status in the pre-AIDS stage

Ak (t) Infected individuals aware of their status in the AIDS stage

T (t) Treated individuals

N (t) Total population

Parameter Description Value/range Reference

� Recruitment rate into the

susceptible population 2000 (year)−1 [33]

β Effective contact rate 3 (year)−1 Assumed

r Reduction in risky behaviour amongst

diagnosed individuals 0.43 [24,25]
1
μ Average duration of acquisition of sexual 30 years

partners

σ1, σ2, σ3 Progression rates 13, 2.6, 1
15 (year)−1 [15,18]

η2, η3, η4 Modification parameters 0.43, 0.043, 0.17 Estimated using the

ranges in [42]

τn Rate of administration of NAAT testing Variable

εn Efficacy of NAAT testing 0.99 [31]

κ Condom compliance 0.7 (year)−1 [7]

εc Efficacy of condom use 0.6 [3]

τε Rate of administration of standard (ELISA) Variable

testing

εε Efficacy of standard testing 0.96 [31]

θ1 Modification parameter 0.001 Assumed

δu , δk Disease-induced mortality rates 0.47, 0.04 (year)−1 [15]

ψ1, ψ2, ψ3, ψk Treatment rates (I k
1 , I k

2 , I k
3 , Ak ) Variable

d S

dt
= �− (1 − εcκ)λS − μS,

d I u
1

dt
= (1 − εcκ)λS − σ1 I u

1 − τnεn I u
1 − μI u

1 ,

d I u
2

dt
= σ1 I u

1 − σ2 I u
2 − τεεε I u

2 − μI u
2 ,

d I u
3

dt
= σ2 I u

2 − σ3 I u
3 − τεεε I u

3 − μI u
3 ,

d Au

dt
= σ3 I u

3 − τεεε Au − μAu − δu Au,
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d I k
1

dt
= τnεn I u

1 − σ1 I k
1 − ψ1 I k

1 − μI k
1 ,

d I k
2

dt
= σ1 I k

1 + τεεε I u
2 − σ2 I k

2 − ψ2 I k
2 − μI k

2 ,

d I k
3

dt
= σ2 I k

2 + τεεε I u
3 − σ3 I k

3 − ψ3 I k
3 − μI k

3 ,

d Ak

dt
= σ3 I k

3 + τεεε Au − ψk Ak − μAk − δk Ak,

dT

dt
= ψ1 I k

1 + ψ2 I k
2 + ψ3 I k

3 + ψk Ak − μT − θ1δk T . (2)

The model (2) is a modification of the model presented in [1], in that it accounts for four
HIV infection stages (as against the three infection stages considered in [1]). Furthermore,
this study provides a rigorous mathematical analysis of the model (this is not given in [1]).

Basic Properties of the Model

To be epidemiologically meaningful, it is important to prove that the solutions of the basic
model (2), with positive initial data, will remain positive for all time t > 0.

Lemma 1 Let the initial data S(0) > 0, I u
1 (0) ≥ 0, I u

2 (0) ≥ 0, I u
3 (0)≥ 0, Au(0)≥ 0,

I k
1 (0) ≥ 0, I k

2 (0) ≥ 0, I k
3 (0) ≥ 0, Ak(0) ≥ 0 and T (0) ≥ 0. Then, the solutions

(S, I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak, T ) of the model (2) are non-negative for all t > 0.
Furthermore,

lim sup
t→∞

N (t) ≤ �

μ
.

Proof Let t1 = sup{t > 0 : S, I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak, T > 0}. Thus, t1 > 0. It
follows from the first equation of the differential equation system (2) that

d S(t)

dt
= �− [(1 − εcκ)λ(t)+ μ]S(t),

which is equivalent to,

d

dt

[
S(t)exp

{∫ t

0
(1 − εcκ)λ(u)du + μt

}]
= � exp

⎧⎨
⎩

t∫

0

(1 − εcκ)λ(u)du + μt

⎫⎬
⎭ .

