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Kimberlite, one of the deepest known magmatic rocks on 
Earth, offers valuable glimpses into the deep mantle composi‐
tion (Woodhead et al., 2019), craton structure (Gardiner et al., 
2020), global geodynamic variation (Tappe et al., 2018), and 
diamond formation (Giuliani et al., 2023). The accurate deter‐
mination of the emplacement of this special rock is crucial for 
revealing such information. However, dating kimberlite is chal‐
lenging due to its silica-poor, volatile-rich, strongly altered, 
and hybrid nature (Mitchell et al., 2019).

Zircon is unsuitable for dating kimberlite and related rocks 
due to its preference for crystallizing in intermediate to felsic 
melts (Gervasoni et al., 2016) rather than silica-poor ones. Even 
if present, zircon is prone to Pb loss through hydrothermal alter‐
ation (Zi et al., 2022) in a volatile-rich system like kimberlitic 
magmas. Reliable radiometric dating methods for kimberlite 
emplacement age include U-Pb dating of groundmass 
perovskite and mantle zircon, Rb-Sr dating of phlogopite macro‐
cryst, and ⁴⁰Ar-³⁹Ar dating of groundmass phlogopite (Heaman 
et al., 2019), (U-Th)/He dating of zircon and perovskite (Stan‐
ley and Flowers, 2016), and U-Pb dating of desilicification rim 
of zircon xenocryst (Melnik et al., 2022), etc. However, these 
methods are hindered by the strict requirements of rare mineral 
geochronometers and complex analytical procedures, limiting 
their widespread applications in kimberlite geochronology.

Apatite, a calcium phosphate accessory mineral that is 
ubiquitous in all igneous rocks, presents a viable alternative. Ap‐
atite fission-track and apatite (U-Th)/He analyses were success‐
fully employed in the reconstruction of the low-temperature 
thermal history in the range from 60 to 120 ° C (Ding, 2023; 
Chew et al., 2011). Apatite possesses a moderate closure temper‐
ature for U-Pb isotopic system, it therefore represents an easily 
accessible and highly reliable geochronometer for recording 
thermal histories within a temperature range of 350–550 ° C 

(Chew and Spikings, 2015). Apatite demonstrates a significant 
advantage and yields better U-Pb age results compared to zir‐
con in some extreme scenarios, such as in highly evolved vola‐
tile-rich granitic system (e.g., Feng et al., 2023) and mafic sys‐
tem (e.g., Li et al., 2021). Recent advances in in-situ U-Pb geo‐
chronology allow for accurate and precise measurements of 
low U (<3 ppm) and high common Pb proportion (>50%) apa‐
tite, using suitable certified references and a careful choice of 
common Pb composition (Chew et al., 2011). Although the U-
Pb isotopic closure temperature of apatite is lower than that of 
zircon, and the apatite U-Pb age typically represents the cool‐
ing age rather than crystallization age as zircon did, many ex‐
amples manifest that both minerals extracted from the same 
rocks may yield identical U-Pb ages in some magmatic sys‐
tems. One noteworthy example is the Qinghu quartz monzonite 
in Zhejiang Province, China. This rock exhibits an apatite U-
Pb age of 160.4 ± 2.5 Ma (Figure 1a and ESM Table S1) con‐
sistent with its recommended zircon U-Pb age of 159.5 ± 0.2 
Ma (Li et al., 2013). Another illustration involves the McClure 
Mountain syenite in Colorado, USA, where its apatite U-Pb 
age (523.51 ± 1.47 Ma) coincides with the recommended zir‐
con U-Pb age (523.98 ± 0.12 Ma) (Schoene and Bowring, 
2006). The above evidence suggests that no Pb diffusion oc‐
curs in apatite sometimes, even in a slowly cooling magmatic 
system. In terms of kimberlite, a product of a high-velocity 
magma that can erupt from the mantle to the surface within 
days (Russell et al., 2019), the apatite U-Pb age appears theo‐
retically suitable for dating emplacement age of these rapidly 
cooling magmatic rocks. Li et al. (2016) briefly reported the re‐
sults of SIMS U-Pb dating of apatite from Zhenyuan lamproite 
in South China, but the application of LA-ICP-MS U-Pb dating 
of apatite for constraining the emplacement age of kimberlite 
has been poorly documented. This work conducted a systemati‐
cal U-Pb dating of seven apatite samples from the kimberlite 
and related rocks in South China. The obtained apatite U-Pb 
ages are comparable with phlogopite ⁴ ⁰Ar- ³ ⁹Ar dating results 
from the same dike, which demonstrates that the LA-ICP-MS 
U-Pb dating of apatite can be a powerful approach to constrain 
the emplacement age of kimberlite and related rocks.

The largest kimberlite-lamproite-lamprophyre dike swarm 
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Figure 1. Tera-Wasserburg plots of LA-ICP-MS data for apatite. (a) U-Pb age of the Qinghu quartz monzonite apatite (this study); the recommended zircon age 

of the Qinghu quartz monzonite is from Li et al. (2013); (b) U-Pb age of the reference MAD2 apatite; the recommended apatite age is from Thomson et al. 