Thus,

S(t1) exp

⎧⎨
⎩

t1∫

0

(1−εcκ)λ(u)du + μt1

⎫⎬
⎭ −S(0)=

∫ t1

0
� exp

⎧⎨
⎩

x∫

0

(1 − εcκ)λ(v)dv + μx

⎫⎬
⎭ dx,

so that,

S(t1) = S(0) exp

⎧⎨
⎩−

t1∫

0

(1 − εcκ)λ(u)du + μt1

⎫⎬
⎭ + exp

⎧⎨
⎩−

t1∫

0

(1 − εcκ)λ(u)du + μt1

⎫⎬
⎭

×
t1∫

0

� exp

⎧⎨
⎩

x∫

0

(1 − εcκ)λ(v)dv + μx

⎫⎬
⎭ dx > 0.
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Similarly, it can be shown that I u
1 (0) > 0, I u

2 (0) > 0, I u
3 (0) > 0, Au(0) > 0, I k

1 (0) >
0, I k

2 (0) > 0, I k
3 (0) > 0, Ak(0) > 0 and T (0) > 0 for all t > 0. Thus, all solutions of the

model, with non-negative initial data, remain non-negative for all t > 0.
Adding all the equations of the basic model (2) gives,

d N (t)

dt
= �− μN (t)− δu Au(t)− δk[Ak(t)+ θ1T (t)]. (3)

Noting that 0 < Au(t) ≤ N (t), 0 < Ak(t) ≤ N (t) and 0 < T (t) ≤ N (t), it follows from
(3) that

�− (μ+ δu + δk + θ1δk)N (t) ≤ d N (t)

dt
< �− μN (t).

Thus,

�

μ+ δu + δk + θ1δk
≤ lim inf

t→∞ N (t) ≤ lim sup
t→∞

N (t) ≤ �

μ
,

so that lim sup
t→∞

N (t) ≤ �
μ
, as required. ��

Local Stability of Disease-Free Equilibrium (DFE)

Since the model (2) monitors human populations, it is assumed that the variables and asso-
ciated parameters are non-negative for all t ≥ 0. The DFE of the model (2) is given by

E0 =
(

S∗, I u∗
1 , I u∗

2 , I u∗
3 , A∗

u, I k∗
1 , I k∗

2 , I k∗
3 , A∗

k , T ∗) =
(
�

μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
. (4)

Consider the biologically-feasible region

D =
{(

S, I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak, T
)

∈ R
10+ : N ≤ �

μ

}
.

The following steps are taken to establish the positive invariance of D (i.e., solutions in D
remain in D for all t > 0). The rate of change of total population, obtained by adding all the
equations of the model (2), is given by

d N

dt
= �− μN − δu Au − δk Ak − θ1δk T . (5)

Since the right hand-side of (5) is bounded by�−μN , a standard comparison theorem can
be used to show that N (t) ≤ N (0)e−μt + �

μ
(1−e−μt ). In particular, N (t) ≤ �

μ
if N (0) ≤ �

μ
.

Thus, D is positively-invariant. Hence, it is sufficient to consider the dynamics of the flow
generated by (2) in D. In this region, the model can be considered as been epidemiologically
and mathematically well-posed [16].

The linear stability of E0 is studied using the next generation operator technique in [8,41].
The associated non-negative matrix, H, for the new infection terms, and the non-singular
M-matrix, V , for the remaining transfer terms, are, respectively, given by
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H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βp βη2 p βη3 p βη4 p βr p βrη2 p βrη3 p βrη4 p 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and,

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1 0 0 0 0 0 0 0 0
−σ1 k2 0 0 0 0 0 0 0

0 −σ2 k3 0 0 0 0 0 0
0 0 −σ3 k4 0 0 0 0 0

−m1 0 0 0 k5 0 0 0 0
0 −m2 0 0 −σ1 k6 0 0 0
0 0 −m2 0 0 −σ2 k7 0 0
0 0 0 −m2 0 0 −σ3 k8 0
0 0 0 0 −ψ1 −ψ2 −ψ3 −ψk k9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

p = 1 − εcκ, m1 = τnεn, m2 = τεεε, k1 = μ+ σ1 + τnεn,

k2 = σ2 + μ+ τεεε, k3 = σ3 + μ+ τεεε, k4 = μ+ δu + τεεε, k5 = μ+ σ1 + ψ1,

k6 = μ+ σ2 + ψ2, k7 = μ+ σ3 + ψ3, k8 = μ+ δk + ψk and k9 = μ+ θ1δk .

It follows that the effective reproduction number, denoted by Reff , is given by

Reff = ρ(H V −1) =
pβ

3∑
i=1

Ai

8∏
i=1

ki

, (6)

where ρ denotes the spectral radius, and

A1 = m2rσ1k5{η4σ3σ2[k7k6 + k4(k3 + k6)] + k4k8[η2k3k7 + η3σ2 (k6 + k3)]},
A2 = m1rk4k3k2[(η3k8 + η4σ3)+ k7k8(k6 + η2σ1)],
A3 = k5k6k7k8[σ2σ1(η4σ3 + η3k4)+ k3k4(k2 + η2σ1)].

The threshold quantity, Reff , measures the average number of new secondary cases gen-
erated by a single infected individual in a population where the aforementioned anti-HIV
control measures are implemented. It is worth stating that, in (6), β is the infection rate
and 1

ki
(i = 1, . . . , 8) represent the respective mean duration in the infection classes

(I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak). An associated epidemiological threshold is the basic repro-
duction number (R0), obtained in a similar way by considering the model (2) in the absence of
any anti-HIV intervention (i.e., κ = εc = τn = εn = τε = εε = ψ1 = ψ2 = ψ3 = ψk = 0),
is given by
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R0 = βA3

8∏
i=1

ki

,

where A3 is as defined earlier (but with the aforementioned intervention-related parame-
ters set to zero). The threshold quantity R0 measures the average number of new infections
generated by a single infected individual in a completely susceptible population.

Using Theorem 2 of [41], the following result is established.

Lemma 2 The DFE, E0, of the system (2), given by (4), is locally-asymptotically stable (LAS)
if Reff < 1, and unstable if Reff > 1.

The epidemiological implication of Lemma 2 is that HIV can be eliminated from the com-
munity when Reff < 1, provided the initial sizes of the sub-populations of the model (2)
are in the basin of attraction of E0. In other words, an influx of small number of infected
individuals into the community will not generate large outbreaks if Reff < 1. To ensure that
disease elimination is independent of the initial population sizes of the state variables of the
model, a global asymptotic stability result (of the DFE) is established below.

Global Stability of DFE

Theorem 1 The DFE of the model (2), given by (4), is globally-asymptotically stable (GAS)
in D whenever Reff ≤ 1.

Proof Consider the Lyapunov function

M = f1 I u
1 + f2 I u

2 + f3 I u
3 + f4 Au + f5 I k

1 + f6 I k
2 + f7 I k

3 + f8 Ak,

where,

f1 = k1k2k3k4k5k6k7k8Reff

pβ
,

f2 = k1k5 [k6k7k8(η2k3k4+η3σ2k4 + η4σ2σ3)+ rm2k8(η2k3k4k7 + η3σ2k4k6 + η3σ2k3k4)

+rη4m2σ2σ3(k6k7 + k4k6 + k3k4)] ,

f3 = k1k2k5k6 [k8(η3k4k7 + η4σ3k7 + rη3m2k4)+ rη4m2σ3(k4 + k7)] ,

f4 = k1k2k3k5k6k7(η4k8 + rη4m2),

f5 = k1k2k3k4r(k6k7k8 + η2σ1k7k8 + η3σ1σ2k8 + η4σ1σ2σ3),

f6 = k1k2k3k4k5r(η2k7k8 + η3σ2k8 + η4σ2σ3),

f7 = k1k2k3k4k5k6r(η3k8 + η4σ3),

f8 = k1k2k3k4k5k6k7rη4,

with Lyapunov derivative given by (where a dot represents differentiation with respect to t)

Ṁ = f1 İ u
1 + f2 İ u

2 + f3 İ u
3 + f4 Ȧu + f5 İ k

1 + f6 İ k
2 + f7 İ k

3 + f8 Ȧk,

= k1k2k3k4k5k6k7k8SλReff

β
− k2

1k2k3k4k5k6k7k8 I u
1 Reff

pβ
,

−k2
1k2k3k4k5k6k7k8 I u

1 Reff

pβ
− k1k2k3k4k5k6k7k8 Nλ

β
,

= k1k2k3k4k5k6k7k8SλReff

β
− k1k2k3k4k5k6k7k8 Nλ

β
,
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= k1k2k3k4k5k6k7k8 Nλ

β

(
SReff

N
− 1

)
,

≤ k1k2k3k4k5k6k7k8 Nλ

β
(Reff − 1) since S ≤ N in D,

≤ 0 for Reff ≤ 1.