(2012); (c) U-Pb age of the reference Otter Lake apatite; the recommended apatite age is from Barfod et al. (2005); (d) U-Pb age of the MRC-1 apatite; the rec‐

ommended apatite age is from Apen et al. (2022); (e) U-Pb age of the reference McClure Mountain apatite; the recommended apatite age is from Schoene and 

Bowring (2006); (f) U-Pb age of the Baifen apatite sample (20BF); the initial 207Pb/206Pb value is derived from the measured whole-rock 207Pb/206Pb ratio 

(Zhang et al., 2023); (g) 40Ar/39Ar age of the Baifen phlogopite sample (BF1) (Zhang et al., 2023); (h) 40Ar/39Ar age of the Baifen phlogopite sample (BF2) 

(Zhang et al., 2023).
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in South China is outcropped at eastern Guizhou Province. 
These dikes intruded into Late Tonian to Late Cambrian strata 
and were controlled by the EW-trending regional faults. The 
emplacement ages and patterns of this rock suite remain poorly 
constrained. Here, the apatite U-Pb isotopic ratios of the kim‐
berlite and related rocks in this region were measured at the 
Yanduzhongshi Geological Analysis Laboratory Ltd. through 
an optimized NWR193 laser ablation system and PlasmaQuant 
MS. Analytical procedures were described by Zhang et al. 
(2023). Age calculations involved plotting the uncorrected data 
on the Tera-Wasserburg concordia diagram to obtain the lower 
intercept ages. Common Pb corrections were applied when sam‐
ples showed a concentrated distribution in common Pb/radio‐
genic Pb ratios, with a careful estimate of initial Pb isotopic 
compositions.

The Pb isotopic data of the Qinghu apatite are first report‐
ed in this article and listed in ESM Table S1, other data have 
previously been published (Zhang et al., 2023). Certified refer‐
ences, including MAD2 apatite, Otter Lake apatite, MRC-1 ap‐
atite, and McClure Mountain apatite, yielded Tera-Wasserburg 
lower-intercepted ages of 476.6 ± 1.4 Ma (n = 66, MSWD = 
1.2), 906.3 ± 2.9 Ma (n = 57, MSWD = 1.3), 154.8 ± 1.3 Ma 
(n = 27, MSWD = 1.4), and 521.4 ± 4.1 Ma (n = 8, MSWD = 
0.92), respectively, which are consistent with their recommend‐
ed values (474.25 ± 0.41, 913 ± 7, 153.3 ± 0.2, 523.51 ± 1.47 
Ma, respectively) within uncertainties (Figures 1b–1e), indicat‐
ing that U-Pb ages of these reference apatites have been accu‐
rately and precisely determined. Seven kimberlite and related 
rocks yielded apatite U-Pb ages between 492 and 441 Ma with 
small errors (Table 1), consistent with previously reported 
whole-rock Sm-Nd and Rb-Sr ages (Fang et al., 2002), and 
SIMS rutile and apatite U-Pb ages (Li et al., 2016). Among 
them, the mica-rich Baifen dike yielded a U-Pb age of 466 ± 
13 Ma (Figure 1f).

To evaluate the accuracy and precision of apatite U-Pb dat‐
ing results, two phlogopite phenocryst samples (>250 μm) were 
separated from the Baifen dike and dated simultaneously and in‐
dependently by using ⁴⁰Ar-³⁹Ar method at the State Key Labora‐
tory of Ore Deposit Geochemistry, Institute of Geochemistry, 
Chinese Academy of Sciences. Certified references GA-1550 
biotite and FCs sanidine yielded ⁴⁰Ar-³⁹Ar plateau ages of 98.73 
± 0.61 Ma (2σ, including 97% of the ³⁹Ar, MSWD = 0.71) and 
27.97 ± 0.17 Ma (2σ, including 100% of the ³ ⁹Ar, MSWD = 
0.33) (Figures 1g–1h), respectively, which are coincident with 

their recommended values (98.79 ± 0.96 Ma for GA-1550 and 
28.02 ± 0.28 Ma for FCs, Renne et al., 1998). Two phlogopite 
samples from the Baifen dike yielded identical ⁴⁰Ar-³⁹Ar plateau 
ages of 451 ± 3 Ma (2σ, including 96% of the ³⁹Ar, n = 13/15, 
MSWD = 0.74) and 453 ± 3 Ma (2σ, including 86% of the ³⁹Ar, 
n = 12/14, MSWD = 0.68), confirming the validity of the ⁴⁰Ar-   
³⁹Ar isotopic system of the Baifen dike. Furthermore, the apa‐
tite U-Pb age and phlogopite ⁴⁰Ar-³⁹Ar ages, obtained from two 
different minerals and isotopic systems within the same dike at 
two different institutes, were broadly concordant within analyti‐
cal uncertainty. Our case study therefore affirms that the apatite 
LA-ICP-MS U-Pb dating can be a promising and robust ap‐
proach for constraining the emplacement age of kimberlite.
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Sample

19MP

20XT

20BF

20PY

20DP-2

20DT

20NC

Rock type*

Kimberlite

Lamprophyre

Lamproite

Lamproite

Kimberlite

Kimberlite

Lamprophyre

Locality

Maping

Xitou

Baifen

Pingyang

Daping

Datang

Nancen

Lower intercept age (Ma)

492 ± 12

484 ± 8

466 ± 13

455 ± 7

449 ± 12

448 ± 11

441 ± 7

n

55

26

46

40

38

40

37

MSWD

1.2

2.5

1.5

1.2

2.3

0.83

0.6

*Rock type is inferred based on their geochemical compositions (unpublished) and plotting them on the Al2O3-K2O-MgO geochemical classification 

diagram (not shown) of lamprophyres, lamproites, and kimberlites (Bergman, 1987).
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