Thus, Ṁ ≤ 0 if Reff ≤ 1 with Ṁ = 0 if and only if I u
1 = I u

2 = I u
3 = Au = I k

1 =
I k
2 = I k

3 = Ak = 0. It follows, from the LaSalle’s Invariance Principle [21], that I u
1 → 0,

I u
2 → 0, I u

3 → 0, Au → 0, I k
1 → 0, I k

2 → 0, I k
3 → 0 and Ak → 0 as t → ∞.

Further, substituting I u
1 = I u

2 = I u
3 = Au = I k

1 = I k
2 = I k

3 = Ak = 0 in the first
and last equations of the model (2) shows that S → �

μ
and T → 0 as t → ∞. Thus,

(S, I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak, T ) → (�
μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞. Further,

since D is positively-invariant, it follows that the DFE, E0, is GAS in D if Reff ≤ 1. ��
An alternative proof for Theorem 1, using a comparison theorem argument, is given in

Appendix A.

Existence and Stability of Endemic Equilibrium Point (EEP)

The existence of possible endemic equilibria of the model (that is, equilibria where the disease
is endemic) is explored as follows. Let,

E1 =
(

S∗∗, I u∗∗
1 , I u∗∗

2 , I u∗∗
3 , A∗∗

u , I k∗∗
1 , I k∗∗

2 , I k∗∗
3 , A∗∗

u , T ∗∗)

represents an arbitrary endemic equilibrium of the model (2). Further, let

λ∗∗ = β

N∗∗
[

I u∗∗
1 + η2 I u∗∗

2 + η3 I u∗∗
3 + η4 A∗∗

u + r
(

I k∗∗
1 + η2 I k∗∗

2 + η3 I k∗∗
3 + η4 A∗∗

k

)]
.

(7)

Solving the equations in the model (2) at steady-state, in terms of λ∗∗S∗∗, gives

I u∗∗
1 = B1λ

∗∗S∗∗, I u∗∗
2 = B2λ

∗∗S∗∗, I u∗∗
3 = B3λ

∗∗S∗∗, A∗∗
u = B4λ

∗∗S∗∗,
I k∗∗
1 = B5λ

∗∗S∗∗, I k∗∗
2 = B6λ

∗∗S∗∗, I k∗∗
3 = B7λ

∗∗S∗∗, A∗∗
k = B8λ

∗∗S∗∗, (8)

T ∗∗ = B9λ
∗∗S∗∗,

with,

B1 = p

k1
, B2 = σ1 B1

k2
, B3 = σ2 B2

k3
, B4 = σ3 B3

k4
, B5 = m1 B1

k5
,

B6 = 1

k6
(σ1 B5 + m2 B2), B7 = 1

k7
(σ2 B6 + m2 B3), B8 = 1

k8
(σ3 B7 + m2 B4),

B9 = 1

k9
(ψ1q1 B5 + ψ2q2 B6 + ψ3q3 B7 + ψkqk B8).

Using (8) in (7), and simplifying, gives

B10(λ
∗∗)2 − λ∗∗C1 = 0, (9)

where,

C1 = Reff − 1 and B10 =
9∑

i=1

Bi .
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The positive endemic equilibrium of the model (2) can then be obtained by solving for λ∗∗ in
(9) and substituting the result into (8). Clearly, λ∗∗ = 0 is a solution of (9), which corresponds
to the DFE (E0). For λ∗∗ �= 0, the quadratic (9) can be simplified to

B10λ
∗∗ − C1 = 0. (10)

Since all the model parameters are non-negative, it follows that B10 > 0 and C1 > 0 for
Reff > 1. Thus, the linear equation (10) has a unique positive solution, given by λ∗∗ = C1

B10
,

whenever Reff > 1. The components of this solution are obtained by substituting the unique
value of λ∗∗ into (8). Since Reff < 1 implies that C1 < 0, it follows that, for Reff < 1, λ∗∗ <
0 (which is epidemiologically meaningless). Similarly, if Reff = 1, the coefficient C1 = 0, so
that λ∗∗ = 0 (which corresponds to the DFE, E0). Hence, the model has no positive solution
whenever Reff ≤ 1. These results are summarized below.

Lemma 3 The model (2) has a unique positive endemic equilibrium, given by E1, whenever
Reff > 1, and no positive equilibrium otherwise.

The local stability of the unique EEP, E1, will now be explored for the special case where
the disease-induced mortality is negligible (i.e., δu = δk = 0). Setting δu = δk = 0 in the
model (2) gives

d N (t)

dt
= �− μN (t). (11)

Hence, it follows from (11) that N (t) → �
μ

= N∗ as t → ∞. Further, using the substitution

S = N∗ − I u
1 − I u

2 − I u
3 − Au − I k

1 − I k
2 − I k

3 − Ak − T (and noting that δu = δk = 0) in
the model (2) gives the following reduced model:

d I u
1

dt
= pλ

(
N∗ − I u

1 − I u
2 − I u

3 − Au − I k
1 − I k

2 − I k
3 − Ak − T

)
− k1 I u

1 ,

d I u
2

dt
= σ1 I u

1 − k2 I u
2 ,

d I u
3

dt
= σ2 I u

2 − k3 I u
3 ,

d Au

dt
= σ3 I u

3 − k41 Au,

d I k
1

dt
= m1 I u

1 − k5 I k
1 ,

d I k
2

dt
= σ1 I k

1 + m2 I u
2 − k6 I k

2 ,

d I k
3

dt
= σ2 I k

2 + m2 I u
3 − k7 I k

3 ,

d Ak

dt
= σ3 I k

3 + m2 Au − k81 Ak,

dT

dt
= ψ1 I k

1 + ψ2 I k
2 + ψ3 I k

3 + ψk Ak − k91T, (12)

where k41 = k4|δu=0, k81 = k8|δk=0 and k91 = k9|δk=0. It can be shown, using the above
approach, that the system (12) has a unique endemic equilibrium, given by E2 = E1|δu=δk=0,

whenever Rc = Reff |δu=δk=0 > 1. Further, the following result holds (see Appendix B for
the proof):
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Theorem 2 The unique endemic equilibrium, E2, of the reduced model (12), is LAS when-
ever Rc > 1.

The epidemiological implication of Theorem 2 is that HIV will persist in the community if
the reproduction threshold (Rc) exceeds unity.

Numerical Simulations

The model (2) is simulated using the parameter values given in Table 1 (unless otherwise
stated). Some of the parameter values are obtained from the literature (such as in [6,7,15,18,
24,25,31]). In particular, the stage progression parameters are estimated as follows. Since
the period for the acute sero-conversion stage (I1) is less than 28 days of infection [1], the
average duration in this stage is set at 1

σ1
= 4

52 (so that, σ1 = 13 per year). Similarly, the aver-
age duration in the second infection stage (I2) is approximately 20 weeks (28–170 days [1]).
Thus, 1

σ2
= 20

52 (so that, σ2 = 2.6 per year). The duration in the third (I3) stage is assumed

to be 15 years [1] (thus, σ3 = 1
15 per year). It should be stated that although the model is

parameterized using data largely from resource-rich countries, it is robust enough to allow for
the evaluation of scenarios for resource-poor nations (by using appropriate parametrization).

First of all, the model (2) is simulated to evaluate the effect of condom use, as a single
anti-HIV intervention. Comparisons are made with the following three different effectiveness
levels of the combined testing (standard ELISA and NAAT) and treatment strategy:

(i) low effectiveness level of the combined testing and treatment strategy: τn = τε =
ψ1 = ψ2 = ψ3 = ψk = 0.4;

(ii) medium effectiveness level of the combined testing and treatment strategy: τn = τε =
ψ1 = ψ2 = ψ3 = ψk = 0.6;

(iii) high effectiveness level of the combined testing and treatment strategy: τn = τε =
ψ1 = ψ2 = ψ3 = ψk = 1.

The aforementioned effectiveness levels, chosen arbitrarily, are used to address the problem
of the uncertainty in the estimate of the values of the parameters related to the testing and
treatment rates.

Using the low effectiveness level of the combined testing and treatment strategy, it is
shown that the combination of the two testing methods and treatment is more effective (saves
more new cases) than the use of condoms as a singular anti-HIV strategy followed by the
use of only the standard ELISA testing method with ARV treatment (Fig. 2a). Using the
medium effectiveness level of the combined testing and treatment strategy, it is also shown
that the combination of the two testing methods and treatment is more effective than the
use of the only the standard testing method with ARVs followed by the condom use as a
singular strategy (Fig. 2b). Similar trends were observed for high effectiveness level of the
combined testing and treatment strategy (Fig. 2c). It should, however, be mentioned that the
use of condoms as a singular anti-HIV intervention is marginally more effective than the low
effectiveness level of the standard testing and ARV strategy (but this situation is reversed if
the effectiveness of the standard testing and ARV strategy is increased to medium or high
levels).

Figure 3 shows simulation results comparing the effect of the combined use of standard
testing and ARVs against a universal strategy (that entails the use of condoms, the two testing
methods and ARVs). Here, too, the aforementioned three effectiveness levels of the combined
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Fig. 2 Cumulative number of cases averted using condoms only and various effectiveness levels of the com-
bined testing and ARVs intervention strategy. a Low effectiveness level of the combined testing and treatment
strategy (τn = τε = ψ1 = ψ2 = ψ3 = ψk = 0.4; so that, Reff = 0.64 and R0 = 2.65), b moderate
effectiveness level of the combined testing and treatment strategy (τn = τε = ψ1 = ψ2 = ψ3 = ψk = 0.6;
so that, Reff = 0.61), and c high effectiveness level of the combined testing and treatment strategy (τn =
τε = ψ1 = ψ2 = ψ3 = ψk = 1; so that, Reff = 0.58). All other parameters are as given in Table 1

testing and treatment strategy are used. The universal strategy saves more cases than any of
the three effectiveness levels of the combined testing and treatment strategy (see Fig. 3a–c).

Conclusions

A deterministic model is designed and used to monitor the impact of voluntary HIV testing
(based on the use of a standard antibody-based and a DNA-based testing methods), condom
use and the use of ARVs in curtailing the spread of HIV in a population. Rigorous qualitative
analysis of the model reveals that it has a globally-asymptotically stable disease-free equi-
librium whenever a certain threshold quantity is less than unity. Furthermore, the model has
a unique endemic equilibrium when the threshold quantity exceeds unity. The endemic equi-
librium is shown to be locally-asymptotically stable for a special case. Numerical simulations
of the model, using a reasonable set of parameter values, show the following:

(i) The combined testing and treatment strategy is more effective than the use of the
standard ELISA testing method with ARV treatment. The use of condoms as a sole
anti-HIV strategy is marginally more effective than the low effectiveness level of the
standard testing and ARV strategy (this situation is reversed if the effectiveness of the
standard testing and ARV strategy is increased to medium or high levels).
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Fig. 3 Cumulative number of cases averted using a combined standard testing and ARVs and a universal
strategy. a Low effectiveness level of the combined testing and treatment strategy (τn = τε = ψ1 = ψ2 =
ψ3 = ψk = 0.4), b moderate effectiveness level of the combined testing and treatment strategy (τn = τε =
ψ1 = ψ2 = ψ3 = ψk = 0.6), and c high effectiveness of the level combined testing and treatment strategy
(τn = τε = ψ1 = ψ2 = ψ3 = ψk = 1). All other parameters are as given in Table 1

(ii) The universal strategy is always more effective than the combined use of the two
testing methods and ARVs (regardless of the effectiveness level of the latter strategy).

Overall, this study shows that the prospects of effectively controlling the spread of HIV
using the interventions considered in this study are bright (particularly if they are used in
combination). It is worth stating, however, that the simulation results presented in this study
are sensitive to the choices of parameter and initial values used in the simulations. The uncer-
tainties associated with the parameters related to the testing and treatment rates are accounted
for by considering three (arbitrarily chosen) effectiveness levels of the combined testing and
treatment strategy (a more detailed uncertainty analysis, based on Latin hypercube sampling
[4,5,27,32] for example, can be applied if more data (related to the testing and treatment
rates) becomes available).
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Appendix A: Alternative Proof for Theorem 1

Proof It should be noted, first of all, that the equations for the infected components in the
model (2) can be written in terms of

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d I u
1

dt
d I u

2
dt

d I u
3

dt
d Au
dt

d I k
1

dt

d I k
2

dt

d I k
3

dt
d Ak
dt
dT
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (H − V )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I u
1

I u
2

I u
3

Au

I k
1

I k
2

I k
3

Ak

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− pβ

(
1 − S

N

)
U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I u
1

I u
2

I u
3

Au

I k
1

I k
2

I k
3

Ak

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 η2 η3 η4 r rη2 rη3 rη4 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and H and V are as defined in “Local Stability of Disease-Free Equilibrium” section.

Since S ≤ N (for all t ≥ 0) in D, it follows that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d I u
1

dt
d I u

2
dt

d I u
3

dt
d Au

dt

d I k
1

dt

d I k
2

dt

d I k
3

dt

d Ak

dt
dT
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ (H − V )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I u
1

I u
2

I u
3

Au

I k
1

I k
2

I k
3

Ak

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)
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Using the fact that the eigenvalues of the matrix H − V all have negative real parts,
it follows that the linearized differential inequality system (A.1) is stable whenever
Reff < 1. Consequently, (I u

1 , I u
2 , I u

3 , Au, I k
1 , I k

2 , I k
3 , Ak, T ) → (0, 0, 0, 0, 0, 0, 0, 0, 0) as

t → ∞. It follows, by comparison theorem [20], that (I u
1 , I u

2 , I u
3 , Au, I k

1 , I k
2 , I k

3 , Ak, T ) →
(0, 0, 0, 0, 0, 0, 0, 0, 0). Substituting I u

1 = I u
2 = I u

3 = Au = I k
1 = I k

2 = I k
3 = Ak = T = 0

into the first equation of the model (2) gives S(t) → �
μ

as t → ∞. Thus,
(

S(t), I u
1 (t), I u

2 (t), I u
3 (t), Au(t), I k

1 (t), I k
2 (t), I k

3 (t), Ak(t), T (t)
)

→
(
�

μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

as t → ∞ and Reff < 1. Hence, E0 is GAS in D if Reff < 1. ��

Appendix B: Proof of Theorem 2

Proof Let Rc > 1, so that the unique EEP of the reduced model (12), given by E2, exists.
The proof of Theorem 2 is based on using the technique in [17] (see also [11,12]), which
employs a Krasnoselskii sub-linearity trick. Assume, first of all, that the linearization of the
system (12), around the equilibrium E2, has solution of the form:

Z̄(t) = Z̄eτ t , (B.1)

with Z̄ = (Zi ) and τ, Zi ∈ C (i = 1, . . . , 10). Substituting a solution of the form (B.1) into
the linearized system of (12), around the unique endemic equilibrium E2, gives the following
system of linear equations

τ Z1 = (p1 − p2 − k1)Z1 + (p1η2 − p2)Z2 + (p1η3 − p2)Z3 + (p1η4 − p2)Z4

+(p1r − p2)Z5 + (p1rη2 − p2)Z6 + (p1rη3 − p2)Z7 + (p1rη4 − p2)Z8

+(p1 − p2)Z9,

τ Z2 = σ1 Z1 − k2 Z2,

τ Z3 = σ2 Z2 − k3 Z3,

τ Z4 = σ3 Z3 − k41 Z4,

τ Z5 = m1 Z1 − k5 Z5, (B.2)

τ Z6 = σ1 Z5 + m2 Z2 − k6 Z6,

τ Z7 = σ2 Z6 + m2 Z3 − k7 Z7,

τ Z8 = σ3 Z7 + m2 Z4 − k81 Z8,

τ Z9 = ψ1 Z5 + ψ2 Z6 + ψ3 Z7 + ψk Z8 − k91 Z9,

where,

p1 = pβS∗∗

N∗ , p2 = Q1 + Q2,

with,

Q1 = pβ
[
I u∗∗
1 + η2 I u∗∗

2 + η3 I u∗∗
3 + η4 A∗∗

u

]

N∗ ,

Q2 = pβ
[
r
(
I k∗∗
1 + η2 I k∗∗

2 + η3 I k∗∗
3 + η4 A∗∗

k

)]

N∗ .
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System (B.2) is simplified as follows. Firstly, the negative terms in the last nine equations
of system (B.2) are moved to their respective left-hand sides. We then solve for Z2 from the
second, Z3 from the third and so on. The results are then substituted into the first equation
of the system (B.2). Finally, all the negative terms of the first one equation are moved to the
left-hand side. These algebraic manipulations result in the following general system:

[1 + Fi (τ )]Zi = (MZ̄)i , i = 1, . . . , 9, (B.3)

where,

F1(τ ) = D1 + p2

k1

[
D2 + D3 + D4 + D5 + D6 + D7 + D8 + 1

τ + k91
(ψ1 D5 + ψ2 D6

+ψ3 D7 + ψk D8)

]
,

F2(τ ) = τ

k2
, F3(τ ) = τ

k3
, F4(τ ) = τ

k4
, F5(τ ) = τ

k5
, F6(τ ) = τ

k6
, F7(τ ) = τ

k7
,

F8(τ ) = τ

k8
, F9(τ ) = τ

k91
, D1 = τ + p2

k1
, D2 = σ1

τ + k2
, D3 = σ2 D2

τ + k3
,

D4 = σ3 D3

τ + k4
, D5 = m1

τ + k5
, D6 = m2 D2

τ + k6
+ σ1 D5

τ + k6
, D7 = m2 D6

τ + k7
, D8 = m2 D4

τ + k8
,

with,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 η2 p1 η3 p1 η4 p1 r p1 rη2 p1 rη3 p1 rη4 p1 p1
σ1
k2

0 0 0 0 0 0 0 0
0 σ2

k3
0 0 0 0 0 0 0

0 0 σ3
k41

0 0 0 0 0 0
m1
k5

0 0 0 0 0 0 0 0
0 m2

k6
0 0 σ1

k6
0 0 0 0

0 0 m2
k7

0 0 σ2
k7

0 0 0
0 0 0 m2

k81
0 0 σ3

k81
0 0

0 0 0 0 ψ1
k91

ψ2
k91

ψ3
k91

ψk
k91

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The notation M(Z̄)i (with i = 1, . . . , 9) denotes the i th coordinate of the vector M(Z̄). It
should further be noted that the matrix M has non-negative entries, and the equilibrium E2

satisfies E2 = ME2. Furthermore, since the coordinates of E2 are all positive, it follows then
that if Z̄ is a solution of (B.3), then it is possible to find a minimal positive real number s
such that

|| Z̄ ||≤ sE2, (B.4)

where, || Z̄ ||= (|| Z1 ||, . . . , || Z9 ||)with the lexicographic order, and || · || is a norm in C.
The main goal is to show that Re(τ ) < 0. Assume the contrary (i.e., Re(τ ) ≥ 0). We

then need to consider two cases: τ = 0 and τ �= 0. Assume the first case, τ = 0. Then, (B.2)
is a homogeneous linear system in the variables Zi (i = 1, . . . , 9). The determinant of the
system (B.2) corresponds to that of the Jacobian of the system (12) evaluated at E2, which is
given by

�= EλS∗∗ p

N∗ + k1k2k3k41k5k6k7k81k91

(
1 − S∗∗

N∗ Rc

)
, (B.5)
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where,

E = m2k5σ1 {σ2σ3k41[k6k12(qk + k91)] + σ2k41k81(k3 + k6)

+ k3k4k7k8k12(1 + k11)+ k3k4k8k11(k7a2 + σ2k12 + a3σ2)}
+ m1k2k3k41 {σ1σ2[σ3(k91 + 1)+ k8(1 + k91)] + k7k8[k6 + k91(σ1 + k6)+ σ1]}
+ k5k6k7k81k91[σ1σ2(σ3 + k41)+ k3k41(k2 + σ1)].

By solving the equations of the model (12), at the endemic steady-state E2, and using the first
equation of (12), it can be shown that

S∗∗

N∗ = 1

Rc
. (B.6)

Thus, using (B.6) in (B.5) shows that �> 0. Consequently, the system (12) can only have
the trivial solution Z̄ = 0̄ (which corresponds to the DFE, E0).

Now we consider the case τ �= 0. In this case, Re(Fi (τ )) ≥ 0(i = 1, . . . , 9) since, by
assumption, Re(τ ) ≥ 0. It is easy to see that this implies | 1 + Fi (τ ) |> 1 for all i . Now,
define F(τ ) = min | 1 + Fi (τ ) | (for i = 1, . . . , 9). Then, F(τ ) > 1. Hence, s

F(τ ) < s.

The minimality of s implies that || Z̄ ||> s
F(τ )E2. But, on the other hand, taking norms on

both sides of the second equation of (B.2), and using the fact that M is non-negative, we
obtain

F(τ ) || Z2 ||≤ M(|| Z ||)2 ≤ s(M || E2 ||)2 ≤ s I u∗∗
1 . (B.7)

Then, it follows from the above inequality that || Z2 ||≤ s
F(τ ) I u∗∗

1 , which contradicts
Re(Fi (τ )) ≥ 0. Hence, Re(τ ) < 0. Thus, the equilibrium E2 is LAS if Rc > 1. ��
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